Up to index of Isabelle/HOL
theory Datatype_Universe(* Title: HOL/Datatype_Universe.thy
ID: $Id: Datatype_Universe.thy,v 1.12 2005/09/22 21:56:15 nipkow Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Could <*> be generalized to a general summation (Sigma)?
*)
header{*Analogues of the Cartesian Product and Disjoint Sum for Datatypes*}
theory Datatype_Universe
imports NatArith Sum_Type
begin
typedef (Node)
('a,'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}"
--{*it is a subtype of @{text "(nat=>'b+nat) * ('a+nat)"}*}
by auto
text{*Datatypes will be represented by sets of type @{text node}*}
types 'a item = "('a, unit) node set"
('a, 'b) dtree = "('a, 'b) node set"
consts
apfst :: "['a=>'c, 'a*'b] => 'c*'b"
Push :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))"
Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node"
ndepth :: "('a, 'b) node => nat"
Atom :: "('a + nat) => ('a, 'b) dtree"
Leaf :: "'a => ('a, 'b) dtree"
Numb :: "nat => ('a, 'b) dtree"
Scons :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree"
In0 :: "('a, 'b) dtree => ('a, 'b) dtree"
In1 :: "('a, 'b) dtree => ('a, 'b) dtree"
Lim :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree"
ntrunc :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree"
uprod :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
usum :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
Split :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
Case :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
dprod :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
=> (('a, 'b) dtree * ('a, 'b) dtree)set"
dsum :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
=> (('a, 'b) dtree * ('a, 'b) dtree)set"
defs
Push_Node_def: "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))"
(*crude "lists" of nats -- needed for the constructions*)
apfst_def: "apfst == (%f (x,y). (f(x),y))"
Push_def: "Push == (%b h. nat_case b h)"
(** operations on S-expressions -- sets of nodes **)
(*S-expression constructors*)
Atom_def: "Atom == (%x. {Abs_Node((%k. Inr 0, x))})"
Scons_def: "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)"
(*Leaf nodes, with arbitrary or nat labels*)
Leaf_def: "Leaf == Atom o Inl"
Numb_def: "Numb == Atom o Inr"
(*Injections of the "disjoint sum"*)
In0_def: "In0(M) == Scons (Numb 0) M"
In1_def: "In1(M) == Scons (Numb 1) M"
(*Function spaces*)
Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}"
(*the set of nodes with depth less than k*)
ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)"
ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n)<k}"
(*products and sums for the "universe"*)
uprod_def: "uprod A B == UN x:A. UN y:B. { Scons x y }"
usum_def: "usum A B == In0`A Un In1`B"
(*the corresponding eliminators*)
Split_def: "Split c M == THE u. EX x y. M = Scons x y & u = c x y"
Case_def: "Case c d M == THE u. (EX x . M = In0(x) & u = c(x))
| (EX y . M = In1(y) & u = d(y))"
(** equality for the "universe" **)
dprod_def: "dprod r s == UN (x,x'):r. UN (y,y'):s. {(Scons x y, Scons x' y')}"
dsum_def: "dsum r s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un
(UN (y,y'):s. {(In1(y),In1(y'))})"
(** apfst -- can be used in similar type definitions **)
lemma apfst_conv [simp]: "apfst f (a,b) = (f(a),b)"
