(* Title: HOL/Algebra/Coset.thy
ID: $Id: Coset.thy,v 1.16 2005/06/17 14:13:05 haftmann Exp $
Author: Florian Kammueller, with new proofs by L C Paulson
*)
header{*Cosets and Quotient Groups*}
theory Coset imports Group Exponent begin
constdefs (structure G)
r_coset :: "[_, 'a set, 'a] => 'a set" (infixl "#>\<index>" 60)
"H #> a ≡ \<Union>h∈H. {h ⊗ a}"
l_coset :: "[_, 'a, 'a set] => 'a set" (infixl "<#\<index>" 60)
"a <# H ≡ \<Union>h∈H. {a ⊗ h}"
RCOSETS :: "[_, 'a set] => ('a set)set" ("rcosets\<index> _" [81] 80)
"rcosets H ≡ \<Union>a∈carrier G. {H #> a}"
set_mult :: "[_, 'a set ,'a set] => 'a set" (infixl "<#>\<index>" 60)
"H <#> K ≡ \<Union>h∈H. \<Union>k∈K. {h ⊗ k}"
SET_INV :: "[_,'a set] => 'a set" ("set'_inv\<index> _" [81] 80)
"set_inv H ≡ \<Union>h∈H. {inv h}"
locale normal = subgroup + group +
assumes coset_eq: "(∀x ∈ carrier G. H #> x = x <# H)"
syntax
"@normal" :: "['a set, ('a, 'b) monoid_scheme] => bool" (infixl "\<lhd>" 60)
translations
"H \<lhd> G" == "normal H G"
subsection {*Basic Properties of Cosets*}
lemma (in group) coset_mult_assoc:
"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]
==> (M #> g) #> h = M #> (g ⊗ h)"
by (force simp add: r_coset_def m_assoc)
lemma (in group) coset_mult_one [simp]: "M ⊆ carrier G ==> M #> \<one> = M"
by (force simp add: r_coset_def)
lemma (in group) coset_mult_inv1:
"[| M #> (x ⊗ (inv y)) = M; x ∈ carrier G ; y ∈ carrier G;
M ⊆ carrier G |] ==> M #> x = M #> y"
apply (erule subst [of concl: "%z. M #> x = z #> y"])
apply (simp add: coset_mult_assoc m_assoc)
done
lemma (in group) coset_mult_inv2:
"[| M #> x = M #> y; x ∈ carrier G; y ∈ carrier G; M ⊆ carrier G |]
==> M #> (x ⊗ (inv y)) = M "
apply (simp add: coset_mult_assoc [symmetric])
apply (simp add: coset_mult_assoc)
done
lemma (in group) coset_join1:
"[| H #> x = H; x ∈ carrier G; subgroup H G |] ==> x ∈ H"
apply (erule subst)
apply (simp add: r_coset_def)
apply (blast intro: l_one subgroup.one_closed sym)
done
lemma (in group) solve_equation:
"[|subgroup H G; x ∈ H; y ∈ H|] ==> ∃h∈H. y = h ⊗ x"
apply (rule bexI [of _ "y ⊗ (inv x)"])
apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc
subgroup.subset [THEN subsetD])
done
lemma (in group) repr_independence:
"[|y ∈ H #> x; x ∈ carrier G; subgroup H G|] ==> H #> x = H #> y"
by (auto simp add: r_coset_def m_assoc [symmetric]
subgroup.subset [THEN subsetD]
subgroup.m_closed solve_equation)
lemma (in group) coset_join2:
"[|x ∈ carrier G; subgroup H G; x∈H|] ==> H #> x = H"
--{*Alternative proof is to put @{term "x=\<one>"} in @{text repr_independence}.*}
by (force simp add: subgroup.m_closed r_coset_def solve_equation)
lemma (in group) r_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |] ==> H #> x ⊆ carrier G"
by (auto simp add: r_coset_def)
lemma (in group) rcosI:
"[| h ∈ H; H ⊆ carrier G; x ∈ carrier G|] ==> h ⊗ x ∈ H #> x"
by (auto simp add: r_coset_def)
lemma (in group) rcosetsI:
"[|H ⊆ carrier G; x ∈ carrier G|] ==> H #> x ∈ rcosets H"
by (auto simp add: RCOSETS_def)
text{*Really needed?*}
lemma (in group) transpose_inv:
"[| x ⊗ y = z; x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |]
==> (inv x) ