(* Title: HOL/Auth/Public
ID: $Id: Public.thy,v 1.24 2005/06/17 14:13:06 haftmann Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1996 University of Cambridge
Theory of Public Keys (common to all public-key protocols)
Private and public keys; initial states of agents
*)
theory Public imports Event begin
lemma invKey_K: "K ∈ symKeys ==> invKey K = K"
by (simp add: symKeys_def)
subsection{*Asymmetric Keys*}
consts
(*the bool is TRUE if a signing key*)
publicKey :: "[bool,agent] => key"
syntax
pubEK :: "agent => key"
pubSK :: "agent => key"
privateKey :: "[bool,agent] => key"
priEK :: "agent => key"
priSK :: "agent => key"
translations
"pubEK" == "publicKey False"
"pubSK" == "publicKey True"
(*BEWARE!! priEK, priSK DON'T WORK with inj, range, image, etc.*)
"privateKey b A" == "invKey (publicKey b A)"
"priEK A" == "privateKey False A"
"priSK A" == "privateKey True A"
text{*These translations give backward compatibility. They represent the
simple situation where the signature and encryption keys are the same.*}
syntax
pubK :: "agent => key"
priK :: "agent => key"
translations
"pubK A" == "pubEK A"
"priK A" == "invKey (pubEK A)"
text{*By freeness of agents, no two agents have the same key. Since
@{term "True≠False"}, no agent has identical signing and encryption keys*}
specification (publicKey)
injective_publicKey:
"publicKey b A = publicKey c A' ==> b=c & A=A'"
apply (rule exI [of _ "%b A. 2 * agent_case 0 (λn. n + 2) 1 A + (if b then 1 else 0)"])
apply (auto simp add: inj_on_def split: agent.split, presburger+)
done
axioms
(*No private key equals any public key (essential to ensure that private
keys are private!) *)
privateKey_neq_publicKey [iff]: "privateKey b A ≠ publicKey c A'"
declare privateKey_neq_publicKey [THEN not_sym, iff]
subsection{*Basic properties of @{term pubK} and @{term priK}*}
lemma [iff]: "(publicKey b A = publicKey c A') = (b=c & A=A')"
by (blast dest!: injective_publicKey)
lemma not_symKeys_pubK [iff]: "publicKey b A ∉ symKeys"
by (simp add: symKeys_def)
lemma not_symKeys_priK [iff]: "privateKey b A ∉ symKeys"
by (simp add: symKeys_def)
lemma symKey_neq_priEK: "K ∈ symKeys ==> K ≠ priEK A"
by auto
lemma symKeys_neq_imp_neq: "(K ∈ symKeys) ≠ (K' ∈ symKeys) ==> K ≠ K'"
by blast
lemma symKeys_invKey_iff [iff]: "(invKey K ∈ symKeys) = (K ∈ symKeys)"
by (unfold symKeys_def, auto)
lemma analz_symKeys_Decrypt:
"[| Crypt K X ∈ analz H; K ∈ symKeys; Key K ∈ analz H |]
==> X ∈ analz H"
by (auto simp add: symKeys_def)
subsection{*"Image" equations that hold for injective functions*}
lemma invKey_image_eq [simp]: "(invKey x ∈ invKey`A) = (x ∈ A)"
by auto
(*holds because invKey is injective*)
lemma publicKey_image_eq [simp]:
"(publicKey b x ∈ publicKey c ` AA) = (b=c & x ∈ AA)"
by auto
lemma privateKey_notin_image_publicKey [simp]: "privateKey b x ∉ publicKey c ` AA"
