(* Title: HOL/Auth/NS_Public_Bad
ID: $Id: NS_Public_Bad.thy,v 1.20 2005/06/17 14:13:06 haftmann Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1996 University of Cambridge
Inductive relation "ns_public" for the Needham-Schroeder Public-Key protocol.
Flawed version, vulnerable to Lowe's attack.
From page 260 of
Burrows, Abadi and Needham. A Logic of Authentication.
Proc. Royal Soc. 426 (1989)
*)
header{*Verifying the Needham-Schroeder Public-Key Protocol*}
theory NS_Public_Bad imports Public begin
consts ns_public :: "event list set"
inductive ns_public
intros
(*Initial trace is empty*)
Nil: "[] ∈ ns_public"
(*The spy MAY say anything he CAN say. We do not expect him to
invent new nonces here, but he can also use NS1. Common to
all similar protocols.*)
Fake: "[|evsf ∈ ns_public; X ∈ synth (analz (spies evsf))|]
==> Says Spy B X # evsf ∈ ns_public"
(*Alice initiates a protocol run, sending a nonce to Bob*)
NS1: "[|evs1 ∈ ns_public; Nonce NA ∉ used evs1|]
==> Says A B (Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>)
# evs1 ∈ ns_public"
(*Bob responds to Alice's message with a further nonce*)
NS2: "[|evs2 ∈ ns_public; Nonce NB ∉ used evs2;
Says A' B (Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs2|]
==> Says B A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>)
# evs2 ∈ ns_public"
(*Alice proves her existence by sending NB back to Bob.*)
NS3: "[|evs3 ∈ ns_public;
Says A B (Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs3;
Says B' A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>) ∈ set evs3|]
==> Says A B (Crypt (pubEK B) (Nonce NB)) # evs3 ∈ ns_public"
declare knows_Spy_partsEs [elim]
declare analz_into_parts [dest]
declare Fake_parts_insert_in_Un [dest]
declare image_eq_UN [simp] (*accelerates proofs involving nested images*)
(*A "possibility property": there are traces that reach the end*)
lemma "∃NB. ∃evs ∈ ns_public. Says A B (Crypt (pubEK B) (Nonce NB)) ∈ set evs"
apply (intro exI bexI)
apply (rule_tac [2] ns_public.Nil [THEN ns_public.NS1, THEN ns_public.NS2,
THEN ns_public.NS3])
by possibility
(**** Inductive proofs about ns_public ****)
(** Theorems of the form X ∉ parts (spies evs) imply that NOBODY
sends messages containing X! **)
(*Spy never sees another agent's private key! (unless it's bad at start)*)
lemma Spy_see_priEK [simp]:
"evs ∈ ns_public ==> (Key (priEK A) ∈ parts (spies evs)) = (A ∈ bad)"
by (erule ns_public.induct, auto)
lemma Spy_analz_priEK [simp]:
"evs ∈ ns_public ==> (Key (priEK A) ∈ analz (spies evs)) = (A ∈ bad)"
by auto
(*** Authenticity properties obtained from NS2 ***)
(*It is impossible to re-use a nonce in both NS1 and NS2, provided the nonce
is secret. (Honest users generate fresh nonces.)*)
lemma no_nonce_NS1_NS2 [rule_format]:
"evs ∈ ns_public
==> Crypt (pubEK C) \<lbrace>NA', Nonce NA\<rbrace> ∈ parts (spies evs) -->
Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace> ∈ parts (spies evs) -->
Nonce NA ∈ analz (spies evs)"
apply (erule ns_public.induct, simp_all)
apply (blast intro: analz_insertI)+
done
(*Unicity for NS1: nonce NA identifies agents A and B*)
lemma unique_NA:
"[|Crypt(pubEK B) \<lbrace>Nonce NA, Agent A \<rbrace> ∈ parts(spies evs);
Crypt(pubEK B') \<lbrace>Nonce NA, Agent A'\<rbrace> ∈ parts(spies evs);
Nonce NA ∉ analz (spies evs); evs ∈ ns_public|]
==> A=A' ∧ B=B'"
apply (erule rev_mp, erule rev_mp, erule rev_mp)
apply (erule ns_public.induct, simp_all)
(*Fake, NS1*)
apply (blast intro!: analz_insertI)+
done
(*Secrecy: Spy does not see the nonce sent in msg NS1 if A and B are secure
The major premise "Says A B ..." makes it a dest-rule, so we use
(erule rev_mp) rather than rule_format. *)
theorem Spy_not_see_NA:
"[|Says A B (Crypt(pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs;
A ∉ bad; B ∉ bad; evs ∈ ns_public|]
==> Nonce NA ∉ analz (spies evs)"
