(* Title: HOL/Auth/Kerberos_BAN
ID: $Id: Kerberos_BAN.thy,v 1.12 2005/06/17 14:13:06 haftmann Exp $
Author: Giampaolo Bella, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
Tidied and converted to Isar by lcp.
*)
header{*The Kerberos Protocol, BAN Version*}
theory Kerberos_BAN imports Public begin
text{*From page 251 of
Burrows, Abadi and Needham (1989). A Logic of Authentication.
Proc. Royal Soc. 426
Confidentiality (secrecy) and authentication properties rely on
temporal checks: strong guarantees in a little abstracted - but
very realistic - model.
*}
(* Temporal modelization: session keys can be leaked
ONLY when they have expired *)
syntax
CT :: "event list=>nat"
Expired :: "[nat, event list] => bool"
RecentAuth :: "[nat, event list] => bool"
consts
(*Duration of the session key*)
SesKeyLife :: nat
(*Duration of the authenticator*)
AutLife :: nat
text{*The ticket should remain fresh for two journeys on the network at least*}
specification (SesKeyLife)
SesKeyLife_LB [iff]: "2 ≤ SesKeyLife"
by blast
text{*The authenticator only for one journey*}
specification (AutLife)
AutLife_LB [iff]: "Suc 0 ≤ AutLife"
by blast
translations
"CT" == "length "
"Expired T evs" == "SesKeyLife + T < CT evs"
"RecentAuth T evs" == "CT evs ≤ AutLife + T"
consts kerberos_ban :: "event list set"
inductive "kerberos_ban"
intros
Nil: "[] ∈ kerberos_ban"
Fake: "[| evsf ∈ kerberos_ban; X ∈ synth (analz (spies evsf)) |]
==> Says Spy B X # evsf ∈ kerberos_ban"
Kb1: "[| evs1 ∈ kerberos_ban |]
==> Says A Server {|Agent A, Agent B|} # evs1
∈ kerberos_ban"
Kb2: "[| evs2 ∈ kerberos_ban; Key KAB ∉ used evs2; KAB ∈ symKeys;
Says A' Server {|Agent A, Agent B|} ∈ set evs2 |]
==> Says Server A
(Crypt (shrK A)
{|Number (CT evs2), Agent B, Key KAB,
(Crypt (shrK B) {|Number (CT evs2), Agent A, Key KAB|})|})
# evs2 ∈ kerberos_ban"
Kb3: "[| evs3 ∈ kerberos_ban;
Says S A (Crypt (shrK A) {|Number Ts, Agent B, Key K, X|})
∈ set evs3;
Says A Server {|Agent A, Agent B|} ∈ set evs3;
~ Expired Ts evs3 |]
==> Says A B {|X, Crypt K {|Agent A, Number (CT evs3)|} |}
# evs3 ∈ kerberos_ban"
Kb4: "[| evs4 ∈ kerberos_ban;
Says A' B {|(Crypt (shrK B) {|Number Ts, Agent A, Key K|}),
(Crypt K {|Agent A, Number Ta|}) |}: set evs4;
~ Expired Ts evs4; RecentAuth Ta evs4 |]
==> Says B A (Crypt K (Number Ta)) # evs4
∈ kerberos_ban"
(*Old session keys may become compromised*)
Oops: "[| evso ∈ kerberos_ban;
Says Server A (Crypt (shrK A) {|Number Ts, Agent B, Key K, X|})
∈ set evso;
Expired Ts evso |]
==> Notes Spy {|Number Ts, Key K|} # evso ∈ kerberos_ban"
declare Says_imp_knows_Spy [THEN parts.Inj, dest]
declare parts.Body [dest]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]
text{*A "possibility property": there are traces that reach the end.*}
lemma "[|Key K ∉ used []; K ∈ symKeys|]
==> ∃Timestamp. ∃evs ∈ kerberos_ban.
Says B A (Crypt K (Number Timestamp))
∈ set evs"
apply (cut_tac SesKeyLife_LB)
apply (intro exI bexI)
apply (rule_tac [2]
kerberos_ban.Nil [THEN kerberos_ban.Kb1, THEN kerberos_ban.Kb2,
THEN kerberos_ban.Kb3, THEN kerberos_ban.Kb4])
apply (possibility, simp_all (no_asm_simp) add: used_Cons)
done
(**** Inductive proofs about kerberos_ban ****)
text{*Forwarding Lemma for reasoning about the encrypted portion of message Kb3*}
lemma Kb3_msg_in_parts_spies:
"Says S A (Crypt KA {|Timestamp, B, K, X|}) ∈ set evs
==> X ∈ parts (spies evs)"
by blast
lemma Oops_parts_spies:
"Says Server A (Crypt (shrK A) {|Timestamp, B, K, X|}) ∈ set evs
==> K ∈ parts (spies evs)"
by blast
text{*Spy never sees another agent's shared key! (unless it's bad at start)*}
lemma Spy_see_shrK [simp]:
"evs ∈ kerberos_ban ==> (Key (shrK A) ∈ parts (spies evs)) = (A ∈ bad)"
apply (erule kerberos_ban.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] Kb3_msg_in_parts_spies, simp_all, blast+)
done
lemma Spy_analz_shrK [simp]:
"evs ∈ kerberos_ban ==> (Key (shrK A) ∈ analz (spies evs)) = (A ∈ bad)"
by auto
lemma Spy_see_shrK_D [dest!]:
"[| Key (shrK A) ∈ parts (spies evs);
evs ∈ kerberos_ban |] ==> A:bad"
by (blast dest: Spy_see_shrK)
lemmas Spy_analz_shrK_D = analz_subset_parts [THEN subsetD, THEN Spy_see_shrK_D, dest!]
text{*Nobody can have used non-existent keys!*}
lemma new_keys_not_used [simp]:
"[|Key K ∉ used evs; K ∈ symKeys; evs ∈ kerberos_ban|]
==> K ∉ keysFor (parts (spies evs))"
apply (erule rev_mp)
apply (erule kerberos_ban.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] Kb3_msg_in_parts_spies, simp_all)
txt{*Fake*}
apply (force dest!: keysFor_parts_insert)
txt{*Kb2, Kb3, Kb4*}
apply (force dest!: analz_shrK_Decrypt)+
done
subsection{* Lemmas concerning the form of items passed in messages *}
text{*Describes the form of K, X and K' when the Server sends this message.*}
lemma Says_Server_message_form:
"[| Says Server A (Crypt K' {|Number Ts, Agent B, Key K, X|})
∈ set evs; evs ∈ kerberos_ban |]
==> K ∉ range shrK &
X = (Crypt (shrK B) {|Number Ts, Agent A, Key K|}) &
K' = shrK A"
apply (erule rev_mp)
apply (erule kerberos_ban.induct, auto)
done
text{*If the encrypted message appears then it originated with the Server
PROVIDED that A is NOT compromised!
This shows implicitly the FRESHNESS OF THE SESSION KEY to A
*}
lemma A_trusts_K_by_Kb2:
"[| Crypt (shrK A) {|Number Ts, Agent B, Key K, X|}
∈ parts (spies evs);
A ∉ bad; evs ∈ kerberos_ban |]
==> Says Server A (Crypt (shrK A) {|Number Ts, Agent B, Key K, X|})
∈ set evs"
apply (erule rev_mp)
apply (erule kerberos_ban.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] Kb3_msg_in_parts_spies, simp_all, blast)
done
text{*If the TICKET appears then it originated with the Server*}
text{*FRESHNESS OF THE SESSION KEY to B*}
lemma B_trusts_K_by_Kb3:
"[| Crypt (shrK B) {|Number Ts, Agent A, Key K|} ∈ parts (spies evs);
B ∉ bad; evs ∈ kerberos_ban |]
==> Says Server A
(Crypt (shrK A) {|Number Ts, Agent B, Key K,
Crypt (shrK B) {|Number Ts, Agent A, Key K|}|})
∈ set evs"
apply (erule rev_mp)
apply (erule kerberos_ban.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] Kb3_msg_in_parts_spies, simp_all, blast)
done
text{*EITHER describes the form of X when the following message is sent,
OR reduces it to the Fake case.