by auto
lemma privateKey_image_eq [simp]:
"(privateKey b A ∈ invKey ` publicKey c ` AS) = (b=c & A∈AS)"
by auto
lemma publicKey_notin_image_privateKey [simp]: "publicKey b A ∉ invKey ` publicKey c ` AS"
by auto
subsection{*Symmetric Keys*}
text{*For some protocols, it is convenient to equip agents with symmetric as
well as asymmetric keys. The theory @{text Shared} assumes that all keys
are symmetric.*}
consts
shrK :: "agent => key" --{*long-term shared keys*}
specification (shrK)
inj_shrK: "inj shrK"
--{*No two agents have the same long-term key*}
apply (rule exI [of _ "agent_case 0 (λn. n + 2) 1"])
apply (simp add: inj_on_def split: agent.split)
done
axioms
sym_shrK [iff]: "shrK X ∈ symKeys" --{*All shared keys are symmetric*}
(*Injectiveness: Agents' long-term keys are distinct.*)
declare inj_shrK [THEN inj_eq, iff]
lemma invKey_shrK [simp]: "invKey (shrK A) = shrK A"
by (simp add: invKey_K)
lemma analz_shrK_Decrypt:
"[| Crypt (shrK A) X ∈ analz H; Key(shrK A) ∈ analz H |] ==> X ∈ analz H"
by auto
lemma analz_Decrypt':
"[| Crypt K X ∈ analz H; K ∈ symKeys; Key K ∈ analz H |] ==> X ∈ analz H"
by (auto simp add: invKey_K)
lemma priK_neq_shrK [iff]: "shrK A ≠ privateKey b C"
by (simp add: symKeys_neq_imp_neq)
declare priK_neq_shrK [THEN not_sym, simp]
lemma pubK_neq_shrK [iff]: "shrK A ≠ publicKey b C"
by (simp add: symKeys_neq_imp_neq)
declare pubK_neq_shrK [THEN not_sym, simp]
lemma priEK_noteq_shrK [simp]: "priEK A ≠ shrK B"
by auto
lemma publicKey_notin_image_shrK [simp]: "publicKey b x ∉ shrK ` AA"
by auto
lemma privateKey_notin_image_shrK [simp]: "privateKey b x ∉ shrK ` AA"
by auto
lemma shrK_notin_image_publicKey [simp]: "shrK x ∉ publicKey b ` AA"
by auto
lemma shrK_notin_image_privateKey [simp]: "shrK x ∉ invKey ` publicKey b ` AA"
by auto
lemma shrK_image_eq [simp]: "(shrK x ∈ shrK ` AA) = (x ∈ AA)"
by auto
text{*For some reason, moving this up can make some proofs loop!*}
declare invKey_K [simp]
subsection{*Initial States of Agents*}
text{*Note: for all practical purposes, all that matters is the initial
knowledge of the Spy. All other agents are automata, merely following the
protocol.*}
primrec
(*Agents know their private key and all public keys*)
initState_Server:
"initState Server =
{Key (priEK Server), Key (priSK Server)} ∪
(Key ` range pubEK) ∪ (Key ` range pubSK) ∪ (Key ` range shrK)"
initState_Friend:
"initState (Friend i) =
{Key (priEK(Friend i)), Key (priSK(Friend i)), Key (shrK(Friend i))} ∪
(Key ` range pubEK) ∪ (Key ` range pubSK)"
initState_Spy:
"initState Spy =
(Key ` invKey ` pubEK ` bad) ∪ (Key ` invKey ` pubSK ` bad) ∪
(Key ` shrK ` bad) ∪
(Key ` range pubEK) ∪ (Key ` range pubSK)"
text{*These lemmas allow reasoning about @{term "used evs"} rather than
@{term "knows Spy evs"}, which is useful when there are private Notes.
