(* Title: HOL/Auth/Shared
ID: $Id: Shared.thy,v 1.34 2005/06/17 14:13:06 haftmann Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1996 University of Cambridge
Theory of Shared Keys (common to all symmetric-key protocols)
Shared, long-term keys; initial states of agents
*)
theory Shared imports Event begin
consts
shrK :: "agent => key" (*symmetric keys*);
specification (shrK)
inj_shrK: "inj shrK"
--{*No two agents have the same long-term key*}
apply (rule exI [of _ "agent_case 0 (λn. n + 2) 1"])
apply (simp add: inj_on_def split: agent.split)
done
text{*All keys are symmetric*}
defs all_symmetric_def: "all_symmetric == True"
lemma isSym_keys: "K ∈ symKeys"
by (simp add: symKeys_def all_symmetric_def invKey_symmetric)
text{*Server knows all long-term keys; other agents know only their own*}
primrec
initState_Server: "initState Server = Key ` range shrK"
initState_Friend: "initState (Friend i) = {Key (shrK (Friend i))}"
initState_Spy: "initState Spy = Key`shrK`bad"
subsection{*Basic properties of shrK*}
(*Injectiveness: Agents' long-term keys are distinct.*)
declare inj_shrK [THEN inj_eq, iff]
lemma invKey_K [simp]: "invKey K = K"
apply (insert isSym_keys)
apply (simp add: symKeys_def)
done
lemma analz_Decrypt' [dest]:
"[| Crypt K X ∈ analz H; Key K ∈ analz H |] ==> X ∈ analz H"
by auto
text{*Now cancel the @{text dest} attribute given to
@{text analz.Decrypt} in its declaration.*}
declare analz.Decrypt [rule del]
text{*Rewrites should not refer to @{term "initState(Friend i)"} because
that expression is not in normal form.*}
lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
apply (unfold keysFor_def)
apply (induct_tac "C", auto)
done
(*Specialized to shared-key model: no @{term invKey}*)
lemma keysFor_parts_insert:
"[| K ∈ keysFor (parts (insert X G)); X ∈ synth (analz H) |]
==> K ∈ keysFor (parts (G ∪ H)) | Key K ∈ parts H";
by (force dest: Event.keysFor_parts_insert)
lemma Crypt_imp_keysFor: "Crypt K X ∈ H ==> K ∈ keysFor H"
by (drule Crypt_imp_invKey_keysFor, simp)
subsection{*Function "knows"*}
(*Spy sees shared keys of agents!*)
lemma Spy_knows_Spy_bad [intro!]: "A: bad ==> Key (shrK A) ∈ knows Spy evs"
apply (induct_tac "evs")
apply (simp_all (no_asm_simp) add: imageI knows_Cons split add: event.split)
done
(*For case analysis on whether or not an agent is compromised*)
lemma Crypt_Spy_analz_bad: "[| Crypt (shrK A) X ∈ analz (knows Spy evs); A: bad |]
==> X ∈ analz (knows Spy evs)"
apply (force dest!: analz.Decrypt)
done
(** Fresh keys never clash with long-term shared keys **)
(*Agents see their own shared keys!*)
lemma shrK_in_initState [iff]: "Key (shrK A) ∈ initState A"
by (induct_tac "A", auto)
lemma shrK_in_used [iff]: "Key (shrK A) ∈ used evs"
