Up to index of Isabelle/HOL
theory Extraction(* Title: HOL/Extraction.thy
ID: $Id: Extraction.thy,v 1.16 2005/08/31 13:46:41 wenzelm Exp $
Author: Stefan Berghofer, TU Muenchen
*)
header {* Program extraction for HOL *}
theory Extraction
imports Datatype
uses "Tools/rewrite_hol_proof.ML"
begin
subsection {* Setup *}
setup {*
let
fun realizes_set_proc (Const ("realizes", Type ("fun", [Type ("Null", []), _])) $ r $
(Const ("op :", _) $ x $ S)) = (case strip_comb S of
(Var (ixn, U), ts) => SOME (list_comb (Var (ixn, binder_types U @
[HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), ts @ [x]))
| (Free (s, U), ts) => SOME (list_comb (Free (s, binder_types U @
[HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), ts @ [x]))
| _ => NONE)
| realizes_set_proc (Const ("realizes", Type ("fun", [T, _])) $ r $
(Const ("op :", _) $ x $ S)) = (case strip_comb S of
(Var (ixn, U), ts) => SOME (list_comb (Var (ixn, T :: binder_types U @
[HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), r :: ts @ [x]))
| (Free (s, U), ts) => SOME (list_comb (Free (s, T :: binder_types U @
[HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), r :: ts @ [x]))
| _ => NONE)
| realizes_set_proc _ = NONE;
fun mk_realizes_set r rT s (setT as Type ("set", [elT])) =
Abs ("x", elT, Const ("realizes", rT --> HOLogic.boolT --> HOLogic.boolT) $
incr_boundvars 1 r $ (Const ("op :", elT --> setT --> HOLogic.boolT) $
Bound 0 $ incr_boundvars 1 s));
in
[Extraction.add_types
[("bool", ([], NONE)),
("set", ([realizes_set_proc], SOME mk_realizes_set))],
Extraction.set_preprocessor (fn thy =>
Proofterm.rewrite_proof_notypes
([], ("HOL/elim_cong", RewriteHOLProof.elim_cong) ::
ProofRewriteRules.rprocs true) o
Proofterm.rewrite_proof thy
(RewriteHOLProof.rews, ProofRewriteRules.rprocs true) o
ProofRewriteRules.elim_vars (curry Const "arbitrary"))]
end
*}
lemmas [extraction_expand] =
atomize_eq atomize_all atomize_imp
allE rev_mp conjE Eq_TrueI Eq_FalseI eqTrueI eqTrueE eq_cong2
notE' impE' impE iffE imp_cong simp_thms
induct_forall_eq induct_implies_eq induct_equal_eq
induct_forall_def induct_implies_def induct_impliesI
induct_atomize induct_rulify1 induct_rulify2
datatype sumbool = Left | Right
subsection {* Type of extracted program *}
extract_type
"typeof (Trueprop P) ≡ typeof P"
"typeof P ≡ Type (TYPE(Null)) ==> typeof Q ≡ Type (TYPE('Q)) ==>
typeof (P --> Q) ≡ Type (TYPE('Q))"
"typeof Q ≡ Type (TYPE(Null)) ==> typeof (P --> Q) ≡ Type (TYPE(Null))"
"typeof P ≡ Type (TYPE('P)) ==> typeof Q ≡ Type (TYPE('Q)) ==>
typeof (P --> Q) ≡ Type (TYPE('P => 'Q))"
"(λx. typeof (P x)) ≡ (λx. Type (TYPE(Null))) ==>
typeof (∀x. P x) ≡ Type (TYPE(Null))"
"(λx. typeof (P x)) ≡ (λx. Type (TYPE('P))) ==>
typeof (∀x::'a. P x) ≡ Type (TYPE('a => 'P))"
"(λx. typeof (P x)) ≡ (λx. Type (TYPE(Null))) ==>
typeof (∃x::'a. P x) ≡ Type (TYPE('a))"
"(λx. typeof (P x)) ≡ (λx. Type (TYPE('P))) ==>
typeof (∃x::'a. P x) ≡ Type (TYPE('a × 'P))"
"typeof P ≡ Type (TYPE(Null)) ==> typeof Q ≡ Type (TYPE(Null)) ==>