Because they depend upon the definition of @{term initState}, they cannot
be moved up.*}
lemma used_parts_subset_parts [rule_format]:
"∀X ∈ used evs. parts {X} ⊆ used evs"
apply (induct evs)
prefer 2
apply (simp add: used_Cons)
apply (rule ballI)
apply (case_tac a, auto)
apply (auto dest!: parts_cut)
txt{*Base case*}
apply (simp add: used_Nil)
done
lemma MPair_used_D: "{|X,Y|} ∈ used H ==> X ∈ used H & Y ∈ used H"
by (drule used_parts_subset_parts, simp, blast)
lemma MPair_used [elim!]:
"[| {|X,Y|} ∈ used H;
[| X ∈ used H; Y ∈ used H |] ==> P |]
==> P"
by (blast dest: MPair_used_D)
text{*Rewrites should not refer to @{term "initState(Friend i)"} because
that expression is not in normal form.*}
lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
apply (unfold keysFor_def)
apply (induct_tac "C")
apply (auto intro: range_eqI)
done
lemma Crypt_notin_initState: "Crypt K X ∉ parts (initState B)"
by (induct B, auto)
lemma Crypt_notin_used_empty [simp]: "Crypt K X ∉ used []"
by (simp add: Crypt_notin_initState used_Nil)
(*** Basic properties of shrK ***)
(*Agents see their own shared keys!*)
lemma shrK_in_initState [iff]: "Key (shrK A) ∈ initState A"
by (induct_tac "A", auto)
lemma shrK_in_knows [iff]: "Key (shrK A) ∈ knows A evs"
by (simp add: initState_subset_knows [THEN subsetD])
lemma shrK_in_used [iff]: "Key (shrK A) ∈ used evs"
by (rule initState_into_used, blast)
(** Fresh keys never clash with long-term shared keys **)
(*Used in parts_induct_tac and analz_Fake_tac to distinguish session keys
from long-term shared keys*)
lemma Key_not_used [simp]: "Key K ∉ used evs ==> K ∉ range shrK"
by blast
lemma shrK_neq: "Key K ∉ used evs ==> shrK B ≠ K"
by blast
declare shrK_neq [THEN not_sym, simp]
subsection{*Function @{term spies} *}
text{*Agents see their own private keys!*}
lemma priK_in_initState [iff]: "Key (privateKey b A) ∈ initState A"
by (induct_tac "A", auto)
text{*Agents see all public keys!*}
lemma publicKey_in_initState [iff]: "Key (publicKey b A) ∈ initState B"
by (case_tac "B", auto)
text{*All public keys are visible*}
lemma spies_pubK [iff]: "Key (publicKey b A) ∈ spies evs"
apply (induct_tac "evs")
apply (simp_all add: imageI knows_Cons split add: event.split)
done
declare spies_pubK [THEN analz.Inj, iff]
text{*Spy sees private keys of bad agents!*}
lemma Spy_spies_bad_privateKey [intro!]:
"A ∈ bad ==> Key (privateKey b A) ∈ spies evs"
apply (induct_tac "evs")
apply (simp_all add: imageI knows_Cons split add: event.split)
done
text{*Spy sees long-term shared keys of bad agents!*}
lemma Spy_spies_bad_shrK [intro!]:
"A ∈ bad ==> Key (shrK A) ∈ spies evs"
