Up to index of Isabelle/HOL
theory Datatype(* Title: HOL/Datatype.thy
ID: $Id: Datatype.thy,v 1.15 2005/09/17 16:11:18 wenzelm Exp $
Author: Stefan Berghofer and Markus Wenzel, TU Muenchen
*)
header {* Datatypes *}
theory Datatype
imports Datatype_Universe
begin
subsection {* Representing primitive types *}
rep_datatype bool
distinct True_not_False False_not_True
induction bool_induct
declare case_split [cases type: bool]
-- "prefer plain propositional version"
rep_datatype unit
induction unit_induct
rep_datatype prod
inject Pair_eq
induction prod_induct
rep_datatype sum
distinct Inl_not_Inr Inr_not_Inl
inject Inl_eq Inr_eq
induction sum_induct
ML {*
val [sum_case_Inl, sum_case_Inr] = thms "sum.cases";
bind_thm ("sum_case_Inl", sum_case_Inl);
bind_thm ("sum_case_Inr", sum_case_Inr);
*} -- {* compatibility *}
lemma surjective_sum: "sum_case (%x::'a. f (Inl x)) (%y::'b. f (Inr y)) s = f(s)"
apply (rule_tac s = s in sumE)
apply (erule ssubst)
apply (rule sum_case_Inl)
apply (erule ssubst)
apply (rule sum_case_Inr)
done
lemma sum_case_weak_cong: "s = t ==> sum_case f g s = sum_case f g t"
-- {* Prevents simplification of @{text f} and @{text g}: much faster. *}
by (erule arg_cong)
lemma sum_case_inject:
"sum_case f1 f2 = sum_case g1 g2 ==> (f1 = g1 ==> f2 = g2 ==> P) ==> P"
proof -
assume a: "sum_case f1 f2 = sum_case g1 g2"
assume r: "f1 = g1 ==> f2 = g2 ==> P"
show P
apply (rule r)
apply (rule ext)
apply (cut_tac x = "Inl x" in a [THEN fun_cong], simp)
apply (rule ext)
apply (cut_tac x = "Inr x" in a [THEN fun_cong], simp)
done
qed
constdefs
Suml :: "('a => 'c) => 'a + 'b => 'c"
"Suml == (%f. sum_case f arbitrary)"
Sumr :: "('b => 'c) => 'a + 'b => 'c"
"Sumr == sum_case arbitrary"
lemma Suml_inject: "Suml f = Suml g ==> f = g"
by (unfold Suml_def) (erule sum_case_inject)
lemma Sumr_inject: "Sumr f = Sumr g ==> f = g"
by (unfold Sumr_def) (erule sum_case_inject)
subsection {* Finishing the datatype package setup *}
text {* Belongs to theory @{text Datatype_Universe}; hides popular names. *}
hide const Push Node Atom Leaf Numb Lim Split Case Suml Sumr
hide type node item
subsection {* Further cases/induct rules for tuples *}
lemma prod_cases3 [case_names fields, cases type]:
"(!!a b c. y = (a, b, c) ==> P) ==> P"
apply (cases y)
apply (case_tac b, blast)
done
lemma prod_induct3 [case_names fields, induct type]:
"(!!a b c. P (a, b, c)) ==> P x"
by (cases x) blast
lemma prod_cases4 [case_names fields, cases type]:
"(!!a b c d. y = (a, b, c, d) ==> P) ==> P"
apply (cases y)
apply (case_tac c, blast)
done
lemma prod_induct4 [case_names fields, induct type]:
"(!!a b c d. P (a, b, c, d)) ==> P x"
by (cases x) blast
lemma prod_cases5 [case_names fields, cases type]:
"(!!a b c d e. y = (a, b, c, d, e) ==> P) ==> P"
apply (cases y)
apply (case_tac d, blast)
done
lemma prod_induct5 [case_names fields, induct type]:
"(!!a b c d e. P (a, b, c, d, e)) ==> P x"
by (cases x) blast
lemma prod_cases6 [case_names fields, cases type]:
"(!!a b c d e f. y = (a, b, c, d, e, f) ==> P) ==> P"
apply (cases y)
apply (case_tac e, blast)
done
lemma prod_induct6 [case_names fields, induct type]:
"(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x"
by (cases x) blast
lemma prod_cases7 [case_names fields, cases type]:
"(!!a b c d e f g. y = (a, b, c, d, e, f, g) ==> P) ==> P"
apply (cases y)
apply (case_tac f, blast)
done
lemma prod_induct7 [case_names fields, induct type]:
"(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x"
by (cases x) blast
subsection {* The option type *}
datatype 'a option = None | Some 'a
lemma not_None_eq [iff]: "(x ~= None) = (EX y. x = Some y)"