typeof (P ∨ Q) ≡ Type (TYPE(sumbool))"
"typeof P ≡ Type (TYPE(Null)) ==> typeof Q ≡ Type (TYPE('Q)) ==>
typeof (P ∨ Q) ≡ Type (TYPE('Q option))"
"typeof P ≡ Type (TYPE('P)) ==> typeof Q ≡ Type (TYPE(Null)) ==>
typeof (P ∨ Q) ≡ Type (TYPE('P option))"
"typeof P ≡ Type (TYPE('P)) ==> typeof Q ≡ Type (TYPE('Q)) ==>
typeof (P ∨ Q) ≡ Type (TYPE('P + 'Q))"
"typeof P ≡ Type (TYPE(Null)) ==> typeof Q ≡ Type (TYPE('Q)) ==>
typeof (P ∧ Q) ≡ Type (TYPE('Q))"
"typeof P ≡ Type (TYPE('P)) ==> typeof Q ≡ Type (TYPE(Null)) ==>
typeof (P ∧ Q) ≡ Type (TYPE('P))"
"typeof P ≡ Type (TYPE('P)) ==> typeof Q ≡ Type (TYPE('Q)) ==>
typeof (P ∧ Q) ≡ Type (TYPE('P × 'Q))"
"typeof (P = Q) ≡ typeof ((P --> Q) ∧ (Q --> P))"
"typeof (x ∈ P) ≡ typeof P"
subsection {* Realizability *}
realizability
"(realizes t (Trueprop P)) ≡ (Trueprop (realizes t P))"
"(typeof P) ≡ (Type (TYPE(Null))) ==>
(realizes t (P --> Q)) ≡ (realizes Null P --> realizes t Q)"
"(typeof P) ≡ (Type (TYPE('P))) ==>
(typeof Q) ≡ (Type (TYPE(Null))) ==>
(realizes t (P --> Q)) ≡ (∀x::'P. realizes x P --> realizes Null Q)"
"(realizes t (P --> Q)) ≡ (∀x. realizes x P --> realizes (t x) Q)"
"(λx. typeof (P x)) ≡ (λx. Type (TYPE(Null))) ==>
(realizes t (∀x. P x)) ≡ (∀x. realizes Null (P x))"
"(realizes t (∀x. P x)) ≡ (∀x. realizes (t x) (P x))"
"(λx. typeof (P x)) ≡ (λx. Type (TYPE(Null))) ==>
(realizes t (∃x. P x)) ≡ (realizes Null (P t))"
"(realizes t (∃x. P x)) ≡ (realizes (snd t) (P (fst t)))"
"(typeof P) ≡ (Type (TYPE(Null))) ==>
(typeof Q) ≡ (Type (TYPE(Null))) ==>
(realizes t (P ∨ Q)) ≡
(case t of Left => realizes Null P | Right => realizes Null Q)"
"(typeof P) ≡ (Type (TYPE(Null))) ==>
(realizes t (P ∨ Q)) ≡
(case t of None => realizes Null P | Some q => realizes q Q)"
"(typeof Q) ≡ (Type (TYPE(Null))) ==>
(realizes t (P ∨ Q)) ≡
(case t of None => realizes Null Q | Some p => realizes p P)"
"(realizes t (P ∨ Q)) ≡
(case t of Inl p => realizes p P | Inr q => realizes q Q)"
"(typeof P) ≡ (Type (TYPE(Null))) ==>
(realizes t (P ∧ Q)) ≡ (realizes Null P ∧ realizes t Q)"
"(typeof Q) ≡ (Type (TYPE(Null))) ==>
(realizes t (P ∧ Q)) ≡ (realizes t P ∧ realizes Null Q)"
"(realizes t (P ∧ Q)) ≡ (realizes (fst t) P ∧ realizes (snd t) Q)"
"typeof P ≡ Type (TYPE(Null)) ==>
realizes t (¬ P) ≡ ¬ realizes Null P"
"typeof P ≡ Type (TYPE('P)) ==>
realizes t (¬ P) ≡ (∀x::'P. ¬ realizes x P)"
"typeof (P::bool) ≡ Type (TYPE(Null)) ==>
typeof Q ≡ Type (TYPE(Null)) ==>
realizes t (P = Q) ≡ realizes Null P = realizes Null Q"
"(realizes t (P = Q)) ≡ (realizes t ((P --> Q) ∧ (Q --> P)))"
subsection {* Computational content of basic inference rules *}
theorem disjE_realizer:
assumes r: "case x of Inl p => P p | Inr q => Q q"
and r1: "!!p. P p ==> R (f p)" and r2: "!!q. Q q ==> R (g q)"
shows "R (case x of Inl p => f p | Inr q => g q)"
proof (cases x)
case Inl
with r show ?thesis by simp (rule r1)
next
case Inr
with r show ?thesis by simp (rule r2)
qed
theorem disjE_realizer2:
assumes r: "case x of None => P | Some q => Q q"