apply (induct_tac "evs")
apply (simp_all add: imageI knows_Cons split add: event.split)
done
lemma publicKey_into_used [iff] :"Key (publicKey b A) ∈ used evs"
apply (rule initState_into_used)
apply (rule publicKey_in_initState [THEN parts.Inj])
done
lemma privateKey_into_used [iff]: "Key (privateKey b A) ∈ used evs"
apply(rule initState_into_used)
apply(rule priK_in_initState [THEN parts.Inj])
done
(*For case analysis on whether or not an agent is compromised*)
lemma Crypt_Spy_analz_bad:
"[| Crypt (shrK A) X ∈ analz (knows Spy evs); A ∈ bad |]
==> X ∈ analz (knows Spy evs)"
by force
subsection{*Fresh Nonces*}
lemma Nonce_notin_initState [iff]: "Nonce N ∉ parts (initState B)"
by (induct_tac "B", auto)
lemma Nonce_notin_used_empty [simp]: "Nonce N ∉ used []"
by (simp add: used_Nil)
subsection{*Supply fresh nonces for possibility theorems*}
text{*In any trace, there is an upper bound N on the greatest nonce in use*}
lemma Nonce_supply_lemma: "EX N. ALL n. N<=n --> Nonce n ∉ used evs"
apply (induct_tac "evs")
apply (rule_tac x = 0 in exI)
apply (simp_all (no_asm_simp) add: used_Cons split add: event.split)
apply safe
apply (rule msg_Nonce_supply [THEN exE], blast elim!: add_leE)+
done
lemma Nonce_supply1: "EX N. Nonce N ∉ used evs"
by (rule Nonce_supply_lemma [THEN exE], blast)
lemma Nonce_supply: "Nonce (@ N. Nonce N ∉ used evs) ∉ used evs"
apply (rule Nonce_supply_lemma [THEN exE])
apply (rule someI, fast)
done
subsection{*Specialized Rewriting for Theorems About @{term analz} and Image*}
lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} Un H"
by blast
lemma insert_Key_image: "insert (Key K) (Key`KK ∪ C) = Key ` (insert K KK) ∪ C"
by blast
ML
{*
val Key_not_used = thm "Key_not_used";
val insert_Key_singleton = thm "insert_Key_singleton";
val insert_Key_image = thm "insert_Key_image";
*}
lemma Crypt_imp_keysFor :"[|Crypt K X ∈ H; K ∈ symKeys|] ==> K ∈ keysFor H"
by (drule Crypt_imp_invKey_keysFor, simp)
text{*Lemma for the trivial direction of the if-and-only-if of the
Session Key Compromise Theorem*}
lemma analz_image_freshK_lemma:
"(Key K ∈ analz (Key`nE ∪ H)) --> (K ∈ nE | Key K ∈ analz H) ==>
(Key K ∈ analz (Key`nE ∪ H)) = (K ∈ nE | Key K ∈ analz H)"
by (blast intro: analz_mono [THEN [2] rev_subsetD])
lemmas analz_image_freshK_simps =
simp_thms mem_simps --{*these two allow its use with @{text "only:"}*}
disj_comms
image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset
analz_insert_eq Un_upper2 [THEN analz_mono, THEN subsetD]
insert_Key_singleton
Key_not_used insert_Key_image Un_assoc [THEN sym]
ML
{*
val analz_image_freshK_lemma = thm "analz_image_freshK_lemma";
