(* Title: HOL/Auth/ZhouGollmann
ID: $Id: ZhouGollmann.thy,v 1.8 2005/06/17 14:13:06 haftmann Exp $
Author: Giampaolo Bella and L C Paulson, Cambridge Univ Computer Lab
Copyright 2003 University of Cambridge
The protocol of
Jianying Zhou and Dieter Gollmann,
A Fair Non-Repudiation Protocol,
Security and Privacy 1996 (Oakland)
55-61
*)
theory ZhouGollmann imports Public begin
syntax
TTP :: agent
translations
"TTP" == " Server "
syntax
f_sub :: nat
f_nro :: nat
f_nrr :: nat
f_con :: nat
translations
"f_sub" == " 5 "
"f_nro" == " 2 "
"f_nrr" == " 3 "
"f_con" == " 4 "
constdefs
broken :: "agent set"
--{*the compromised honest agents; TTP is included as it's not allowed to
use the protocol*}
"broken == bad - {Spy}"
declare broken_def [simp]
consts zg :: "event list set"
inductive zg
intros
Nil: "[] ∈ zg"
Fake: "[| evsf ∈ zg; X ∈ synth (analz (spies evsf)) |]
==> Says Spy B X # evsf ∈ zg"
Reception: "[| evsr ∈ zg; Says A B X ∈ set evsr |] ==> Gets B X # evsr ∈ zg"
(*L is fresh for honest agents.
We don't require K to be fresh because we don't bother to prove secrecy!
We just assume that the protocol's objective is to deliver K fairly,
rather than to keep M secret.*)
ZG1: "[| evs1 ∈ zg; Nonce L ∉ used evs1; C = Crypt K (Number m);
K ∈ symKeys;
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|}|]
==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} # evs1 ∈ zg"
(*B must check that NRO is A's signature to learn the sender's name*)
ZG2: "[| evs2 ∈ zg;
Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs2;
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|}|]
==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} # evs2 ∈ zg"
(*A must check that NRR is B's signature to learn the sender's name;
without spy, the matching label would be enough*)
ZG3: "[| evs3 ∈ zg; C = Crypt K M; K ∈ symKeys;
Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs3;
Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs3;
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|}|]
==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|}
# evs3 ∈ zg"
(*TTP checks that sub_K is A's signature to learn who issued K, then
gives credentials to A and B. The Notes event models the availability of
the credentials, but the act of fetching them is not modelled. We also
give con_K to the Spy. This makes the threat model more dangerous, while
also allowing lemma @{text Crypt_used_imp_spies} to omit the condition
@{term "K ≠ priK TTP"}. *)
ZG4: "[| evs4 ∈ zg; K ∈ symKeys;
Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|}
∈ set evs4;
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
Nonce L, Key K|}|]
==> Says TTP Spy con_K
#
Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
# evs4 ∈ zg"
declare Says_imp_knows_Spy [THEN analz.Inj, dest]
declare Fake_parts_insert_in_Un [dest]
declare analz_into_parts [dest]
declare symKey_neq_priEK [simp]
declare symKey_neq_priEK [THEN not_sym, simp]
text{*A "possibility property": there are traces that reach the end*}
lemma "[|A ≠ B; TTP ≠ A; TTP ≠ B; K ∈ symKeys|] ==>
∃L. ∃evs ∈ zg.
Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K,
Crypt (priK TTP) {|Number f_con, Agent A, Agent B, Nonce L, Key K|} |}
∈ set evs"
apply (intro exI bexI)
apply (rule_tac [2] zg.Nil
[THEN zg.ZG1, THEN zg.Reception [of _ A B],
THEN zg.ZG2, THEN zg.Reception [of _ B A],
THEN zg.ZG3, THEN zg.Reception [of _ A TTP],
THEN zg.ZG4])
apply (possibility, auto)
done
subsection {*Basic Lemmas*}
lemma Gets_imp_Says:
"[| Gets B X ∈ set evs; evs ∈ zg |] ==> ∃A. Says A B X ∈ set evs"
apply (erule rev_mp)
apply (erule zg.induct, auto)
done
lemma Gets_imp_knows_Spy:
"[| Gets B X ∈ set evs; evs ∈ zg |] ==> X ∈ spies evs"
by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)
text{*Lets us replace proofs about @{term "used evs"} by simpler proofs
about @{term "parts (spies evs)"}.*}
lemma Crypt_used_imp_spies:
"[| Crypt K X ∈ used evs; evs ∈ zg |]
==> Crypt K X ∈ parts (spies evs)"
apply (erule rev_mp)
apply (erule zg.induct)
apply (simp_all add: parts_insert_knows_A)
done
lemma Notes_TTP_imp_Gets:
"[|Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K |}
∈ set evs;
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
evs ∈ zg|]
==> Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} ∈ set evs"
apply (erule rev_mp)
apply (erule zg.induct, auto)
done
text{*For reasoning about C, which is encrypted in message ZG2*}
lemma ZG2_msg_in_parts_spies:
"[|Gets B {|F, B', L, C, X|} ∈ set evs; evs ∈ zg|]
==> C ∈ parts (spies evs)"
by (blast dest: Gets_imp_Says)
(*classical regularity lemma on priK*)
lemma Spy_see_priK [simp]:
"evs ∈ zg ==> (Key (priK A) ∈ parts (spies evs)) = (A ∈ bad)"
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
done
text{*So that blast can use it too*}
declare Spy_see_priK [THEN [2] rev_iffD1, dest!]
lemma Spy_analz_priK [simp]:
"evs ∈ zg ==> (Key (priK A) ∈ analz (spies evs)) = (A ∈ bad)"
by auto
subsection{*About NRO: Validity for @{term B}*}
text{*Below we prove that if @{term NRO} exists then @{term A} definitely
sent it, provided @{term A} is not broken.*}
text{*Strong conclusion for a good agent*}
lemma NRO_validity_good:
"[|NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
NRO ∈ parts (spies evs);
A ∉ bad; evs ∈ zg |]
==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
done
lemma NRO_sender:
"[|Says A' B {|n, b, l, C, Crypt (priK A) X|} ∈ set evs; evs ∈ zg|]
==> A' ∈ {A,Spy}"
apply (erule rev_mp)
apply (erule zg.induct, simp_all)
done
text{*Holds also for @{term "A = Spy"}!*}
theorem NRO_validity:
"[|Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs;
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
A ∉ broken; evs ∈ zg |]
==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs"
apply (drule Gets_imp_Says, assumption)
apply clarify
apply (frule NRO_sender, auto)
txt{*We are left with the case where the sender is @{term Spy} and not
equal to @{term A}, because @{term "A ∉ bad"}.
Thus theorem @{text NRO_validity_good} applies.*}
apply (blast dest: NRO_validity_good [OF refl])
done
subsection{*About NRR: Validity for @{term A}*}
text{*Below we prove that if @{term NRR} exists then @{term B} definitely
sent it, provided @{term B} is not broken.*}
text{*Strong conclusion for a good agent*}
lemma NRR_validity_good:
"[|NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
NRR ∈ parts (spies evs);
B ∉ bad; evs ∈ zg |]
==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
done
lemma NRR_sender:
"[|Says B' A {|n, a, l, Crypt (priK B) X|} ∈ set evs; evs ∈ zg|]
==> B' ∈ {B,Spy}"
apply (erule rev_mp)
apply (erule zg.induct, simp_all)
done
text{*Holds also for @{term "B = Spy"}!*}
theorem NRR_validity:
"[|Says B' A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs;
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
B ∉ broken; evs ∈ zg|]
==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs"
apply clarify
apply (frule NRR_sender, auto)
txt{*We are left with the case where @{term "B' = Spy"} and @{term "B' ≠ B"},
i.e. @{term "B ∉ bad"}, when we can apply @{text NRR_validity_good}.*}
apply (blast dest: NRR_validity_good [OF refl])
done
subsection{*Proofs About @{term sub_K}*}
text{*Below we prove that if @{term sub_K} exists then @{term A} definitely
sent it, provided @{term A} is not broken. *}
text{*Strong conclusion for a good agent*}
lemma sub_K_validity_good:
"[|sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
sub_K ∈ parts (spies evs);
A ∉ bad; evs ∈ zg |]
==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} ∈ set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt{*Fake*}
apply (blast dest!: Fake_parts_sing_imp_Un)
done
lemma sub_K_sender:
"[|Says A' TTP {|n, b, l, k, Crypt (priK A) X|} ∈ set evs; evs ∈ zg|]
==> A' ∈ {A,Spy}"
apply (erule rev_mp)
apply (erule zg.induct, simp_all)
done
text{*Holds also for @{term "A = Spy"}!*}
theorem sub_K_validity:
"[|Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} ∈ set evs;
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
A ∉ broken; evs ∈ zg |]
==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} ∈ set evs"
apply (drule Gets_imp_Says, assumption)
apply clarify
apply (frule sub_K_sender, auto)
txt{*We are left with the case where the sender is @{term Spy} and not
equal to @{term A}, because @{term "A ∉ bad"}.