by (induct x) auto
lemma not_Some_eq [iff]: "(ALL y. x ~= Some y) = (x = None)"
by (induct x) auto
lemma option_caseE:
"(case x of None => P | Some y => Q y) ==>
(x = None ==> P ==> R) ==>
(!!y. x = Some y ==> Q y ==> R) ==> R"
by (cases x) simp_all
subsubsection {* Operations *}
consts
the :: "'a option => 'a"
primrec
"the (Some x) = x"
consts
o2s :: "'a option => 'a set"
primrec
"o2s None = {}"
"o2s (Some x) = {x}"
lemma ospec [dest]: "(ALL x:o2s A. P x) ==> A = Some x ==> P x"
by simp
ML_setup {* claset_ref() := claset() addSD2 ("ospec", thm "ospec") *}
lemma elem_o2s [iff]: "(x : o2s xo) = (xo = Some x)"
by (cases xo) auto
lemma o2s_empty_eq [simp]: "(o2s xo = {}) = (xo = None)"
by (cases xo) auto
constdefs
option_map :: "('a => 'b) => ('a option => 'b option)"
"option_map == %f y. case y of None => None | Some x => Some (f x)"
lemma option_map_None [simp]: "option_map f None = None"
by (simp add: option_map_def)
lemma option_map_Some [simp]: "option_map f (Some x) = Some (f x)"
by (simp add: option_map_def)
lemma option_map_is_None[iff]:
"(option_map f opt = None) = (opt = None)"
by (simp add: option_map_def split add: option.split)
lemma option_map_eq_Some [iff]:
"(option_map f xo = Some y) = (EX z. xo = Some z & f z = y)"
by (simp add: option_map_def split add: option.split)
lemma option_map_comp:
"option_map f (option_map g opt) = option_map (f o g) opt"
by (simp add: option_map_def split add: option.split)
lemma option_map_o_sum_case [simp]:
"option_map f o sum_case g h = sum_case (option_map f o g) (option_map f o h)"
apply (rule ext)
apply (simp split add: sum.split)
done
lemmas [code] = imp_conv_disj
end
theorem sum_case_Inl:
sum_case f1.0 f2.0 (Inl a) = f1.0 a
theorem sum_case_Inr:
sum_case f1.0 f2.0 (Inr b) = f2.0 b
lemma surjective_sum:
(case s of Inl x => f (Inl x) | Inr y => f (Inr y)) = f s
lemma sum_case_weak_cong:
s = t ==> sum_case f g s = sum_case f g t
lemma sum_case_inject:
[| sum_case f1.0 f2.0 = sum_case g1.0 g2.0; [| f1.0 = g1.0; f2.0 = g2.0 |] ==> P |] ==> P
lemma Suml_inject:
Suml f = Suml g ==> f = g
lemma Sumr_inject:
Sumr f = Sumr g ==> f = g
lemma prod_cases3:
(!!a b c. y = (a, b, c) ==> P) ==> P
lemma prod_induct3:
(!!a b c. P (a, b, c)) ==> P x
lemma prod_cases4:
(!!a b c d. y = (a, b, c, d) ==> P) ==> P
lemma prod_induct4:
(!!a b c d. P (a, b, c, d)) ==> P x
lemma prod_cases5:
(!!a b c d e. y = (a, b, c, d, e) ==> P) ==> P
lemma prod_induct5:
(!!a b c d e. P (a, b, c, d, e)) ==> P x
lemma prod_cases6:
(!!a b c d e f. y = (a, b, c, d, e, f) ==> P) ==> P
lemma prod_induct6:
(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x
lemma prod_cases7:
(!!a b c d e f g. y = (a, b, c, d, e, f, g) ==> P) ==> P
lemma prod_induct7:
(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x
lemma not_None_eq:
(x ≠ None) = (∃y. x = Some y)
lemma not_Some_eq:
(∀y. x ≠ Some y) = (x = None)
lemma option_caseE:
[| case x of None => P | Some y => Q y; [| x = None; P |] ==> R; !!y. [| x = Some y; Q y |] ==> R |] ==> R
lemma ospec:
[| ∀x∈o2s A. P x; A = Some x |] ==> P x
lemma elem_o2s:
(x ∈ o2s xo) = (xo = Some x)
lemma o2s_empty_eq:
(o2s xo = {}) = (xo = None)
lemma option_map_None:
option_map f None = None
lemma option_map_Some:
option_map f (Some x) = Some (f x)
lemma option_map_is_None:
(option_map f opt = None) = (opt = None)
lemma option_map_eq_Some:
(option_map f xo = Some y) = (∃z. xo = Some z ∧ f z = y)
lemma option_map_comp:
option_map f (option_map g opt) = option_map (f o g) opt
lemma option_map_o_sum_case:
option_map f o sum_case g h = sum_case (option_map f o g) (option_map f o h)
lemmas
(P --> Q) = (¬ P ∨ Q)
lemmas
(P --> Q) = (¬ P ∨ Q)