and r1: "P ==> R f" and r2: "!!q. Q q ==> R (g q)"
shows "R (case x of None => f | Some q => g q)"
proof (cases x)
case None
with r show ?thesis by simp (rule r1)
next
case Some
with r show ?thesis by simp (rule r2)
qed
theorem disjE_realizer3:
assumes r: "case x of Left => P | Right => Q"
and r1: "P ==> R f" and r2: "Q ==> R g"
shows "R (case x of Left => f | Right => g)"
proof (cases x)
case Left
with r show ?thesis by simp (rule r1)
next
case Right
with r show ?thesis by simp (rule r2)
qed
theorem conjI_realizer:
"P p ==> Q q ==> P (fst (p, q)) ∧ Q (snd (p, q))"
by simp
theorem exI_realizer:
"P y x ==> P (snd (x, y)) (fst (x, y))" by simp
theorem exE_realizer: "P (snd p) (fst p) ==>
(!!x y. P y x ==> Q (f x y)) ==> Q (let (x, y) = p in f x y)"
by (cases p) (simp add: Let_def)
theorem exE_realizer': "P (snd p) (fst p) ==>
(!!x y. P y x ==> Q) ==> Q" by (cases p) simp
realizers
impI (P, Q): "λpq. pq"
"Λ P Q pq (h: _). allI · _ • (Λ x. impI · _ · _ • (h · x))"
impI (P): "Null"
"Λ P Q (h: _). allI · _ • (Λ x. impI · _ · _ • (h · x))"
impI (Q): "λq. q" "Λ P Q q. impI · _ · _"
impI: "Null" "impI"
mp (P, Q): "λpq. pq"
"Λ P Q pq (h: _) p. mp · _ · _ • (spec · _ · p • h)"
mp (P): "Null"
"Λ P Q (h: _) p. mp · _ · _ • (spec · _ · p • h)"
mp (Q): "λq. q" "Λ P Q q. mp · _ · _"
mp: "Null" "mp"
allI (P): "λp. p" "Λ P p. allI · _"
allI: "Null" "allI"
spec (P): "λx p. p x" "Λ P x p. spec · _ · x"
spec: "Null" "spec"
exI (P): "λx p. (x, p)" "Λ P x p. exI_realizer · P · p · x"
exI: "λx. x" "Λ P x (h: _). h"
exE (P, Q): "λp pq. let (x, y) = p in pq x y"
"Λ P Q p (h: _) pq. exE_realizer · P · p · Q · pq • h"
exE (P): "Null"
"Λ P Q p. exE_realizer' · _ · _ · _"
exE (Q): "λx pq. pq x"
"Λ P Q x (h1: _) pq (h2: _). h2 · x • h1"
exE: "Null"
"Λ P Q x (h1: _) (h2: _). h2 · x • h1"
conjI (P, Q): "Pair"
"Λ P Q p (h: _) q. conjI_realizer · P · p · Q · q • h"
conjI (P): "λp. p"
"Λ P Q p. conjI · _ · _"
conjI (Q): "λq. q"
"Λ P Q (h: _) q. conjI · _ · _ • h"
conjI: "Null" "conjI"
conjunct1 (P, Q): "fst"
"Λ P Q pq. conjunct1 · _ · _"
conjunct1 (P): "λp. p"
"Λ P Q p. conjunct1 · _ · _"
conjunct1 (Q): "Null"
"Λ P Q q. conjunct1 · _ · _"
conjunct1: "Null" "conjunct1"
conjunct2 (P, Q): "snd"
"Λ P Q pq. conjunct2 · _ · _"
conjunct2 (P): "Null"
"Λ P Q p. conjunct2 · _ · _"
conjunct2 (Q): "λp. p"
"Λ P Q p. conjunct2 · _ · _"
conjunct2: "Null" "conjunct2"
disjI1 (P, Q): "Inl"
"Λ P Q p. iffD2 · _ · _ • (sum.cases_1 · P · _ · p)"
disjI1 (P): "Some"
"Λ P Q p. iffD2 · _ · _ • (option.cases_2 · _ · P · p)"
disjI1 (Q): "None"
"Λ P Q. iffD2 · _ · _ • (option.cases_1 · _ · _)"
disjI1: "Left"
"Λ P Q. iffD2 · _ · _ • (sumbool.cases_1 · _ · _)"
disjI2 (P, Q): "Inr"
"Λ Q P q. iffD2 · _ · _ • (sum.cases_2 · _ · Q · q)"
disjI2 (P): "None"
"Λ Q P. iffD2 · _ · _ • (option.cases_1 · _ · _)"
disjI2 (Q): "Some"
"Λ Q P q. iffD2 · _ · _ • (option.cases_2 · _ · Q · q)"
disjI2: "Right"
"Λ Q P. iffD2 · _ · _ • (sumbool.cases_2 · _ · _)"
disjE (P, Q, R): "λpq pr qr.
