(* Title: HOL/GCD.thy
ID: $Id: GCD.thy,v 1.1 2005/07/08 09:37:53 nipkow Exp $
Author: Christophe Tabacznyj and Lawrence C Paulson
Copyright 1996 University of Cambridge
Builds on Integ/Parity mainly because that contains recdef, which we
need, but also because we may want to include gcd on integers in here
as well in the future.
*)
header {* The Greatest Common Divisor *}
theory GCD
imports Parity
begin
text {*
See \cite{davenport92}.
\bigskip
*}
consts
gcd :: "nat × nat => nat" -- {* Euclid's algorithm *}
recdef gcd "measure ((λ(m, n). n) :: nat × nat => nat)"
"gcd (m, n) = (if n = 0 then m else gcd (n, m mod n))"
constdefs
is_gcd :: "nat => nat => nat => bool" -- {* @{term gcd} as a relation *}
"is_gcd p m n == p dvd m ∧ p dvd n ∧
(∀d. d dvd m ∧ d dvd n --> d dvd p)"
lemma gcd_induct:
"(!!m. P m 0) ==>
(!!m n. 0 < n ==> P n (m mod n) ==> P m n)
==> P (m::nat) (n::nat)"
apply (induct m n rule: gcd.induct)
apply (case_tac "n = 0")
apply simp_all
done
lemma gcd_0 [simp]: "gcd (m, 0) = m"
apply simp
done
lemma gcd_non_0: "0 < n ==> gcd (m, n) = gcd (n, m mod n)"
apply simp
done
declare gcd.simps [simp del]
lemma gcd_1 [simp]: "gcd (m, Suc 0) = 1"
apply (simp add: gcd_non_0)
done
text {*
\medskip @{term "gcd (m, n)"} divides @{text m} and @{text n}. The
conjunctions don't seem provable separately.
*}
lemma gcd_dvd1 [iff]: "gcd (m, n) dvd m"
and gcd_dvd2 [iff]: "gcd (m, n) dvd n"
apply (induct m n rule: gcd_induct)
apply (simp_all add: gcd_non_0)
apply (blast dest: dvd_mod_imp_dvd)
done
text {*
\medskip Maximality: for all @{term m}, @{term n}, @{term k}
naturals, if @{term k} divides @{term m} and @{term k} divides
@{term n} then @{term k} divides @{term "gcd (m, n)"}.
*}
lemma gcd_greatest: "k dvd m ==> k dvd n ==> k dvd gcd (m, n)"
apply (induct m n rule: gcd_induct)
apply (simp_all add: gcd_non_0 dvd_mod)
done
lemma gcd_greatest_iff [iff]: "(k dvd gcd (m, n)) = (k dvd m ∧ k dvd n)"
apply (blast intro!: gcd_greatest intro: dvd_trans)
done
lemma gcd_zero: "(gcd (m, n) = 0) = (m = 0 ∧ n = 0)"
by (simp only: dvd_0_left_iff [THEN sym] gcd_greatest_iff)
text {*
\medskip Function gcd yields the Greatest Common Divisor.
*}
lemma is_gcd: "is_gcd (gcd (m, n)) m n"
apply (simp add: is_gcd_def gcd_greatest)
done
text {*
\medskip Uniqueness of GCDs.