apply (erule rev_mp)
apply (erule ns_public.induct, simp_all, spy_analz)
apply (blast dest: unique_NA intro: no_nonce_NS1_NS2)+
done
(*Authentication for A: if she receives message 2 and has used NA
to start a run, then B has sent message 2.*)
lemma A_trusts_NS2_lemma [rule_format]:
"[|A ∉ bad; B ∉ bad; evs ∈ ns_public|]
==> Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace> ∈ parts (spies evs) -->
Says A B (Crypt(pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs -->
Says B A (Crypt(pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>) ∈ set evs"
apply (erule ns_public.induct)
apply (auto dest: Spy_not_see_NA unique_NA)
done
theorem A_trusts_NS2:
"[|Says A B (Crypt(pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs;
Says B' A (Crypt(pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>) ∈ set evs;
A ∉ bad; B ∉ bad; evs ∈ ns_public|]
==> Says B A (Crypt(pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>) ∈ set evs"
by (blast intro: A_trusts_NS2_lemma)
(*If the encrypted message appears then it originated with Alice in NS1*)
lemma B_trusts_NS1 [rule_format]:
"evs ∈ ns_public
==> Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace> ∈ parts (spies evs) -->
Nonce NA ∉ analz (spies evs) -->
Says A B (Crypt (pubEK B) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs"
apply (erule ns_public.induct, simp_all)
(*Fake*)
apply (blast intro!: analz_insertI)
done
(*** Authenticity properties obtained from NS2 ***)
(*Unicity for NS2: nonce NB identifies nonce NA and agent A
[proof closely follows that for unique_NA] *)
lemma unique_NB [dest]:
"[|Crypt(pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace> ∈ parts(spies evs);
Crypt(pubEK A') \<lbrace>Nonce NA', Nonce NB\<rbrace> ∈ parts(spies evs);
Nonce NB ∉ analz (spies evs); evs ∈ ns_public|]
==> A=A' ∧ NA=NA'"
apply (erule rev_mp, erule rev_mp, erule rev_mp)
apply (erule ns_public.induct, simp_all)
(*Fake, NS2*)
apply (blast intro!: analz_insertI)+
done
(*NB remains secret PROVIDED Alice never responds with round 3*)
theorem Spy_not_see_NB [dest]:
"[|Says B A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>) ∈ set evs;
∀C. Says A C (Crypt (pubEK C) (Nonce NB)) ∉ set evs;
A ∉ bad; B ∉ bad; evs ∈ ns_public|]
==> Nonce NB ∉ analz (spies evs)"
apply (erule rev_mp, erule rev_mp)
apply (erule ns_public.induct, simp_all, spy_analz)
apply (simp_all add: all_conj_distrib) (*speeds up the next step*)
apply (blast intro: no_nonce_NS1_NS2)+
done
(*Authentication for B: if he receives message 3 and has used NB
in message 2, then A has sent message 3--to somebody....*)
lemma B_trusts_NS3_lemma [rule_format]:
"[|A ∉ bad; B ∉ bad; evs ∈ ns_public|]
==> Crypt (pubEK B) (Nonce NB) ∈ parts (spies evs) -->
Says B A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>) ∈ set evs -->
(∃C. Says A C (Crypt (pubEK C) (Nonce NB)) ∈ set evs)"
apply (erule ns_public.induct, auto)
by (blast intro: no_nonce_NS1_NS2)+
theorem B_trusts_NS3:
"[|Says B A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>) ∈ set evs;
Says A' B (Crypt (pubEK B) (Nonce NB)) ∈ set evs;
A ∉ bad; B ∉ bad; evs ∈ ns_public|]
==> ∃C. Says A C (Crypt (pubEK C) (Nonce NB)) ∈ set evs"
by (blast intro: B_trusts_NS3_lemma)
(*Can we strengthen the secrecy theorem Spy_not_see_NB? NO*)
lemma "[|A ∉ bad; B ∉ bad; evs ∈ ns_public|]
==> Says B A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>) ∈ set evs
--> Nonce NB ∉ analz (spies evs)"
apply (erule ns_public.induct, simp_all, spy_analz)
(*NS1: by freshness*)
apply blast
(*NS2: by freshness and unicity of NB*)
apply (blast intro: no_nonce_NS1_NS2)
(*NS3: unicity of NB identifies A and NA, but not B*)
apply clarify
apply (frule_tac A' = A in
Says_imp_knows_Spy [THEN parts.Inj, THEN unique_NB], auto)
apply (rename_tac C B' evs3)
txt{*This is the attack!