(case pq of Inl p => pr p | Inr q => qr q)"
"Λ P Q R pq (h1: _) pr (h2: _) qr.
disjE_realizer · _ · _ · pq · R · pr · qr • h1 • h2"
disjE (Q, R): "λpq pr qr.
(case pq of None => pr | Some q => qr q)"
"Λ P Q R pq (h1: _) pr (h2: _) qr.
disjE_realizer2 · _ · _ · pq · R · pr · qr • h1 • h2"
disjE (P, R): "λpq pr qr.
(case pq of None => qr | Some p => pr p)"
"Λ P Q R pq (h1: _) pr (h2: _) qr (h3: _).
disjE_realizer2 · _ · _ · pq · R · qr · pr • h1 • h3 • h2"
disjE (R): "λpq pr qr.
(case pq of Left => pr | Right => qr)"
"Λ P Q R pq (h1: _) pr (h2: _) qr.
disjE_realizer3 · _ · _ · pq · R · pr · qr • h1 • h2"
disjE (P, Q): "Null"
"Λ P Q R pq. disjE_realizer · _ · _ · pq · (λx. R) · _ · _"
disjE (Q): "Null"
"Λ P Q R pq. disjE_realizer2 · _ · _ · pq · (λx. R) · _ · _"
disjE (P): "Null"
"Λ P Q R pq (h1: _) (h2: _) (h3: _).
disjE_realizer2 · _ · _ · pq · (λx. R) · _ · _ • h1 • h3 • h2"
disjE: "Null"
"Λ P Q R pq. disjE_realizer3 · _ · _ · pq · (λx. R) · _ · _"
FalseE (P): "arbitrary"
"Λ P. FalseE · _"
FalseE: "Null" "FalseE"
notI (P): "Null"
"Λ P (h: _). allI · _ • (Λ x. notI · _ • (h · x))"
notI: "Null" "notI"
notE (P, R): "λp. arbitrary"
"Λ P R (h: _) p. notE · _ · _ • (spec · _ · p • h)"
notE (P): "Null"
"Λ P R (h: _) p. notE · _ · _ • (spec · _ · p • h)"
notE (R): "arbitrary"
"Λ P R. notE · _ · _"
notE: "Null" "notE"
subst (P): "λs t ps. ps"
"Λ s t P (h: _) ps. subst · s · t · P ps • h"
subst: "Null" "subst"
iffD1 (P, Q): "fst"
"Λ Q P pq (h: _) p.
mp · _ · _ • (spec · _ · p • (conjunct1 · _ · _ • h))"
iffD1 (P): "λp. p"
"Λ Q P p (h: _). mp · _ · _ • (conjunct1 · _ · _ • h)"
iffD1 (Q): "Null"
"Λ Q P q1 (h: _) q2.
mp · _ · _ • (spec · _ · q2 • (conjunct1 · _ · _ • h))"
iffD1: "Null" "iffD1"
iffD2 (P, Q): "snd"
"Λ P Q pq (h: _) q.