by (rule initState_into_used, blast)
(*Used in parts_induct_tac and analz_Fake_tac to distinguish session keys
from long-term shared keys*)
lemma Key_not_used [simp]: "Key K ∉ used evs ==> K ∉ range shrK"
by blast
lemma shrK_neq [simp]: "Key K ∉ used evs ==> shrK B ≠ K"
by blast
declare shrK_neq [THEN not_sym, simp]
subsection{*Fresh nonces*}
lemma Nonce_notin_initState [iff]: "Nonce N ∉ parts (initState B)"
by (induct_tac "B", auto)
lemma Nonce_notin_used_empty [simp]: "Nonce N ∉ used []"
apply (simp (no_asm) add: used_Nil)
done
subsection{*Supply fresh nonces for possibility theorems.*}
(*In any trace, there is an upper bound N on the greatest nonce in use.*)
lemma Nonce_supply_lemma: "∃N. ALL n. N<=n --> Nonce n ∉ used evs"
apply (induct_tac "evs")
apply (rule_tac x = 0 in exI)
apply (simp_all (no_asm_simp) add: used_Cons split add: event.split)
apply safe
apply (rule msg_Nonce_supply [THEN exE], blast elim!: add_leE)+
done
lemma Nonce_supply1: "∃N. Nonce N ∉ used evs"
by (rule Nonce_supply_lemma [THEN exE], blast)
lemma Nonce_supply2: "∃N N'. Nonce N ∉ used evs & Nonce N' ∉ used evs' & N ≠ N'"
apply (cut_tac evs = evs in Nonce_supply_lemma)
apply (cut_tac evs = "evs'" in Nonce_supply_lemma, clarify)
apply (rule_tac x = N in exI)
apply (rule_tac x = "Suc (N+Na)" in exI)
apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le)
done
lemma Nonce_supply3: "∃N N' N''. Nonce N ∉ used evs & Nonce N' ∉ used evs' &
Nonce N'' ∉ used evs'' & N ≠ N' & N' ≠ N'' & N ≠ N''"
apply (cut_tac evs = evs in Nonce_supply_lemma)
apply (cut_tac evs = "evs'" in Nonce_supply_lemma)
apply (cut_tac evs = "evs''" in Nonce_supply_lemma, clarify)
apply (rule_tac x = N in exI)
apply (rule_tac x = "Suc (N+Na)" in exI)
apply (rule_tac x = "Suc (Suc (N+Na+Nb))" in exI)
apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le)
done
lemma Nonce_supply: "Nonce (@ N. Nonce N ∉ used evs) ∉ used evs"
apply (rule Nonce_supply_lemma [THEN exE])
apply (rule someI, blast)
done
text{*Unlike the corresponding property of nonces, we cannot prove
@{term "finite KK ==> ∃K. K ∉ KK & Key K ∉ used evs"}.
We have infinitely many agents and there is nothing to stop their
long-term keys from exhausting all the natural numbers. Instead,
possibility theorems must assume the existence of a few keys.*}
subsection{*Tactics for possibility theorems*}
ML
{*
val inj_shrK = thm "inj_shrK";
val isSym_keys = thm "isSym_keys";
val Nonce_supply = thm "Nonce_supply";
val invKey_K = thm "invKey_K";
val analz_Decrypt' = thm "analz_Decrypt'";
val keysFor_parts_initState = thm "keysFor_parts_initState";
val keysFor_parts_insert = thm "keysFor_parts_insert";
val Crypt_imp_keysFor = thm "Crypt_imp_keysFor";
val Spy_knows_Spy_bad = thm "Spy_knows_Spy_bad";