val analz_image_freshK_simps = thms "analz_image_freshK_simps";
val analz_image_freshK_ss =
simpset() delsimps [image_insert, image_Un]
delsimps [imp_disjL] (*reduces blow-up*)
addsimps thms "analz_image_freshK_simps"
*}
method_setup analz_freshK = {*
Method.no_args
(Method.METHOD
(fn facts => EVERY [REPEAT_FIRST (resolve_tac [allI, ballI, impI]),
REPEAT_FIRST (rtac analz_image_freshK_lemma),
ALLGOALS (asm_simp_tac analz_image_freshK_ss)])) *}
"for proving the Session Key Compromise theorem"
subsection{*Specialized Methods for Possibility Theorems*}
ML
{*
val Nonce_supply = thm "Nonce_supply";
(*Tactic for possibility theorems (Isar interface)*)
fun gen_possibility_tac ss state = state |>
REPEAT (*omit used_Says so that Nonces start from different traces!*)
(ALLGOALS (simp_tac (ss delsimps [used_Says]))
THEN
REPEAT_FIRST (eq_assume_tac ORELSE'
resolve_tac [refl, conjI, Nonce_supply]))
(*Tactic for possibility theorems (ML script version)*)
fun possibility_tac state = gen_possibility_tac (simpset()) state
(*For harder protocols (such as Recur) where we have to set up some
nonces and keys initially*)
fun basic_possibility_tac st = st |>
REPEAT
(ALLGOALS (asm_simp_tac (simpset() setSolver safe_solver))
THEN
REPEAT_FIRST (resolve_tac [refl, conjI]))
*}
method_setup possibility = {*
Method.ctxt_args (fn ctxt =>
Method.METHOD (fn facts =>
gen_possibility_tac (local_simpset_of ctxt))) *}
"for proving possibility theorems"
end
lemma invKey_K:
K ∈ symKeys ==> invKey K = K
lemma
(publicKey b A = publicKey c A') = (b = c ∧ A = A')
lemma not_symKeys_pubK:
publicKey b A ∉ symKeys
lemma not_symKeys_priK:
privateKey b A ∉ symKeys
lemma symKey_neq_priEK:
K ∈ symKeys ==> K ≠ priEK A
lemma symKeys_neq_imp_neq:
(K ∈ symKeys) ≠ (K' ∈ symKeys) ==> K ≠ K'
lemma symKeys_invKey_iff:
(invKey K ∈ symKeys) = (K ∈ symKeys)
lemma analz_symKeys_Decrypt:
[| Crypt K X ∈ analz H; K ∈ symKeys; Key K ∈ analz H |] ==> X ∈ analz H
lemma invKey_image_eq:
(invKey x ∈ invKey ` A) = (x ∈ A)
lemma publicKey_image_eq:
(publicKey b x ∈ publicKey c ` AA) = (b = c ∧ x ∈ AA)
lemma privateKey_notin_image_publicKey:
privateKey b x ∉ publicKey c ` AA
lemma privateKey_image_eq:
(privateKey b A ∈ invKey ` publicKey c ` AS) = (b = c ∧ A ∈ AS)
lemma publicKey_notin_image_privateKey:
publicKey b A ∉ invKey ` publicKey c ` AS
lemma invKey_shrK:
invKey (shrK A) = shrK A
lemma analz_shrK_Decrypt:
[| Crypt (shrK A) X ∈ analz H; Key (shrK A) ∈ analz H |] ==> X ∈ analz H
lemma analz_Decrypt':
[| Crypt K X ∈ analz H; K ∈ symKeys; Key K ∈ analz H |] ==> X ∈ analz H
lemma priK_neq_shrK:
shrK A ≠ privateKey b C