mp · _ · _ • (spec · _ · q • (conjunct2 · _ · _ • h))"
iffD2 (P): "λp. p"
"Λ P Q p (h: _). mp · _ · _ • (conjunct2 · _ · _ • h)"
iffD2 (Q): "Null"
"Λ P Q q1 (h: _) q2.
mp · _ · _ • (spec · _ · q2 • (conjunct2 · _ · _ • h))"
iffD2: "Null" "iffD2"
iffI (P, Q): "Pair"
"Λ P Q pq (h1 : _) qp (h2 : _). conjI_realizer ·
(λpq. ∀x. P x --> Q (pq x)) · pq ·
(λqp. ∀x. Q x --> P (qp x)) · qp •
(allI · _ • (Λ x. impI · _ · _ • (h1 · x))) •
(allI · _ • (Λ x. impI · _ · _ • (h2 · x)))"
iffI (P): "λp. p"
"Λ P Q (h1 : _) p (h2 : _). conjI · _ · _ •
(allI · _ • (Λ x. impI · _ · _ • (h1 · x))) •
(impI · _ · _ • h2)"
iffI (Q): "λq. q"
"Λ P Q q (h1 : _) (h2 : _). conjI · _ · _ •
(impI · _ · _ • h1) •
(allI · _ • (Λ x. impI · _ · _ • (h2 · x)))"
iffI: "Null" "iffI"
(*
classical: "Null"
"Λ P. classical · _"
*)
end
lemmas
(x == y) == x = y
(!!x. P x) == ∀x. P x
(A ==> B) == A --> B
[| ∀x. P x; P x ==> R |] ==> R
[| P; P --> Q |] ==> Q
[| P ∧ Q; [| P; Q |] ==> R |] ==> R
P ==> P == True
¬ P ==> P == False
P ==> P = True
P = True ==> P
u = u' ==> (t == u) == t == u'
[| ¬ P; ¬ P ==> P |] ==> R
[| P --> Q; Q ==> R; P --> Q ==> P |] ==> R
[| P --> Q; P; Q ==> R |] ==> R
[| P = Q; [| P --> Q; Q --> P |] ==> R |] ==> R
[| P = P'; P' ==> Q = Q' |] ==> (P --> Q) = (P' --> Q')
(¬ ¬ P) = P
((¬ P) = (¬ Q)) = (P = Q)
(P ≠ Q) = (P = (¬ Q))
(P ∨ ¬ P) = True
(¬ P ∨ P) = True
(x = x) = True
(¬ True) = False
(¬ False) = True
(¬ P) ≠ P
P ≠ (¬ P)
(True = P) = P
(P = True) = P
(False = P) = (¬ P)
(P = False) = (¬ P)
(True --> P) = P
(False --> P) = True
(P --> True) = True
(P --> P) = True
(P --> False) = (¬ P)
(P --> ¬ P) = (¬ P)
(P ∧ True) = P
(True ∧ P) = P
(P ∧ False) = False
(False ∧ P) = False
(P ∧ P) = P
(P ∧ P ∧ Q) = (P ∧ Q)
(P ∧ ¬ P) = False
(¬ P ∧ P) = False
(P ∨ True) = True
(True ∨ P) = True
(P ∨ False) = P
(False ∨ P) = P
(P ∨ P) = P
(P ∨ P ∨ Q) = (P ∨ Q)
(∀x. P) = P
(∃x. P) = P
∃x. x = t
∃x. t = x
(∃x. x = t ∧ P x) = P t
(∃x. t = x ∧ P x) = P t
(∀x. x = t --> P x) = P t
(∀x. t = x --> P x) = P t
(!!x. P x) == ??.HOL.induct_forall P
(A ==> B) == ??.HOL.induct_implies A B
(x == y) == ??.HOL.induct_equal x y
??.HOL.induct_forall P == ∀x. P x
??.HOL.induct_implies A B == A --> B
(A ==> B) ==> ??.HOL.induct_implies A B
(A && B) == A ∧ B
(!!x. P x) == ??.HOL.induct_forall P
(A ==> B) == ??.HOL.induct_implies A B
(x == y) == ??.HOL.induct_equal x y
??.HOL.induct_forall P == (!!x. P x)
??.HOL.induct_implies A B == (A ==> B)
??.HOL.induct_equal x y == x == y
??.HOL.induct_forall P == ∀x. P x
??.HOL.induct_implies A B == A --> B
??.HOL.induct_equal x y == x = y
