(* Title: FOL/ex/NatClass.thy
ID: $Id: NatClass.thy,v 1.4 2005/09/06 14:59:48 wenzelm Exp $
Author: Markus Wenzel, TU Muenchen
*)
theory NatClass
imports FOL
begin
text {*
This is an abstract version of theory @{text "Nat"}. Instead of
axiomatizing a single type @{text nat} we define the class of all
these types (up to isomorphism).
Note: The @{text rec} operator had to be made \emph{monomorphic},
because class axioms may not contain more than one type variable.
*}
consts
0 :: 'a ("0")
Suc :: "'a => 'a"
rec :: "['a, 'a, ['a, 'a] => 'a] => 'a"
axclass
nat < "term"
induct: "[| P(0); !!x. P(x) ==> P(Suc(x)) |] ==> P(n)"
Suc_inject: "Suc(m) = Suc(n) ==> m = n"
Suc_neq_0: "Suc(m) = 0 ==> R"
rec_0: "rec(0, a, f) = a"
rec_Suc: "rec(Suc(m), a, f) = f(m, rec(m, a, f))"
constdefs
add :: "['a::nat, 'a] => 'a" (infixl "+" 60)
"m + n == rec(m, n, %x y. Suc(y))"
ML {* use_legacy_bindings (the_context ()) *}
ML {* open nat_class *}
end
theorem Suc_n_not_n:
Suc(k) ≠ k
theorem add_0:
0 + n = n
theorem add_Suc:
Suc(m) + n = Suc(m + n)
theorem add_assoc:
k + m + n = k + (m + n)
theorem add_0_right:
m + 0 = m
theorem add_Suc_right:
m + Suc(n) = Suc(m + n)