*}
lemma is_gcd_unique: "is_gcd m a b ==> is_gcd n a b ==> m = n"
apply (simp add: is_gcd_def)
apply (blast intro: dvd_anti_sym)
done
lemma is_gcd_dvd: "is_gcd m a b ==> k dvd a ==> k dvd b ==> k dvd m"
apply (auto simp add: is_gcd_def)
done
text {*
\medskip Commutativity
*}
lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
apply (auto simp add: is_gcd_def)
done
lemma gcd_commute: "gcd (m, n) = gcd (n, m)"
apply (rule is_gcd_unique)
apply (rule is_gcd)
apply (subst is_gcd_commute)
apply (simp add: is_gcd)
done
lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
apply (rule is_gcd_unique)
apply (rule is_gcd)
apply (simp add: is_gcd_def)
apply (blast intro: dvd_trans)
done
lemma gcd_0_left [simp]: "gcd (0, m) = m"
apply (simp add: gcd_commute [of 0])
done
lemma gcd_1_left [simp]: "gcd (Suc 0, m) = 1"
apply (simp add: gcd_commute [of "Suc 0"])
done
text {*
\medskip Multiplication laws
*}
lemma gcd_mult_distrib2: "k * gcd (m, n) = gcd (k * m, k * n)"
-- {* \cite[page 27]{davenport92} *}
apply (induct m n rule: gcd_induct)
apply simp
apply (case_tac "k = 0")
apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
done
lemma gcd_mult [simp]: "gcd (k, k * n) = k"
apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric])
done
lemma gcd_self [simp]: "gcd (k, k) = k"
apply (rule gcd_mult [of k 1, simplified])
done
lemma relprime_dvd_mult: "gcd (k, n) = 1 ==> k dvd m * n ==> k dvd m"
apply (insert gcd_mult_distrib2 [of m k n])
apply simp
apply (erule_tac t = m in ssubst)
apply simp
done
lemma relprime_dvd_mult_iff: "gcd (k, n) = 1 ==> (k dvd m * n) = (k dvd m)"
apply (blast intro: relprime_dvd_mult dvd_trans)
done
lemma gcd_mult_cancel: "gcd (k, n) = 1 ==> gcd (k * m, n) = gcd (m, n)"
apply (rule dvd_anti_sym)
apply (rule gcd_greatest)
apply (rule_tac n = k in relprime_dvd_mult)
apply (simp add: gcd_assoc)
apply (simp add: gcd_commute)
apply (simp_all add: mult_commute)
apply (blast intro: dvd_trans)
done
text {* \medskip Addition laws *}
lemma gcd_add1 [simp]: "gcd (m + n, n) = gcd (m, n)"
apply (case_tac "n = 0")
apply (simp_all add: gcd_non_0)
done
lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)"
proof -
have "gcd (m, m + n) = gcd (m + n, m)" by (rule gcd_commute)
also have "... = gcd (n + m, m)" by (simp add: add_commute)
also have "... = gcd (n, m)" by simp
also have "... = gcd (m, n)" by (rule gcd_commute)
finally show ?thesis .
qed
lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)"
apply (subst add_commute)
apply (rule gcd_add2)
done
lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)"
apply (induct k)
apply (simp_all add: add_assoc)
done
end
lemma gcd_induct:
[| !!m. P m 0; !!m n. [| 0 < n; P n (m mod n) |] ==> P m n |] ==> P m n
lemma gcd_0:
gcd (m, 0) = m
lemma gcd_non_0:
0 < n ==> gcd (m, n) = gcd (n, m mod n)
lemma gcd_1:
gcd (m, Suc 0) = 1
lemma gcd_dvd1:
gcd (m, n) dvd m
and gcd_dvd2:
gcd (m, n) dvd n
lemma gcd_greatest:
[| k dvd m; k dvd n |] ==> k dvd gcd (m, n)
lemma gcd_greatest_iff:
(k dvd gcd (m, n)) = (k dvd m ∧ k dvd n)
lemma gcd_zero:
(gcd (m, n) = 0) = (m = 0 ∧ n = 0)
lemma is_gcd:
is_gcd (gcd (m, n)) m n
lemma is_gcd_unique:
[| is_gcd m a b; is_gcd n a b |] ==> m = n
lemma is_gcd_dvd:
[| is_gcd m a b; k dvd a; k dvd b |] ==> k dvd m
lemma is_gcd_commute:
is_gcd k m n = is_gcd k n m
lemma gcd_commute:
gcd (m, n) = gcd (n, m)
lemma gcd_assoc:
gcd (gcd (k, m), n) = gcd (k, gcd (m, n))
lemma gcd_0_left:
gcd (0, m) = m
lemma gcd_1_left:
gcd (Suc 0, m) = 1
lemma gcd_mult_distrib2:
k * gcd (m, n) = gcd (k * m, k * n)
lemma gcd_mult:
gcd (k, k * n) = k
lemma gcd_self:
gcd (k, k) = k
lemma relprime_dvd_mult:
[| gcd (k, n) = 1; k dvd m * n |] ==> k dvd m
lemma relprime_dvd_mult_iff:
gcd (k, n) = 1 ==> (k dvd m * n) = (k dvd m)
lemma gcd_mult_cancel:
gcd (k, n) = 1 ==> gcd (k * m, n) = gcd (m, n)
lemma gcd_add1:
gcd (m + n, n) = gcd (m, n)
lemma gcd_add2:
gcd (m, m + n) = gcd (m, n)
lemma gcd_add2':
gcd (m, n + m) = gcd (m, n)
lemma gcd_add_mult:
gcd (m, k * m + n) = gcd (m, n)