by (simp add: apfst_def)
lemma apfst_convE:
"[| q = apfst f p; !!x y. [| p = (x,y); q = (f(x),y) |] ==> R
|] ==> R"
by (force simp add: apfst_def)
(** Push -- an injection, analogous to Cons on lists **)
lemma Push_inject1: "Push i f = Push j g ==> i=j"
apply (simp add: Push_def expand_fun_eq)
apply (drule_tac x=0 in spec, simp)
done
lemma Push_inject2: "Push i f = Push j g ==> f=g"
apply (auto simp add: Push_def expand_fun_eq)
apply (drule_tac x="Suc x" in spec, simp)
done
lemma Push_inject:
"[| Push i f =Push j g; [| i=j; f=g |] ==> P |] ==> P"
by (blast dest: Push_inject1 Push_inject2)
lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P"
by (auto simp add: Push_def expand_fun_eq split: nat.split_asm)
lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard]
(*** Introduction rules for Node ***)
lemma Node_K0_I: "(%k. Inr 0, a) : Node"
by (simp add: Node_def)
lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node"
apply (simp add: Node_def Push_def)
apply (fast intro!: apfst_conv nat_case_Suc [THEN trans])
done
subsection{*Freeness: Distinctness of Constructors*}
(** Scons vs Atom **)
lemma Scons_not_Atom [iff]: "Scons M N ≠ Atom(a)"
apply (simp add: Atom_def Scons_def Push_Node_def One_nat_def)
apply (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I]
dest!: Abs_Node_inj
elim!: apfst_convE sym [THEN Push_neq_K0])
done
lemmas Atom_not_Scons = Scons_not_Atom [THEN not_sym, standard]
declare Atom_not_Scons [iff]
(*** Injectiveness ***)
(** Atomic nodes **)
lemma inj_Atom: "inj(Atom)"
apply (simp add: Atom_def)
apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj)
done
lemmas Atom_inject = inj_Atom [THEN injD, standard]
lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)"
by (blast dest!: Atom_inject)
lemma inj_Leaf: "inj(Leaf)"
apply (simp add: Leaf_def o_def)
apply (rule inj_onI)
apply (erule Atom_inject [THEN Inl_inject])
done
lemmas Leaf_inject = inj_Leaf [THEN injD, standard]
declare Leaf_inject [dest!]
lemma inj_Numb: "inj(Numb)"
apply (simp add: Numb_def o_def)
apply (rule inj_onI)
apply (erule Atom_inject [THEN Inr_inject])
done
lemmas Numb_inject = inj_Numb [THEN injD, standard]
declare Numb_inject [dest!]
(** Injectiveness of Push_Node **)
lemma Push_Node_inject:
"[| Push_Node i m =Push_Node j n; [| i=j; m=n |] ==> P
|] ==> P"
apply (simp add: Push_Node_def)
apply (erule Abs_Node_inj [THEN apfst_convE])
apply (rule Rep_Node [THEN Node_Push_I])+
apply (erule sym [THEN apfst_convE])
apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject)
done
(** Injectiveness of Scons **)
lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'"
apply (simp add: Scons_def One_nat_def)
apply (blast dest!: Push_Node_inject)
done
lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'"
apply (simp add: Scons_def One_nat_def)
apply (blast dest!: Push_Node_inject)
done
lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'"
apply (erule equalityE)
apply (iprover intro: equalityI Scons_inject_lemma1)
done
lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'"
apply (erule equalityE)
apply (iprover intro: equalityI Scons_inject_lemma2)
done
lemma Scons_inject:
"[| Scons M N = Scons M' N'; [| M=M'; N=N' |] ==> P |] ==> P"
by (iprover dest: Scons_inject1 Scons_inject2)
lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')"
by (blast elim!: Scons_inject)
(*** Distinctness involving Leaf and Numb ***)
(** Scons vs Leaf **)
lemma Scons_not_Leaf [iff]: "Scons M N ≠ Leaf(a)"
by (simp add: Leaf_def o_def Scons_not_Atom)
lemmas Leaf_not_Scons = Scons_not_Leaf [THEN not_sym, standard]
declare Leaf_not_Scons [iff]
(** Scons vs Numb **)
lemma Scons_not_Numb [iff]: "Scons M N ≠ Numb(k)"
by (simp add: Numb_def o_def Scons_not_Atom)
lemmas Numb_not_Scons = Scons_not_Numb [THEN not_sym, standard]
declare Numb_not_Scons [iff]
(** Leaf vs Numb **)
lemma Leaf_not_Numb [iff]: "Leaf(a) ≠ Numb(k)"
by (simp add: Leaf_def Numb_def)
lemmas Numb_not_Leaf = Leaf_not_Numb [THEN not_sym, standard]
declare Numb_not_Leaf [iff]
(*** ndepth -- the depth of a node ***)
lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0"
by (simp add: ndepth_def Node_K0_I [THEN Abs_Node_inverse] Least_equality)
lemma ndepth_Push_Node_aux:
"nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k"
apply (induct_tac "k", auto)
apply (erule Least_le)
done
lemma ndepth_Push_Node:
"ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))"
apply (insert Rep_Node [of n, unfolded Node_def])
apply (auto simp add: ndepth_def Push_Node_def
Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse])
apply (rule Least_equality)
apply (auto simp add: Push_def ndepth_Push_Node_aux)
apply (erule LeastI)
done
(*** ntrunc applied to the various node sets ***)
lemma ntrunc_0 [simp]: "ntrunc 0 M = {}"
by (simp add: ntrunc_def)
lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)"
by (auto simp add: Atom_def ntrunc_def ndepth_K0)
lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)"
by (simp add: Leaf_def o_def ntrunc_Atom)
lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)"
by (simp add: Numb_def o_def ntrunc_Atom)
lemma ntrunc_Scons [simp]:
"ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)"
by (auto simp add: Scons_def ntrunc_def One_nat_def ndepth_Push_Node)
(** Injection nodes **)
lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}"
apply (simp add: In0_def)
apply (simp add: Scons_def)
done
lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)"
by (simp add: In0_def)
lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}"
apply (simp add: In1_def)
apply (simp add: Scons_def)
done
lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)"
by (simp add: In1_def)
subsection{*Set Constructions*}
(*** Cartesian Product ***)
lemma uprodI [intro!]: "[| M:A; N:B |] ==> Scons M N : uprod A B"
by (simp add: uprod_def)
(*The general elimination rule*)
lemma uprodE [elim!]:
"[| c : uprod A B;
!!x y. [| x:A; y:B; c = Scons x y |] ==> P
|] ==> P"
by (auto simp add: uprod_def)
(*Elimination of a pair -- introduces no eigenvariables*)
lemma uprodE2: "[| Scons M N : uprod A B; [| M:A; N:B |] ==> P |] ==> P"
by (auto simp add: uprod_def)
(*** Disjoint Sum ***)
lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B"
by (simp add: usum_def)
lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B"
by (simp add: usum_def)
lemma usumE [elim!]:
"[| u : usum A B;
!!x. [| x:A; u=In0(x) |] ==> P;
!!y. [| y:B; u=In1(y) |] ==> P
|] ==> P"
by (auto simp add: usum_def)
(** Injection **)
lemma In0_not_In1 [iff]: "In0(M) ≠ In1(N)"