Use @{text Says_Server_message_form} if applicable.*}
lemma Says_S_message_form:
"[| Says S A (Crypt (shrK A) {|Number Ts, Agent B, Key K, X|})
∈ set evs;
evs ∈ kerberos_ban |]
==> (K ∉ range shrK & X = (Crypt (shrK B) {|Number Ts, Agent A, Key K|}))
| X ∈ analz (spies evs)"
apply (case_tac "A ∈ bad")
apply (force dest!: Says_imp_spies [THEN analz.Inj])
apply (frule Says_imp_spies [THEN parts.Inj])
apply (blast dest!: A_trusts_K_by_Kb2 Says_Server_message_form)
done
(****
The following is to prove theorems of the form
Key K ∈ analz (insert (Key KAB) (spies evs)) ==>
Key K ∈ analz (spies evs)
A more general formula must be proved inductively.
****)
text{* Session keys are not used to encrypt other session keys *}
lemma analz_image_freshK [rule_format (no_asm)]:
"evs ∈ kerberos_ban ==>
∀K KK. KK ⊆ - (range shrK) -->
(Key K ∈ analz (Key`KK Un (spies evs))) =
(K ∈ KK | Key K ∈ analz (spies evs))"
apply (erule kerberos_ban.induct)
apply (drule_tac [7] Says_Server_message_form)
apply (erule_tac [5] Says_S_message_form [THEN disjE], analz_freshK, spy_analz, auto)
done
lemma analz_insert_freshK:
"[| evs ∈ kerberos_ban; KAB ∉ range shrK |] ==>
(Key K ∈ analz (insert (Key KAB) (spies evs))) =
(K = KAB | Key K ∈ analz (spies evs))"
by (simp only: analz_image_freshK analz_image_freshK_simps)
text{* The session key K uniquely identifies the message *}
lemma unique_session_keys:
"[| Says Server A
(Crypt (shrK A) {|Number Ts, Agent B, Key K, X|}) ∈ set evs;
Says Server A'
(Crypt (shrK A') {|Number Ts', Agent B', Key K, X'|}) ∈ set evs;
evs ∈ kerberos_ban |] ==> A=A' & Ts=Ts' & B=B' & X = X'"
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule kerberos_ban.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] Kb3_msg_in_parts_spies, simp_all)
txt{*Kb2: it can't be a new key*}
apply blast
done
text{* Lemma: the session key sent in msg Kb2 would be EXPIRED
if the spy could see it! *}
lemma lemma2 [rule_format (no_asm)]:
"[| A ∉ bad; B ∉ bad; evs ∈ kerberos_ban |]
==> Says Server A
(Crypt (shrK A) {|Number Ts, Agent B, Key K,
Crypt (shrK B) {|Number Ts, Agent A, Key K|}|})
∈ set evs -->
Key K ∈ analz (spies evs) --> Expired Ts evs"
apply (erule kerberos_ban.induct)
apply (frule_tac [7] Says_Server_message_form)
apply (frule_tac [5] Says_S_message_form [THEN disjE])
apply (simp_all (no_asm_simp) add: less_SucI analz_insert_eq analz_insert_freshK pushes)
txt{*Fake*}
apply spy_analz
txt{*Kb2*}
apply (blast intro: parts_insertI less_SucI)
txt{*Kb3*}
apply (case_tac "Aa ∈ bad")
prefer 2 apply (blast dest: A_trusts_K_by_Kb2 unique_session_keys)