@{subgoals[display,indent=0,margin=65]}
*}
oops
(*
THIS IS THE ATTACK!
Level 8
!!evs. [|A ∉ bad; B ∉ bad; evs ∈ ns_public|]
==> Says B A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>) ∈ set evs -->
Nonce NB ∉ analz (spies evs)
1. !!C B' evs3.
[|A ∉ bad; B ∉ bad; evs3 ∈ ns_public
Says A C (Crypt (pubEK C) \<lbrace>Nonce NA, Agent A\<rbrace>) ∈ set evs3;
Says B' A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>) ∈ set evs3;
C ∈ bad;
Says B A (Crypt (pubEK A) \<lbrace>Nonce NA, Nonce NB\<rbrace>) ∈ set evs3;
Nonce NB ∉ analz (spies evs3)|]
==> False
*)
end
lemma
∃NB. ∃evs∈ns_public. Says A B (Crypt (pubK B) (Nonce NB)) ∈ set evs
lemma Spy_see_priEK:
evs ∈ ns_public ==> (Key (priEK A) ∈ parts (knows Spy evs)) = (A ∈ bad)
lemma Spy_analz_priEK:
evs ∈ ns_public ==> (Key (priEK A) ∈ analz (knows Spy evs)) = (A ∈ bad)
lemma no_nonce_NS1_NS2:
[| evs ∈ ns_public; Crypt (pubK C) {|NA', Nonce NA|} ∈ parts (knows Spy evs); Crypt (pubK B) {|Nonce NA, Agent A|} ∈ parts (knows Spy evs) |] ==> Nonce NA ∈ analz (knows Spy evs)
lemma unique_NA:
[| Crypt (pubK B) {|Nonce NA, Agent A|} ∈ parts (knows Spy evs); Crypt (pubK B') {|Nonce NA, Agent A'|} ∈ parts (knows Spy evs); Nonce NA ∉ analz (knows Spy evs); evs ∈ ns_public |] ==> A = A' ∧ B = B'
theorem Spy_not_see_NA:
[| Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs; A ∉ bad; B ∉ bad; evs ∈ ns_public |] ==> Nonce NA ∉ analz (knows Spy evs)
lemma A_trusts_NS2_lemma:
[| A ∉ bad; B ∉ bad; evs ∈ ns_public; Crypt (pubK A) {|Nonce NA, Nonce NB|} ∈ parts (knows Spy evs); Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs |] ==> Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB|}) ∈ set evs
theorem A_trusts_NS2:
[| Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs; Says B' A (Crypt (pubK A) {|Nonce NA, Nonce NB|}) ∈ set evs; A ∉ bad; B ∉ bad; evs ∈ ns_public |] ==> Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB|}) ∈ set evs
lemma B_trusts_NS1:
[| evs ∈ ns_public; Crypt (pubK B) {|Nonce NA, Agent A|} ∈ parts (knows Spy evs); Nonce NA ∉ analz (knows Spy evs) |] ==> Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs
lemma unique_NB:
[| Crypt (pubK A) {|Nonce NA, Nonce NB|} ∈ parts (knows Spy evs); Crypt (pubK A') {|Nonce NA', Nonce NB|} ∈ parts (knows Spy evs); Nonce NB ∉ analz (knows Spy evs); evs ∈ ns_public |] ==> A = A' ∧ NA = NA'
theorem Spy_not_see_NB:
[| Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB|}) ∈ set evs; ∀C. Says A C (Crypt (pubK C) (Nonce NB)) ∉ set evs; A ∉ bad; B ∉ bad; evs ∈ ns_public |] ==> Nonce NB ∉ analz (knows Spy evs)
lemma B_trusts_NS3_lemma:
[| A ∉ bad; B ∉ bad; evs ∈ ns_public; Crypt (pubK B) (Nonce NB) ∈ parts (knows Spy evs); Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB|}) ∈ set evs |] ==> ∃C. Says A C (Crypt (pubK C) (Nonce NB)) ∈ set evs
theorem B_trusts_NS3:
[| Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB|}) ∈ set evs; Says A' B (Crypt (pubK B) (Nonce NB)) ∈ set evs; A ∉ bad; B ∉ bad; evs ∈ ns_public |] ==> ∃C. Says A C (Crypt (pubK C) (Nonce NB)) ∈ set evs