by (auto simp add: In0_def In1_def One_nat_def)
lemmas In1_not_In0 = In0_not_In1 [THEN not_sym, standard]
declare In1_not_In0 [iff]
lemma In0_inject: "In0(M) = In0(N) ==> M=N"
by (simp add: In0_def)
lemma In1_inject: "In1(M) = In1(N) ==> M=N"
by (simp add: In1_def)
lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)"
by (blast dest!: In0_inject)
lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)"
by (blast dest!: In1_inject)
lemma inj_In0: "inj In0"
by (blast intro!: inj_onI)
lemma inj_In1: "inj In1"
by (blast intro!: inj_onI)
(*** Function spaces ***)
lemma Lim_inject: "Lim f = Lim g ==> f = g"
apply (simp add: Lim_def)
apply (rule ext)
apply (blast elim!: Push_Node_inject)
done
(*** proving equality of sets and functions using ntrunc ***)
lemma ntrunc_subsetI: "ntrunc k M <= M"
by (auto simp add: ntrunc_def)
lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N"
by (auto simp add: ntrunc_def)
(*A generalized form of the take-lemma*)
lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N"
apply (rule equalityI)
apply (rule_tac [!] ntrunc_subsetD)
apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto)
done
lemma ntrunc_o_equality:
"[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2"
apply (rule ntrunc_equality [THEN ext])
apply (simp add: expand_fun_eq)
done
(*** Monotonicity ***)
lemma uprod_mono: "[| A<=A'; B<=B' |] ==> uprod A B <= uprod A' B'"
by (simp add: uprod_def, blast)
lemma usum_mono: "[| A<=A'; B<=B' |] ==> usum A B <= usum A' B'"
by (simp add: usum_def, blast)
lemma Scons_mono: "[| M<=M'; N<=N' |] ==> Scons M N <= Scons M' N'"
by (simp add: Scons_def, blast)
lemma In0_mono: "M<=N ==> In0(M) <= In0(N)"
by (simp add: In0_def subset_refl Scons_mono)
lemma In1_mono: "M<=N ==> In1(M) <= In1(N)"
by (simp add: In1_def subset_refl Scons_mono)
(*** Split and Case ***)
lemma Split [simp]: "Split c (Scons M N) = c M N"
by (simp add: Split_def)
lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)"
by (simp add: Case_def)
lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)"
by (simp add: Case_def)
(**** UN x. B(x) rules ****)
lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))"
by (simp add: ntrunc_def, blast)
lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)"
by (simp add: Scons_def, blast)
lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))"
by (simp add: Scons_def, blast)
lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))"
by (simp add: In0_def Scons_UN1_y)
lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))"
by (simp add: In1_def Scons_UN1_y)
(*** Equality for Cartesian Product ***)
lemma dprodI [intro!]:
"[| (M,M'):r; (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s"
by (auto simp add: dprod_def)
(*The general elimination rule*)
lemma dprodE [elim!]:
"[| c : dprod r s;
!!x y x' y'. [| (x,x') : r; (y,y') : s;
c = (Scons x y, Scons x' y') |] ==> P
|] ==> P"
by (auto simp add: dprod_def)
(*** Equality for Disjoint Sum ***)
lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s"
by (auto simp add: dsum_def)
lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s"
by (auto simp add: dsum_def)
lemma dsumE [elim!]:
"[| w : dsum r s;
!!x x'. [| (x,x') : r; w = (In0(x), In0(x')) |] ==> P;
!!y y'. [| (y,y') : s; w = (In1(y), In1(y')) |] ==> P
|] ==> P"