val Crypt_Spy_analz_bad = thm "Crypt_Spy_analz_bad";
val shrK_in_initState = thm "shrK_in_initState";
val shrK_in_used = thm "shrK_in_used";
val Key_not_used = thm "Key_not_used";
val shrK_neq = thm "shrK_neq";
val Nonce_notin_initState = thm "Nonce_notin_initState";
val Nonce_notin_used_empty = thm "Nonce_notin_used_empty";
val Nonce_supply_lemma = thm "Nonce_supply_lemma";
val Nonce_supply1 = thm "Nonce_supply1";
val Nonce_supply2 = thm "Nonce_supply2";
val Nonce_supply3 = thm "Nonce_supply3";
val Nonce_supply = thm "Nonce_supply";
*}
ML
{*
(*Omitting used_Says makes the tactic much faster: it leaves expressions
such as Nonce ?N ∉ used evs that match Nonce_supply*)
fun gen_possibility_tac ss state = state |>
(REPEAT
(ALLGOALS (simp_tac (ss delsimps [used_Says, used_Notes, used_Gets]
setSolver safe_solver))
THEN
REPEAT_FIRST (eq_assume_tac ORELSE'
resolve_tac [refl, conjI, Nonce_supply])))
(*Tactic for possibility theorems (ML script version)*)
fun possibility_tac state = gen_possibility_tac (simpset()) state
(*For harder protocols (such as Recur) where we have to set up some
nonces and keys initially*)
fun basic_possibility_tac st = st |>
REPEAT
(ALLGOALS (asm_simp_tac (simpset() setSolver safe_solver))
THEN
REPEAT_FIRST (resolve_tac [refl, conjI]))
*}
subsection{*Specialized Rewriting for Theorems About @{term analz} and Image*}
lemma subset_Compl_range: "A <= - (range shrK) ==> shrK x ∉ A"
by blast
lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} ∪ H"
by blast
lemma insert_Key_image: "insert (Key K) (Key`KK ∪ C) = Key`(insert K KK) ∪ C"
by blast
(** Reverse the normal simplification of "image" to build up (not break down)
the set of keys. Use analz_insert_eq with (Un_upper2 RS analz_mono) to
erase occurrences of forwarded message components (X). **)
lemmas analz_image_freshK_simps =
simp_thms mem_simps --{*these two allow its use with @{text "only:"}*}
disj_comms
image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset
analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD]
insert_Key_singleton subset_Compl_range
Key_not_used insert_Key_image Un_assoc [THEN sym]
(*Lemma for the trivial direction of the if-and-only-if*)
lemma analz_image_freshK_lemma:
"(Key K ∈ analz (Key`nE ∪ H)) --> (K ∈ nE | Key K ∈ analz H) ==>
(Key K ∈ analz (Key`nE ∪ H)) = (K ∈ nE | Key K ∈ analz H)"
by (blast intro: analz_mono [THEN [2] rev_subsetD])
ML
{*
val analz_image_freshK_lemma = thm "analz_image_freshK_lemma";
val analz_image_freshK_ss =
simpset() delsimps [image_insert, image_Un]
delsimps [imp_disjL] (*reduces blow-up*)
addsimps thms "analz_image_freshK_simps"
*}
(*Lets blast_tac perform this step without needing the simplifier*)