Thus theorem @{text sub_K_validity_good} applies.*}
apply (blast dest: sub_K_validity_good [OF refl])
done
subsection{*Proofs About @{term con_K}*}
text{*Below we prove that if @{term con_K} exists, then @{term TTP} has it,
and therefore @{term A} and @{term B}) can get it too. Moreover, we know
that @{term A} sent @{term sub_K}*}
lemma con_K_validity:
"[|con_K ∈ used evs;
con_K = Crypt (priK TTP)
{|Number f_con, Agent A, Agent B, Nonce L, Key K|};
evs ∈ zg |]
==> Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
∈ set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt{*Fake*}
apply (blast dest!: Fake_parts_sing_imp_Un)
txt{*ZG2*}
apply (blast dest: parts_cut)
done
text{*If @{term TTP} holds @{term con_K} then @{term A} sent
@{term sub_K}. We assume that @{term A} is not broken. Importantly, nothing
needs to be assumed about the form of @{term con_K}!*}
lemma Notes_TTP_imp_Says_A:
"[|Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
∈ set evs;
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
A ∉ broken; evs ∈ zg|]
==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} ∈ set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt{*ZG4*}
apply clarify
apply (rule sub_K_validity, auto)
done
text{*If @{term con_K} exists, then @{term A} sent @{term sub_K}. We again
assume that @{term A} is not broken. *}
theorem B_sub_K_validity:
"[|con_K ∈ used evs;
con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
Nonce L, Key K|};
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
A ∉ broken; evs ∈ zg|]
==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} ∈ set evs"
by (blast dest: con_K_validity Notes_TTP_imp_Says_A)
subsection{*Proving fairness*}
text{*Cannot prove that, if @{term B} has NRO, then @{term A} has her NRR.