by (auto simp add: dsum_def)
(*** Monotonicity ***)
lemma dprod_mono: "[| r<=r'; s<=s' |] ==> dprod r s <= dprod r' s'"
by blast
lemma dsum_mono: "[| r<=r'; s<=s' |] ==> dsum r s <= dsum r' s'"
by blast
(*** Bounding theorems ***)
lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)"
by blast
lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma, standard]
(*Dependent version*)
lemma dprod_subset_Sigma2:
"(dprod (Sigma A B) (Sigma C D)) <=
Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))"
by auto
lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)"
by blast
lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma, standard]
(*** Domain ***)
lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)"
by auto
lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)"
by auto
ML
{*
val apfst_conv = thm "apfst_conv";
val apfst_convE = thm "apfst_convE";
val Push_inject1 = thm "Push_inject1";
val Push_inject2 = thm "Push_inject2";
val Push_inject = thm "Push_inject";
val Push_neq_K0 = thm "Push_neq_K0";
val Abs_Node_inj = thm "Abs_Node_inj";
val Node_K0_I = thm "Node_K0_I";
val Node_Push_I = thm "Node_Push_I";
val Scons_not_Atom = thm "Scons_not_Atom";
val Atom_not_Scons = thm "Atom_not_Scons";
val inj_Atom = thm "inj_Atom";
val Atom_inject = thm "Atom_inject";
val Atom_Atom_eq = thm "Atom_Atom_eq";
val inj_Leaf = thm "inj_Leaf";
val Leaf_inject = thm "Leaf_inject";
val inj_Numb = thm "inj_Numb";
val Numb_inject = thm "Numb_inject";
val Push_Node_inject = thm "Push_Node_inject";
val Scons_inject1 = thm "Scons_inject1";
val Scons_inject2 = thm "Scons_inject2";
val Scons_inject = thm "Scons_inject";
val Scons_Scons_eq = thm "Scons_Scons_eq";
val Scons_not_Leaf = thm "Scons_not_Leaf";
val Leaf_not_Scons = thm "Leaf_not_Scons";
val Scons_not_Numb = thm "Scons_not_Numb";
val Numb_not_Scons = thm "Numb_not_Scons";
val Leaf_not_Numb = thm "Leaf_not_Numb";
val Numb_not_Leaf = thm "Numb_not_Leaf";
val ndepth_K0 = thm "ndepth_K0";
val ndepth_Push_Node_aux = thm "ndepth_Push_Node_aux";
val ndepth_Push_Node = thm "ndepth_Push_Node";
val ntrunc_0 = thm "ntrunc_0";
val ntrunc_Atom = thm "ntrunc_Atom";
val ntrunc_Leaf = thm "ntrunc_Leaf";
val ntrunc_Numb = thm "ntrunc_Numb";
val ntrunc_Scons = thm "ntrunc_Scons";
val ntrunc_one_In0 = thm "ntrunc_one_In0";
val ntrunc_In0 = thm "ntrunc_In0";
val ntrunc_one_In1 = thm "ntrunc_one_In1";
val ntrunc_In1 = thm "ntrunc_In1";
val uprodI = thm "uprodI";
val uprodE = thm "uprodE";
val uprodE2 = thm "uprodE2";
val usum_In0I = thm "usum_In0I";
val usum_In1I = thm "usum_In1I";
val usumE = thm "usumE";
val In0_not_In1 = thm "In0_not_In1";
val In1_not_In0 = thm "In1_not_In0";
val In0_inject = thm "In0_inject";
val In1_inject = thm "In1_inject";
val In0_eq = thm "In0_eq";
val In1_eq = thm "In1_eq";
val inj_In0 = thm "inj_In0";
val inj_In1 = thm "inj_In1";
val Lim_inject = thm "Lim_inject";
val ntrunc_subsetI = thm "ntrunc_subsetI";
val ntrunc_subsetD = thm "ntrunc_subsetD";
val ntrunc_equality = thm "ntrunc_equality";
val ntrunc_o_equality = thm "ntrunc_o_equality";
val uprod_mono = thm "uprod_mono";
val usum_mono = thm "usum_mono";
val Scons_mono = thm "Scons_mono";
val In0_mono = thm "In0_mono";
val In1_mono = thm "In1_mono";
val Split = thm "Split";
val Case_In0 = thm "Case_In0";