lemma pubK_neq_shrK:
shrK A ≠ publicKey b C
lemma priEK_noteq_shrK:
priEK A ≠ shrK B
lemma publicKey_notin_image_shrK:
publicKey b x ∉ shrK ` AA
lemma privateKey_notin_image_shrK:
privateKey b x ∉ shrK ` AA
lemma shrK_notin_image_publicKey:
shrK x ∉ publicKey b ` AA
lemma shrK_notin_image_privateKey:
shrK x ∉ invKey ` publicKey b ` AA
lemma shrK_image_eq:
(shrK x ∈ shrK ` AA) = (x ∈ AA)
lemma used_parts_subset_parts:
X ∈ used evs ==> parts {X} ⊆ used evs
lemma MPair_used_D:
{|X, Y|} ∈ used H ==> X ∈ used H ∧ Y ∈ used H
lemma MPair_used:
[| {|X, Y|} ∈ used H; [| X ∈ used H; Y ∈ used H |] ==> P |] ==> P
lemma keysFor_parts_initState:
keysFor (parts (initState C)) = {}
lemma Crypt_notin_initState:
Crypt K X ∉ parts (initState B)
lemma Crypt_notin_used_empty:
Crypt K X ∉ used []
lemma shrK_in_initState:
Key (shrK A) ∈ initState A
lemma shrK_in_knows:
Key (shrK A) ∈ knows A evs
lemma shrK_in_used:
Key (shrK A) ∈ used evs
lemma Key_not_used:
Key K ∉ used evs ==> K ∉ range shrK
lemma shrK_neq:
Key K ∉ used evs ==> shrK B ≠ K
lemma priK_in_initState:
Key (privateKey b A) ∈ initState A
lemma publicKey_in_initState:
Key (publicKey b A) ∈ initState B
lemma spies_pubK:
Key (publicKey b A) ∈ knows Spy evs
lemma Spy_spies_bad_privateKey:
A ∈ bad ==> Key (privateKey b A) ∈ knows Spy evs
lemma Spy_spies_bad_shrK:
A ∈ bad ==> Key (shrK A) ∈ knows Spy evs
lemma publicKey_into_used:
Key (publicKey b A) ∈ used evs
lemma privateKey_into_used:
Key (privateKey b A) ∈ used evs
lemma Crypt_Spy_analz_bad:
[| Crypt (shrK A) X ∈ analz (knows Spy evs); A ∈ bad |] ==> X ∈ analz (knows Spy evs)
lemma Nonce_notin_initState:
Nonce N ∉ parts (initState B)
lemma Nonce_notin_used_empty:
Nonce N ∉ used []
lemma Nonce_supply_lemma:
∃N. ∀n. N ≤ n --> Nonce n ∉ used evs
lemma Nonce_supply1:
∃N. Nonce N ∉ used evs
lemma Nonce_supply:
Nonce (SOME N. Nonce N ∉ used evs) ∉ used evs
lemma insert_Key_singleton:
insert (Key K) H = Key ` {K} ∪ H
lemma insert_Key_image:
insert (Key K) (Key ` KK ∪ C) = Key ` insert K KK ∪ C
lemma Crypt_imp_keysFor:
[| Crypt K X ∈ H; K ∈ symKeys |] ==> K ∈ keysFor H
lemma analz_image_freshK_lemma:
Key K ∈ analz (Key ` nE ∪ H) --> K ∈ nE ∨ Key K ∈ analz H ==> (Key K ∈ analz (Key ` nE ∪ H)) = (K ∈ nE ∨ Key K ∈ analz H)
lemmas analz_image_freshK_simps:
(¬ ¬ P) = P
((¬ P) = (¬ Q)) = (P = Q)
(P ≠ Q) = (P = (¬ Q))
(P ∨ ¬ P) = True
(¬ P ∨ P) = True
(x = x) = True
(¬ True) = False
(¬ False) = True
(¬ P) ≠ P
P ≠ (¬ P)
(True = P) = P
(P = True) = P
(False = P) = (¬ P)
(P = False) = (¬ P)
(True --> P) = P
(False --> P) = True
(P --> True) = True
(P --> P) = True
(P --> False) = (¬ P)