It would appear that @{term B} has a small advantage, though it is
useless to win disputes: @{term B} needs to present @{term con_K} as well.*}
text{*Strange: unicity of the label protects @{term A}?*}
lemma A_unicity:
"[|NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};
NRO ∈ parts (spies evs);
Says A B {|Number f_nro, Agent B, Nonce L, Crypt K M', NRO'|}
∈ set evs;
A ∉ bad; evs ∈ zg |]
==> M'=M"
apply clarify
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
txt{*ZG1: freshness*}
apply (blast dest: parts.Body)
done
text{*Fairness lemma: if @{term sub_K} exists, then @{term A} holds
NRR. Relies on unicity of labels.*}
lemma sub_K_implies_NRR:
"[| NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M|};
sub_K ∈ parts (spies evs);
NRO ∈ parts (spies evs);
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
A ∉ bad; evs ∈ zg |]
==> Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs"
apply clarify
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt{*Fake*}
apply blast
txt{*ZG1: freshness*}
apply (blast dest: parts.Body)
txt{*ZG3*}
apply (blast dest: A_unicity [OF refl])
done
lemma Crypt_used_imp_L_used:
"[| Crypt (priK TTP) {|F, A, B, L, K|} ∈ used evs; evs ∈ zg |]
==> L ∈ used evs"
apply (erule rev_mp)
apply (erule zg.induct, auto)
txt{*Fake*}
apply (blast dest!: Fake_parts_sing_imp_Un)
txt{*ZG2: freshness*}
apply (blast dest: parts.Body)
done
text{*Fairness for @{term A}: if @{term con_K} and @{term NRO} exist,
then @{term A} holds NRR. @{term A} must be uncompromised, but there is no
assumption about @{term B}.*}
theorem A_fairness_NRO:
"[|con_K ∈ used evs;
NRO ∈ parts (spies evs);
con_K = Crypt (priK TTP)
{|Number f_con, Agent A, Agent B, Nonce L, Key K|};
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M|};
A ∉ bad; evs ∈ zg |]
==> Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs"
apply clarify
apply (erule rev_mp)
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt{*Fake*}
apply (simp add: parts_insert_knows_A)
apply (blast dest: Fake_parts_sing_imp_Un)
txt{*ZG1*}
apply (blast dest: Crypt_used_imp_L_used)
txt{*ZG2*}
apply (blast dest: parts_cut)
txt{*ZG4*}
apply (blast intro: sub_K_implies_NRR [OF refl]
dest: Gets_imp_knows_Spy [THEN parts.Inj])
done
text{*Fairness for @{term B}: NRR exists at all, then @{term B} holds NRO.
@{term B} must be uncompromised, but there is no assumption about @{term
A}. *}
theorem B_fairness_NRR:
"[|NRR ∈ used evs;
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
B ∉ bad; evs ∈ zg |]
==> Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs"
apply clarify
apply (erule rev_mp)
apply (erule zg.induct)
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
txt{*Fake*}
apply (blast dest!: Fake_parts_sing_imp_Un)
txt{*ZG2*}
apply (blast dest: parts_cut)
done
text{*If @{term con_K} exists at all, then @{term B} can get it, by @{text
con_K_validity}. Cannot conclude that also NRO is available to @{term B},
because if @{term A} were unfair, @{term A} could build message 3 without
building message 1, which contains NRO. *}
end
lemma
[| A ≠ B; TTP ≠ A; TTP ≠ B; K ∈ symKeys |] ==> ∃L. ∃evs∈zg. Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, Crypt (priEK TTP) {|Number f_con, Agent A, Agent B, Nonce L, Key K|}|} ∈ set evs
lemma Gets_imp_Says:
[| Gets B X ∈ set evs; evs ∈ zg |] ==> ∃A. Says A B X ∈ set evs
lemma Gets_imp_knows_Spy:
[| Gets B X ∈ set evs; evs ∈ zg |] ==> X ∈ knows Spy evs
lemma Crypt_used_imp_spies:
[| Crypt K X ∈ used evs; evs ∈ zg |] ==> Crypt K X ∈ parts (knows Spy evs)
lemma Notes_TTP_imp_Gets:
[| Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
∈ set evs;
sub_K = Crypt (priEK A) {|Number f_sub, Agent B, Nonce L, Key K|};
evs ∈ zg |]
==> Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} ∈ set evs
lemma ZG2_msg_in_parts_spies:
[| Gets B {|F, B', L, C, X|} ∈ set evs; evs ∈ zg |] ==> C ∈ parts (knows Spy evs)
lemma Spy_see_priK:
evs ∈ zg ==> (Key (priEK A) ∈ parts (knows Spy evs)) = (A ∈ bad)
lemma Spy_analz_priK:
evs ∈ zg ==> (Key (priEK A) ∈ analz (knows Spy evs)) = (A ∈ bad)
lemma NRO_validity_good:
[| NRO = Crypt (priEK A) {|Number f_nro, Agent B, Nonce L, C|}; NRO ∈ parts (knows Spy evs); A ∉ bad; evs ∈ zg |] ==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs
lemma NRO_sender:
[| Says A' B {|n, b, l, C, Crypt (priEK A) X|} ∈ set evs; evs ∈ zg |] ==> A' ∈ {A, Spy}
theorem NRO_validity:
[| Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs; NRO = Crypt (priEK A) {|Number f_nro, Agent B, Nonce L, C|}; A ∉ broken; evs ∈ zg |] ==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs
lemma NRR_validity_good:
[| NRR = Crypt (priEK B) {|Number f_nrr, Agent A, Nonce L, C|}; NRR ∈ parts (knows Spy evs); B ∉ bad; evs ∈ zg |] ==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs
lemma NRR_sender:
[| Says B' A {|n, a, l, Crypt (priEK B) X|} ∈ set evs; evs ∈ zg |] ==> B' ∈ {B, Spy}
theorem NRR_validity:
[| Says B' A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs; NRR = Crypt (priEK B) {|Number f_nrr, Agent A, Nonce L, C|}; B ∉ broken; evs ∈ zg |] ==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs
lemma sub_K_validity_good:
[| sub_K = Crypt (priEK A) {|Number f_sub, Agent B, Nonce L, Key K|}; sub_K ∈ parts (knows Spy evs); A ∉ bad; evs ∈ zg |] ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} ∈ set evs
lemma sub_K_sender:
[| Says A' TTP {|n, b, l, k, Crypt (priEK A) X|} ∈ set evs; evs ∈ zg |] ==> A' ∈ {A, Spy}
theorem sub_K_validity:
[| Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} ∈ set evs;
sub_K = Crypt (priEK A) {|Number f_sub, Agent B, Nonce L, Key K|};
A ∉ broken; evs ∈ zg |]
==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} ∈ set evs
lemma con_K_validity:
[| con_K ∈ used evs; con_K = Crypt (priEK TTP) {|Number f_con, Agent A, Agent B, Nonce L, Key K|}; evs ∈ zg |] ==> Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|} ∈ set evs
lemma Notes_TTP_imp_Says_A:
[| Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
∈ set evs;
sub_K = Crypt (priEK A) {|Number f_sub, Agent B, Nonce L, Key K|};
A ∉ broken; evs ∈ zg |]
==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} ∈ set evs
theorem B_sub_K_validity:
[| con_K ∈ used evs; con_K = Crypt (priEK TTP) {|Number f_con, Agent A, Agent B, Nonce L, Key K|}; sub_K = Crypt (priEK A) {|Number f_sub, Agent B, Nonce L, Key K|}; A ∉ broken; evs ∈ zg |] ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} ∈ set evs
lemma A_unicity:
[| NRO = Crypt (priEK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|}; NRO ∈ parts (knows Spy evs); Says A B {|Number f_nro, Agent B, Nonce L, Crypt K M', NRO'|} ∈ set evs; A ∉ bad; evs ∈ zg |] ==> M' = M
lemma sub_K_implies_NRR:
[| NRO = Crypt (priEK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|}; NRR = Crypt (priEK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M|}; sub_K ∈ parts (knows Spy evs); NRO ∈ parts (knows Spy evs); sub_K = Crypt (priEK A) {|Number f_sub, Agent B, Nonce L, Key K|}; A ∉ bad; evs ∈ zg |] ==> Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs
lemma Crypt_used_imp_L_used:
[| Crypt (priEK TTP) {|F, A, B, L, K|} ∈ used evs; evs ∈ zg |] ==> L ∈ used evs
theorem A_fairness_NRO:
[| con_K ∈ used evs; NRO ∈ parts (knows Spy evs); con_K = Crypt (priEK TTP) {|Number f_con, Agent A, Agent B, Nonce L, Key K|}; NRO = Crypt (priEK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|}; NRR = Crypt (priEK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M|}; A ∉ bad; evs ∈ zg |] ==> Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} ∈ set evs
theorem B_fairness_NRR:
[| NRR ∈ used evs; NRR = Crypt (priEK B) {|Number f_nrr, Agent A, Nonce L, C|}; NRO = Crypt (priEK A) {|Number f_nro, Agent B, Nonce L, C|}; B ∉ bad; evs ∈ zg |] ==> Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} ∈ set evs