val Case_In1 = thm "Case_In1";
val ntrunc_UN1 = thm "ntrunc_UN1";
val Scons_UN1_x = thm "Scons_UN1_x";
val Scons_UN1_y = thm "Scons_UN1_y";
val In0_UN1 = thm "In0_UN1";
val In1_UN1 = thm "In1_UN1";
val dprodI = thm "dprodI";
val dprodE = thm "dprodE";
val dsum_In0I = thm "dsum_In0I";
val dsum_In1I = thm "dsum_In1I";
val dsumE = thm "dsumE";
val dprod_mono = thm "dprod_mono";
val dsum_mono = thm "dsum_mono";
val dprod_Sigma = thm "dprod_Sigma";
val dprod_subset_Sigma = thm "dprod_subset_Sigma";
val dprod_subset_Sigma2 = thm "dprod_subset_Sigma2";
val dsum_Sigma = thm "dsum_Sigma";
val dsum_subset_Sigma = thm "dsum_subset_Sigma";
val Domain_dprod = thm "Domain_dprod";
val Domain_dsum = thm "Domain_dsum";
*}
end
lemma apfst_conv:
apfst f (a, b) = (f a, b)
lemma apfst_convE:
[| q = apfst f p; !!x y. [| p = (x, y); q = (f x, y) |] ==> R |] ==> R
lemma Push_inject1:
Push i f = Push j g ==> i = j
lemma Push_inject2:
Push i f = Push j g ==> f = g
lemma Push_inject:
[| Push i f = Push j g; [| i = j; f = g |] ==> P |] ==> P
lemma Push_neq_K0:
Push (Inr (Suc k)) f = (%z. Inr 0) ==> P
lemmas Abs_Node_inj:
[| Abs_Node x = Abs_Node y; x ∈ Node; y ∈ Node |] ==> x = y
lemmas Abs_Node_inj:
[| Abs_Node x = Abs_Node y; x ∈ Node; y ∈ Node |] ==> x = y
lemma Node_K0_I:
(%k. Inr 0, a) ∈ Node
lemma Node_Push_I:
p ∈ Node ==> apfst (Push i) p ∈ Node
lemma Scons_not_Atom:
Scons M N ≠ Atom a
lemmas Atom_not_Scons:
Atom a ≠ Scons M N
lemmas Atom_not_Scons:
Atom a ≠ Scons M N
lemma inj_Atom:
inj Atom
lemmas Atom_inject:
Atom x = Atom y ==> x = y
lemmas Atom_inject:
Atom x = Atom y ==> x = y
lemma Atom_Atom_eq:
(Atom a = Atom b) = (a = b)
lemma inj_Leaf:
inj Leaf
lemmas Leaf_inject:
Leaf x = Leaf y ==> x = y
lemmas Leaf_inject:
Leaf x = Leaf y ==> x = y
lemma inj_Numb:
inj Numb
lemmas Numb_inject:
Numb x = Numb y ==> x = y
lemmas Numb_inject:
Numb x = Numb y ==> x = y
lemma Push_Node_inject:
[| Push_Node i m = Push_Node j n; [| i = j; m = n |] ==> P |] ==> P
lemma Scons_inject_lemma1:
Scons M N ⊆ Scons M' N' ==> M ⊆ M'
lemma Scons_inject_lemma2:
Scons M N ⊆ Scons M' N' ==> N ⊆ N'
lemma Scons_inject1:
Scons M N = Scons M' N' ==> M = M'
lemma Scons_inject2:
Scons M N = Scons M' N' ==> N = N'
lemma Scons_inject:
[| Scons M N = Scons M' N'; [| M = M'; N = N' |] ==> P |] ==> P
lemma Scons_Scons_eq:
(Scons M N = Scons M' N') = (M = M' ∧ N = N')
lemma Scons_not_Leaf:
Scons M N ≠ Leaf a
lemmas Leaf_not_Scons:
Leaf a ≠ Scons M N
lemmas Leaf_not_Scons:
Leaf a ≠ Scons M N
lemma Scons_not_Numb:
Scons M N ≠ Numb k
lemmas Numb_not_Scons:
Numb k ≠ Scons M N
lemmas Numb_not_Scons:
Numb k ≠ Scons M N
lemma Leaf_not_Numb:
Leaf a ≠ Numb k
lemmas Numb_not_Leaf:
Numb k ≠ Leaf a
lemmas Numb_not_Leaf:
Numb k ≠ Leaf a
lemma ndepth_K0:
ndepth (Abs_Node (%k. Inr 0, x)) = 0
lemma ndepth_Push_Node_aux:
nat_case (Inr (Suc i)) f k = Inr 0 --> Suc (LEAST x. f x = Inr 0) ≤ k
lemma ndepth_Push_Node:
ndepth (Push_Node (Inr (Suc i)) n) = Suc (ndepth n)
lemma ntrunc_0:
ntrunc 0 M = {}
lemma ntrunc_Atom:
ntrunc (Suc k) (Atom a) = Atom a
lemma ntrunc_Leaf:
ntrunc (Suc k) (Leaf a) = Leaf a
lemma ntrunc_Numb:
ntrunc (Suc k) (Numb i) = Numb i
lemma ntrunc_Scons:
ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)
lemma ntrunc_one_In0:
ntrunc (Suc 0) (In0 M) = {}