(P --> ¬ P) = (¬ P)
(P ∧ True) = P
(True ∧ P) = P
(P ∧ False) = False
(False ∧ P) = False
(P ∧ P) = P
(P ∧ P ∧ Q) = (P ∧ Q)
(P ∧ ¬ P) = False
(¬ P ∧ P) = False
(P ∨ True) = True
(True ∨ P) = True
(P ∨ False) = P
(False ∨ P) = P
(P ∨ P) = P
(P ∨ P ∨ Q) = (P ∨ Q)
(∀x. P) = P
(∃x. P) = P
∃x. x = t
∃x. t = x
(∃x. x = t ∧ P x) = P t
(∃x. t = x ∧ P x) = P t
(∀x. x = t --> P x) = P t
(∀x. t = x --> P x) = P t
(a ∈ insert b A) = (a = b ∨ a ∈ A)
(c ∈ {}) = False
(c ∈ A ∪ B) = (c ∈ A ∨ c ∈ B)
(c ∈ A ∩ B) = (c ∈ A ∧ c ∈ B)
(c ∈ - A) = (c ∉ A)
(c ∈ A - B) = (c ∈ A ∧ c ∉ B)
(a ∈ {x. P x}) = P a
(b ∈ (UN x:A. B x)) = (∃x∈A. b ∈ B x)
(A ∈ Union C) = (∃X∈C. A ∈ X)
(b ∈ (INT x:A. B x)) = (∀x∈A. b ∈ B x)
(A ∈ Inter C) = (∀X∈C. A ∈ X)
(P ∨ Q) = (Q ∨ P)
(P ∨ Q ∨ R) = (Q ∨ P ∨ R)
insert (f1 a1) (f1 ` B1) = f1 ` insert a1 B1
f1 ` A1 ∪ f1 ` B1 = f1 ` (A1 ∪ B1)
{} ⊆ A
(insert x A ⊆ B) = (x ∈ B ∧ A ⊆ B)
X ∈ analz H ==> analz (insert X H) = analz H
c ∈ analz G1 ==> c ∈ analz (A2 ∪ G1)
insert (Key K) H = Key ` {K} ∪ H
Key K ∉ used evs ==> K ∉ range shrK
insert (Key K) (Key ` KK ∪ C) = Key ` insert K KK ∪ C
A1 ∪ (B1 ∪ C1) = A1 ∪ B1 ∪ C1
lemmas analz_image_freshK_simps:
(¬ ¬ P) = P
((¬ P) = (¬ Q)) = (P = Q)
(P ≠ Q) = (P = (¬ Q))
(P ∨ ¬ P) = True
(¬ P ∨ P) = True
(x = x) = True
(¬ True) = False
(¬ False) = True
(¬ P) ≠ P
P ≠ (¬ P)
(True = P) = P
(P = True) = P
(False = P) = (¬ P)
(P = False) = (¬ P)
(True --> P) = P
(False --> P) = True
(P --> True) = True
(P --> P) = True
(P --> False) = (¬ P)
(P --> ¬ P) = (¬ P)
(P ∧ True) = P
(True ∧ P) = P
(P ∧ False) = False
(False ∧ P) = False
(P ∧ P) = P
(P ∧ P ∧ Q) = (P ∧ Q)
(P ∧ ¬ P) = False
(¬ P ∧ P) = False
(P ∨ True) = True
(True ∨ P) = True
(P ∨ False) = P
(False ∨ P) = P
(P ∨ P) = P
(P ∨ P ∨ Q) = (P ∨ Q)
(∀x. P) = P
(∃x. P) = P
∃x. x = t
∃x. t = x
(∃x. x = t ∧ P x) = P t
(∃x. t = x ∧ P x) = P t
(∀x. x = t --> P x) = P t
(∀x. t = x --> P x) = P t
(a ∈ insert b A) = (a = b ∨ a ∈ A)
(c ∈ {}) = False
(c ∈ A ∪ B) = (c ∈ A ∨ c ∈ B)
(c ∈ A ∩ B) = (c ∈ A ∧ c ∈ B)
(c ∈ - A) = (c ∉ A)
(c ∈ A - B) = (c ∈ A ∧ c ∉ B)
(a ∈ {x. P x}) = P a
(b ∈ (UN x:A. B x)) = (∃x∈A. b ∈ B x)
(A ∈ Union C) = (∃X∈C. A ∈ X)
(b ∈ (INT x:A. B x)) = (∀x∈A. b ∈ B x)
(A ∈ Inter C) = (∀X∈C. A ∈ X)
(P ∨ Q) = (Q ∨ P)
(P ∨ Q ∨ R) = (Q ∨ P ∨ R)
insert (f1 a1) (f1 ` B1) = f1 ` insert a1 B1
f1 ` A1 ∪ f1 ` B1 = f1 ` (A1 ∪ B1)
{} ⊆ A
(insert x A ⊆ B) = (x ∈ B ∧ A ⊆ B)
X ∈ analz H ==> analz (insert X H) = analz H
c ∈ analz G1 ==> c ∈ analz (A2 ∪ G1)
insert (Key K) H = Key ` {K} ∪ H
Key K ∉ used evs ==> K ∉ range shrK
insert (Key K) (Key ` KK ∪ C) = Key ` insert K KK ∪ C
A1 ∪ (B1 ∪ C1) = A1 ∪ B1 ∪ C1