apply (blast dest: Says_imp_spies [THEN analz.Inj] Crypt_Spy_analz_bad elim!: MPair_analz intro: less_SucI)
txt{*Oops: PROOF FAILED if addIs below*}
apply (blast dest: unique_session_keys intro!: less_SucI)
done
text{*Confidentiality for the Server: Spy does not see the keys sent in msg Kb2
as long as they have not expired.*}
lemma Confidentiality_S:
"[| Says Server A
(Crypt K' {|Number T, Agent B, Key K, X|}) ∈ set evs;
~ Expired T evs;
A ∉ bad; B ∉ bad; evs ∈ kerberos_ban
|] ==> Key K ∉ analz (spies evs)"
apply (frule Says_Server_message_form, assumption)
apply (blast intro: lemma2)
done
(**** THE COUNTERPART OF CONFIDENTIALITY
[|...; Expired Ts evs; ...|] ==> Key K ∈ analz (spies evs)
WOULD HOLD ONLY IF AN OOPS OCCURRED! ---> Nothing to prove! ****)
text{*Confidentiality for Alice*}
lemma Confidentiality_A:
"[| Crypt (shrK A) {|Number T, Agent B, Key K, X|} ∈ parts (spies evs);
~ Expired T evs;
A ∉ bad; B ∉ bad; evs ∈ kerberos_ban
|] ==> Key K ∉ analz (spies evs)"
by (blast dest!: A_trusts_K_by_Kb2 Confidentiality_S)
text{*Confidentiality for Bob*}
lemma Confidentiality_B:
"[| Crypt (shrK B) {|Number Tk, Agent A, Key K|}
∈ parts (spies evs);
~ Expired Tk evs;
A ∉ bad; B ∉ bad; evs ∈ kerberos_ban
|] ==> Key K ∉ analz (spies evs)"
by (blast dest!: B_trusts_K_by_Kb3 Confidentiality_S)
lemma lemma_B [rule_format]:
"[| B ∉ bad; evs ∈ kerberos_ban |]
==> Key K ∉ analz (spies evs) -->
Says Server A (Crypt (shrK A) {|Number Ts, Agent B, Key K, X|})
∈ set evs -->
Crypt K (Number Ta) ∈ parts (spies evs) -->
Says B A (Crypt K (Number Ta)) ∈ set evs"
apply (erule kerberos_ban.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] Says_S_message_form)
apply (drule_tac [6] Kb3_msg_in_parts_spies, analz_mono_contra)
apply (simp_all (no_asm_simp) add: all_conj_distrib)
txt{*Fake*}
apply blast
txt{*Kb2*}
apply (force dest: Crypt_imp_invKey_keysFor)
txt{*Kb4*}
apply (blast dest: B_trusts_K_by_Kb3 unique_session_keys
Says_imp_spies [THEN analz.Inj] Crypt_Spy_analz_bad)
done
text{*Authentication of B to A*}
lemma Authentication_B:
"[| Crypt K (Number Ta) ∈ parts (spies evs);
Crypt (shrK A) {|Number Ts, Agent B, Key K, X|}
∈ parts (spies evs);
~ Expired Ts evs;
A ∉ bad; B ∉ bad; evs ∈ kerberos_ban |]
==> Says B A (Crypt K (Number Ta)) ∈ set evs"
by (blast dest!: A_trusts_K_by_Kb2
intro!: lemma_B elim!: Confidentiality_S [THEN [2] rev_notE])
lemma lemma_A [rule_format]:
"[| A ∉ bad; B ∉ bad; evs ∈ kerberos_ban |]
==>
Key K ∉ analz (spies evs) -->
Says Server A (Crypt (shrK A) {|Number Ts, Agent B, Key K, X|})
∈ set evs -->
Crypt K {|Agent A, Number Ta|} ∈ parts (spies evs) -->