lemma ntrunc_In0:
ntrunc (Suc (Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)
lemma ntrunc_one_In1:
ntrunc (Suc 0) (In1 M) = {}
lemma ntrunc_In1:
ntrunc (Suc (Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)
lemma uprodI:
[| M ∈ A; N ∈ B |] ==> Scons M N ∈ uprod A B
lemma uprodE:
[| c ∈ uprod A B; !!x y. [| x ∈ A; y ∈ B; c = Scons x y |] ==> P |] ==> P
lemma uprodE2:
[| Scons M N ∈ uprod A B; [| M ∈ A; N ∈ B |] ==> P |] ==> P
lemma usum_In0I:
M ∈ A ==> In0 M ∈ usum A B
lemma usum_In1I:
N ∈ B ==> In1 N ∈ usum A B
lemma usumE:
[| u ∈ usum A B; !!x. [| x ∈ A; u = In0 x |] ==> P; !!y. [| y ∈ B; u = In1 y |] ==> P |] ==> P
lemma In0_not_In1:
In0 M ≠ In1 N
lemmas In1_not_In0:
In1 N ≠ In0 M
lemmas In1_not_In0:
In1 N ≠ In0 M
lemma In0_inject:
In0 M = In0 N ==> M = N
lemma In1_inject:
In1 M = In1 N ==> M = N
lemma In0_eq:
(In0 M = In0 N) = (M = N)
lemma In1_eq:
(In1 M = In1 N) = (M = N)
lemma inj_In0:
inj In0
lemma inj_In1:
inj In1
lemma Lim_inject:
Lim f = Lim g ==> f = g
lemma ntrunc_subsetI:
ntrunc k M ⊆ M
lemma ntrunc_subsetD:
(!!k. ntrunc k M ⊆ N) ==> M ⊆ N
lemma ntrunc_equality:
(!!k. ntrunc k M = ntrunc k N) ==> M = N
lemma ntrunc_o_equality:
(!!k. ntrunc k o h1.0 = ntrunc k o h2.0) ==> h1.0 = h2.0
lemma uprod_mono:
[| A ⊆ A'; B ⊆ B' |] ==> uprod A B ⊆ uprod A' B'
lemma usum_mono:
[| A ⊆ A'; B ⊆ B' |] ==> usum A B ⊆ usum A' B'
lemma Scons_mono:
[| M ⊆ M'; N ⊆ N' |] ==> Scons M N ⊆ Scons M' N'
lemma In0_mono:
M ⊆ N ==> In0 M ⊆ In0 N
lemma In1_mono:
M ⊆ N ==> In1 M ⊆ In1 N
lemma Split:
Split c (Scons M N) = c M N
lemma Case_In0:
Case c d (In0 M) = c M
lemma Case_In1:
Case c d (In1 N) = d N
lemma ntrunc_UN1:
ntrunc k (UN x. f x) = (UN x. ntrunc k (f x))
lemma Scons_UN1_x:
Scons (UN x. f x) M = (UN x. Scons (f x) M)
lemma Scons_UN1_y:
Scons M (UN x. f x) = (UN x. Scons M (f x))
lemma In0_UN1:
In0 (UN x. f x) = (UN x. In0 (f x))
lemma In1_UN1:
In1 (UN x. f x) = (UN x. In1 (f x))
lemma dprodI:
[| (M, M') ∈ r; (N, N') ∈ s |] ==> (Scons M N, Scons M' N') ∈ dprod r s
lemma dprodE:
[| c ∈ dprod r s; !!x y x' y'. [| (x, x') ∈ r; (y, y') ∈ s; c = (Scons x y, Scons x' y') |] ==> P |] ==> P
lemma dsum_In0I:
(M, M') ∈ r ==> (In0 M, In0 M') ∈ dsum r s
lemma dsum_In1I:
(N, N') ∈ s ==> (In1 N, In1 N') ∈ dsum r s
lemma dsumE:
[| w ∈ dsum r s; !!x x'. [| (x, x') ∈ r; w = (In0 x, In0 x') |] ==> P; !!y y'. [| (y, y') ∈ s; w = (In1 y, In1 y') |] ==> P |] ==> P
lemma dprod_mono:
[| r ⊆ r'; s ⊆ s' |] ==> dprod r s ⊆ dprod r' s'
lemma dsum_mono:
[| r ⊆ r'; s ⊆ s' |] ==> dsum r s ⊆ dsum r' s'
lemma dprod_Sigma:
dprod (A × B) (C × D) ⊆ uprod A C × uprod B D
lemmas dprod_subset_Sigma:
[| r ⊆ A × B; s ⊆ C × D |] ==> dprod r s ⊆ uprod A C × uprod B D
lemmas dprod_subset_Sigma:
[| r ⊆ A × B; s ⊆ C × D |] ==> dprod r s ⊆ uprod A C × uprod B D
lemma dprod_subset_Sigma2:
dprod (Sigma A B) (Sigma C D) ⊆ Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))
lemma dsum_Sigma:
dsum (A × B) (C × D) ⊆ usum A C × usum B D
lemmas dsum_subset_Sigma:
[| r ⊆ A × B; s ⊆ C × D |] ==> dsum r s ⊆ usum A C × usum B D
lemmas dsum_subset_Sigma:
[| r ⊆ A × B; s ⊆ C × D |] ==> dsum r s ⊆ usum A C × usum B D
lemma Domain_dprod:
Domain (dprod r s) = uprod (Domain r) (Domain s)
lemma Domain_dsum:
Domain (dsum r s) = usum (Domain r) (Domain s)