lemma invKey_shrK_iff [iff]:
"(Key (invKey K) ∈ X) = (Key K ∈ X)"
by auto
(*Specialized methods*)
method_setup analz_freshK = {*
Method.no_args
(Method.METHOD
(fn facts => EVERY [REPEAT_FIRST (resolve_tac [allI, ballI, impI]),
REPEAT_FIRST (rtac analz_image_freshK_lemma),
ALLGOALS (asm_simp_tac analz_image_freshK_ss)])) *}
"for proving the Session Key Compromise theorem"
method_setup possibility = {*
Method.ctxt_args (fn ctxt =>
Method.METHOD (fn facts =>
gen_possibility_tac (local_simpset_of ctxt))) *}
"for proving possibility theorems"
lemma knows_subset_knows_Cons: "knows A evs <= knows A (e # evs)"
by (induct e, auto simp: knows_Cons)
end
lemma isSym_keys:
K ∈ symKeys
lemma invKey_K:
invKey K = K
lemma analz_Decrypt':
[| Crypt K X ∈ analz H; Key K ∈ analz H |] ==> X ∈ analz H
lemma keysFor_parts_initState:
keysFor (parts (initState C)) = {}
lemma keysFor_parts_insert:
[| K ∈ keysFor (parts (insert X G)); X ∈ synth (analz H) |] ==> K ∈ keysFor (parts (G ∪ H)) ∨ Key K ∈ parts H
lemma Crypt_imp_keysFor:
Crypt K X ∈ H ==> K ∈ keysFor H
lemma Spy_knows_Spy_bad:
A ∈ bad ==> Key (shrK A) ∈ knows Spy evs
lemma Crypt_Spy_analz_bad:
[| Crypt (shrK A) X ∈ analz (knows Spy evs); A ∈ bad |] ==> X ∈ analz (knows Spy evs)
lemma shrK_in_initState:
Key (shrK A) ∈ initState A
lemma shrK_in_used:
Key (shrK A) ∈ used evs
lemma Key_not_used:
Key K ∉ used evs ==> K ∉ range shrK
lemma shrK_neq:
Key K ∉ used evs ==> shrK B ≠ K
lemma Nonce_notin_initState:
Nonce N ∉ parts (initState B)
lemma Nonce_notin_used_empty:
Nonce N ∉ used []
lemma Nonce_supply_lemma:
∃N. ∀n. N ≤ n --> Nonce n ∉ used evs
lemma Nonce_supply1:
∃N. Nonce N ∉ used evs
lemma Nonce_supply2:
∃N N'. Nonce N ∉ used evs ∧ Nonce N' ∉ used evs' ∧ N ≠ N'
lemma Nonce_supply3:
∃N N' N''. Nonce N ∉ used evs ∧ Nonce N' ∉ used evs' ∧ Nonce N'' ∉ used evs'' ∧ N ≠ N' ∧ N' ≠ N'' ∧ N ≠ N''
lemma Nonce_supply:
Nonce (SOME N. Nonce N ∉ used evs) ∉ used evs
lemma subset_Compl_range:
A ⊆ - range shrK ==> shrK x ∉ A
lemma insert_Key_singleton:
insert (Key K) H = Key ` {K} ∪ H
lemma insert_Key_image:
insert (Key K) (Key ` KK ∪ C) = Key ` insert K KK ∪ C
lemmas analz_image_freshK_simps:
(¬ ¬ P) = P
((¬ P) = (¬ Q)) = (P = Q)
(P ≠ Q) = (P = (¬ Q))
(P ∨ ¬ P) = True
(¬ P ∨ P) = True
(x = x) = True
(¬ True) = False
(¬ False) = True
(¬ P) ≠ P
P ≠ (¬ P)
(True = P) = P
(P = True) = P
(False = P) = (¬ P)
(P = False) = (¬ P)
(True --> P) = P
(False --> P) = True
(P --> True) = True
(P --> P) = True
(P --> False) = (¬ P)
(P --> ¬ P) = (¬ P)
(P ∧ True) = P
(True ∧ P) = P
(P ∧ False) = False
(False ∧ P) = False
(P ∧ P) = P
(P ∧ P ∧ Q) = (P ∧ Q)
(P ∧ ¬ P) = False
(¬ P ∧ P) = False
(P ∨ True) = True
(True ∨ P) = True
(P ∨ False) = P
(False ∨ P) = P
(P ∨ P) = P