Says A B {|X, Crypt K {|Agent A, Number Ta|}|}
∈ set evs"
apply (erule kerberos_ban.induct)
apply (frule_tac [7] Oops_parts_spies)
apply (frule_tac [5] Says_S_message_form)
apply (frule_tac [6] Kb3_msg_in_parts_spies, analz_mono_contra)
apply (simp_all (no_asm_simp) add: all_conj_distrib)
txt{*Fake*}
apply blast
txt{*Kb2*}
apply (force dest: Crypt_imp_invKey_keysFor)
txt{*Kb3*}
apply (blast dest: A_trusts_K_by_Kb2 unique_session_keys)
done
text{*Authentication of A to B*}
lemma Authentication_A:
"[| Crypt K {|Agent A, Number Ta|} ∈ parts (spies evs);
Crypt (shrK B) {|Number Ts, Agent A, Key K|}
∈ parts (spies evs);
~ Expired Ts evs;
A ∉ bad; B ∉ bad; evs ∈ kerberos_ban |]
==> Says A B {|Crypt (shrK B) {|Number Ts, Agent A, Key K|},
Crypt K {|Agent A, Number Ta|}|} ∈ set evs"
by (blast dest!: B_trusts_K_by_Kb3
intro!: lemma_A
elim!: Confidentiality_S [THEN [2] rev_notE])
end
lemma
[| Key K ∉ used []; K ∈ symKeys |] ==> ∃Timestamp. ∃evs∈kerberos_ban. Says B A (Crypt K (Number Timestamp)) ∈ set evs
lemma Kb3_msg_in_parts_spies:
Says S A (Crypt KA {|Timestamp, B, K, X|}) ∈ set evs ==> X ∈ parts (knows Spy evs)
lemma Oops_parts_spies:
Says Server A (Crypt (shrK A) {|Timestamp, B, K, X|}) ∈ set evs ==> K ∈ parts (knows Spy evs)
lemma Spy_see_shrK:
evs ∈ kerberos_ban ==> (Key (shrK A) ∈ parts (knows Spy evs)) = (A ∈ bad)
lemma Spy_analz_shrK:
evs ∈ kerberos_ban ==> (Key (shrK A) ∈ analz (knows Spy evs)) = (A ∈ bad)
lemma Spy_see_shrK_D:
[| Key (shrK A) ∈ parts (knows Spy evs); evs ∈ kerberos_ban |] ==> A ∈ bad
lemmas Spy_analz_shrK_D:
[| Key (shrK A) ∈ analz (knows Spy evs); evs ∈ kerberos_ban |] ==> A ∈ bad
lemmas Spy_analz_shrK_D:
[| Key (shrK A) ∈ analz (knows Spy evs); evs ∈ kerberos_ban |] ==> A ∈ bad
lemma new_keys_not_used:
[| Key K ∉ used evs; K ∈ symKeys; evs ∈ kerberos_ban |] ==> K ∉ keysFor (parts (knows Spy evs))
lemma Says_Server_message_form:
[| Says Server A (Crypt K' {|Number Ts, Agent B, Key K, X|}) ∈ set evs; evs ∈ kerberos_ban |] ==> K ∉ range shrK ∧ X = Crypt (shrK B) {|Number Ts, Agent A, Key K|} ∧ K' = shrK A
lemma A_trusts_K_by_Kb2:
[| Crypt (shrK A) {|Number Ts, Agent B, Key K, X|} ∈ parts (knows Spy evs); A ∉ bad; evs ∈ kerberos_ban |] ==> Says Server A (Crypt (shrK A) {|Number Ts, Agent B, Key K, X|}) ∈ set evs
lemma B_trusts_K_by_Kb3:
[| Crypt (shrK B) {|Number Ts, Agent A, Key K|} ∈ parts (knows Spy evs); B ∉ bad; evs ∈ kerberos_ban |] ==> Says Server A (Crypt (shrK A) {|Number Ts, Agent B, Key K, Crypt (shrK B) {|Number Ts, Agent A, Key K|}|}) ∈ set evs
lemma Says_S_message_form:
[| Says S A (Crypt (shrK A) {|Number Ts, Agent B, Key K, X|}) ∈ set evs; evs ∈ kerberos_ban |] ==> K ∉ range shrK ∧ X = Crypt (shrK B) {|Number Ts, Agent A, Key K|} ∨ X ∈ analz (knows Spy evs)
lemma analz_image_freshK:
[| evs ∈ kerberos_ban; KK ⊆ - range shrK |] ==> (Key K ∈ analz (Key ` KK ∪ knows Spy evs)) = (K ∈ KK ∨ Key K ∈ analz (knows Spy evs))
lemma analz_insert_freshK:
[| evs ∈ kerberos_ban; KAB ∉ range shrK |] ==> (Key K ∈ analz (insert (Key KAB) (knows Spy evs))) = (K = KAB ∨ Key K ∈ analz (knows Spy evs))
lemma unique_session_keys:
[| Says Server A (Crypt (shrK A) {|Number Ts, Agent B, Key K, X|}) ∈ set evs; Says Server A' (Crypt (shrK A') {|Number Ts', Agent B', Key K, X'|}) ∈ set evs; evs ∈ kerberos_ban |] ==> A = A' ∧ Ts = Ts' ∧ B = B' ∧ X = X'
lemma lemma2:
[| A ∉ bad; B ∉ bad; evs ∈ kerberos_ban; Says Server A (Crypt (shrK A) {|Number Ts, Agent B, Key K, Crypt (shrK B) {|Number Ts, Agent A, Key K|}|}) ∈ set evs; Key K ∈ analz (knows Spy evs) |] ==> Expired Ts evs
lemma Confidentiality_S:
[| Says Server A (Crypt K' {|Number T, Agent B, Key K, X|}) ∈ set evs; ¬ Expired T evs; A ∉ bad; B ∉ bad; evs ∈ kerberos_ban |] ==> Key K ∉ analz (knows Spy evs)
lemma Confidentiality_A:
[| Crypt (shrK A) {|Number T, Agent B, Key K, X|} ∈ parts (knows Spy evs); ¬ Expired T evs; A ∉ bad; B ∉ bad; evs ∈ kerberos_ban |] ==> Key K ∉ analz (knows Spy evs)
lemma Confidentiality_B:
[| Crypt (shrK B) {|Number Tk, Agent A, Key K|} ∈ parts (knows Spy evs); ¬ Expired Tk evs; A ∉ bad; B ∉ bad; evs ∈ kerberos_ban |] ==> Key K ∉ analz (knows Spy evs)
lemma lemma_B:
[| B ∉ bad; evs ∈ kerberos_ban; Key K ∉ analz (knows Spy evs); Says Server A (Crypt (shrK A) {|Number Ts, Agent B, Key K, X|}) ∈ set evs; Crypt K (Number Ta) ∈ parts (knows Spy evs) |] ==> Says B A (Crypt K (Number Ta)) ∈ set evs
lemma Authentication_B:
[| Crypt K (Number Ta) ∈ parts (knows Spy evs); Crypt (shrK A) {|Number Ts, Agent B, Key K, X|} ∈ parts (knows Spy evs); ¬ Expired Ts evs; A ∉ bad; B ∉ bad; evs ∈ kerberos_ban |] ==> Says B A (Crypt K (Number Ta)) ∈ set evs
lemma lemma_A:
[| A ∉ bad; B ∉ bad; evs ∈ kerberos_ban; Key K ∉ analz (knows Spy evs); Says Server A (Crypt (shrK A) {|Number Ts, Agent B, Key K, X|}) ∈ set evs; Crypt K {|Agent A, Number Ta|} ∈ parts (knows Spy evs) |] ==> Says A B {|X, Crypt K {|Agent A, Number Ta|}|} ∈ set evs
lemma Authentication_A:
[| Crypt K {|Agent A, Number Ta|} ∈ parts (knows Spy evs); Crypt (shrK B) {|Number Ts, Agent A, Key K|} ∈ parts (knows Spy evs); ¬ Expired Ts evs; A ∉ bad; B ∉ bad; evs ∈ kerberos_ban |] ==> Says A B {|Crypt (shrK B) {|Number Ts, Agent A, Key K|}, Crypt K {|Agent A, Number Ta|}|} ∈ set evs