??.HOL.induct_conj A B == A ∧ B
lemmas
(x == y) == x = y
(!!x. P x) == ∀x. P x
(A ==> B) == A --> B
[| ∀x. P x; P x ==> R |] ==> R
[| P; P --> Q |] ==> Q
[| P ∧ Q; [| P; Q |] ==> R |] ==> R
P ==> P == True
¬ P ==> P == False
P ==> P = True
P = True ==> P
u = u' ==> (t == u) == t == u'
[| ¬ P; ¬ P ==> P |] ==> R
[| P --> Q; Q ==> R; P --> Q ==> P |] ==> R
[| P --> Q; P; Q ==> R |] ==> R
[| P = Q; [| P --> Q; Q --> P |] ==> R |] ==> R
[| P = P'; P' ==> Q = Q' |] ==> (P --> Q) = (P' --> Q')
(¬ ¬ P) = P
((¬ P) = (¬ Q)) = (P = Q)
(P ≠ Q) = (P = (¬ Q))
(P ∨ ¬ P) = True
(¬ P ∨ P) = True
(x = x) = True
(¬ True) = False
(¬ False) = True
(¬ P) ≠ P
P ≠ (¬ P)
(True = P) = P
(P = True) = P
(False = P) = (¬ P)
(P = False) = (¬ P)
(True --> P) = P
(False --> P) = True
(P --> True) = True
(P --> P) = True
(P --> False) = (¬ P)
(P --> ¬ P) = (¬ P)
(P ∧ True) = P
(True ∧ P) = P
(P ∧ False) = False
(False ∧ P) = False
(P ∧ P) = P
(P ∧ P ∧ Q) = (P ∧ Q)
(P ∧ ¬ P) = False
(¬ P ∧ P) = False
(P ∨ True) = True
(True ∨ P) = True
(P ∨ False) = P
(False ∨ P) = P
(P ∨ P) = P
(P ∨ P ∨ Q) = (P ∨ Q)
(∀x. P) = P
(∃x. P) = P
∃x. x = t
∃x. t = x
(∃x. x = t ∧ P x) = P t
(∃x. t = x ∧ P x) = P t
(∀x. x = t --> P x) = P t
(∀x. t = x --> P x) = P t
(!!x. P x) == ??.HOL.induct_forall P
(A ==> B) == ??.HOL.induct_implies A B
(x == y) == ??.HOL.induct_equal x y
??.HOL.induct_forall P == ∀x. P x
??.HOL.induct_implies A B == A --> B
(A ==> B) ==> ??.HOL.induct_implies A B
(A && B) == A ∧ B
(!!x. P x) == ??.HOL.induct_forall P
(A ==> B) == ??.HOL.induct_implies A B
(x == y) == ??.HOL.induct_equal x y
??.HOL.induct_forall P == (!!x. P x)
??.HOL.induct_implies A B == (A ==> B)
??.HOL.induct_equal x y == x == y
??.HOL.induct_forall P == ∀x. P x
??.HOL.induct_implies A B == A --> B
??.HOL.induct_equal x y == x = y
??.HOL.induct_conj A B == A ∧ B
theorem disjE_realizer:
[| case x of Inl p => P p | Inr q => Q q; !!p. P p ==> R (f p); !!q. Q q ==> R (g q) |] ==> R (case x of Inl p => f p | Inr q => g q)
theorem disjE_realizer2:
[| case x of None => P | Some q => Q q; P ==> R f; !!q. Q q ==> R (g q) |] ==> R (case x of None => f | Some q => g q)
theorem disjE_realizer3:
[| case x of Left => P | Right => Q; P ==> R f; Q ==> R g |] ==> R (case x of Left => f | Right => g)
theorem conjI_realizer:
[| P p; Q q |] ==> P (fst (p, q)) ∧ Q (snd (p, q))
theorem exI_realizer:
P y x ==> P (snd (x, y)) (fst (x, y))
theorem exE_realizer:
[| P (snd p) (fst p); !!x y. P y x ==> Q (f x y) |] ==> Q (let (x, y) = p in f x y)
theorem exE_realizer':
[| P (snd p) (fst p); !!x y. P y x ==> Q |] ==> Q