(P ∨ P ∨ Q) = (P ∨ Q)
(∀x. P) = P
(∃x. P) = P
∃x. x = t
∃x. t = x
(∃x. x = t ∧ P x) = P t
(∃x. t = x ∧ P x) = P t
(∀x. x = t --> P x) = P t
(∀x. t = x --> P x) = P t
(a ∈ insert b A) = (a = b ∨ a ∈ A)
(c ∈ {}) = False
(c ∈ A ∪ B) = (c ∈ A ∨ c ∈ B)
(c ∈ A ∩ B) = (c ∈ A ∧ c ∈ B)
(c ∈ - A) = (c ∉ A)
(c ∈ A - B) = (c ∈ A ∧ c ∉ B)
(a ∈ {x. P x}) = P a
(b ∈ (UN x:A. B x)) = (∃x∈A. b ∈ B x)
(A ∈ Union C) = (∃X∈C. A ∈ X)
(b ∈ (INT x:A. B x)) = (∀x∈A. b ∈ B x)
(A ∈ Inter C) = (∀X∈C. A ∈ X)
(P ∨ Q) = (Q ∨ P)
(P ∨ Q ∨ R) = (Q ∨ P ∨ R)
insert (f1 a1) (f1 ` B1) = f1 ` insert a1 B1
f1 ` A1 ∪ f1 ` B1 = f1 ` (A1 ∪ B1)
{} ⊆ A
(insert x A ⊆ B) = (x ∈ B ∧ A ⊆ B)
X ∈ analz H ==> analz (insert X H) = analz H
c ∈ analz G1 ==> c ∈ analz (A2 ∪ G1)
insert (Key K) H = Key ` {K} ∪ H
A ⊆ - range shrK ==> shrK x ∉ A
Key K ∉ used evs ==> K ∉ range shrK
insert (Key K) (Key ` KK ∪ C) = Key ` insert K KK ∪ C
A1 ∪ (B1 ∪ C1) = A1 ∪ B1 ∪ C1
lemmas analz_image_freshK_simps:
(¬ ¬ P) = P
((¬ P) = (¬ Q)) = (P = Q)
(P ≠ Q) = (P = (¬ Q))
(P ∨ ¬ P) = True
(¬ P ∨ P) = True
(x = x) = True
(¬ True) = False
(¬ False) = True
(¬ P) ≠ P
P ≠ (¬ P)
(True = P) = P
(P = True) = P
(False = P) = (¬ P)
(P = False) = (¬ P)
(True --> P) = P
(False --> P) = True
(P --> True) = True
(P --> P) = True
(P --> False) = (¬ P)
(P --> ¬ P) = (¬ P)
(P ∧ True) = P
(True ∧ P) = P
(P ∧ False) = False
(False ∧ P) = False
(P ∧ P) = P
(P ∧ P ∧ Q) = (P ∧ Q)
(P ∧ ¬ P) = False
(¬ P ∧ P) = False
(P ∨ True) = True
(True ∨ P) = True
(P ∨ False) = P
(False ∨ P) = P
(P ∨ P) = P
(P ∨ P ∨ Q) = (P ∨ Q)
(∀x. P) = P
(∃x. P) = P
∃x. x = t
∃x. t = x
(∃x. x = t ∧ P x) = P t
(∃x. t = x ∧ P x) = P t
(∀x. x = t --> P x) = P t
(∀x. t = x --> P x) = P t
(a ∈ insert b A) = (a = b ∨ a ∈ A)
(c ∈ {}) = False
(c ∈ A ∪ B) = (c ∈ A ∨ c ∈ B)
(c ∈ A ∩ B) = (c ∈ A ∧ c ∈ B)
(c ∈ - A) = (c ∉ A)
(c ∈ A - B) = (c ∈ A ∧ c ∉ B)
(a ∈ {x. P x}) = P a
(b ∈ (UN x:A. B x)) = (∃x∈A. b ∈ B x)
(A ∈ Union C) = (∃X∈C. A ∈ X)
(b ∈ (INT x:A. B x)) = (∀x∈A. b ∈ B x)
(A ∈ Inter C) = (∀X∈C. A ∈ X)
(P ∨ Q) = (Q ∨ P)
(P ∨ Q ∨ R) = (Q ∨ P ∨ R)
insert (f1 a1) (f1 ` B1) = f1 ` insert a1 B1
f1 ` A1 ∪ f1 ` B1 = f1 ` (A1 ∪ B1)
{} ⊆ A
(insert x A ⊆ B) = (x ∈ B ∧ A ⊆ B)
X ∈ analz H ==> analz (insert X H) = analz H
c ∈ analz G1 ==> c ∈ analz (A2 ∪ G1)
insert (Key K) H = Key ` {K} ∪ H
A ⊆ - range shrK ==> shrK x ∉ A
Key K ∉ used evs ==> K ∉ range shrK
insert (Key K) (Key ` KK ∪ C) = Key ` insert K KK ∪ C
A1 ∪ (B1 ∪ C1) = A1 ∪ B1 ∪ C1
lemma analz_image_freshK_lemma:
Key K ∈ analz (Key ` nE ∪ H) --> K ∈ nE ∨ Key K ∈ analz H ==> (Key K ∈ analz (Key ` nE ∪ H)) = (K ∈ nE ∨ Key K ∈ analz H)
lemma invKey_shrK_iff:
(Key (invKey K) ∈ X) = (Key K ∈ X)
lemma knows_subset_knows_Cons:
knows A evs ⊆ knows A (e # evs)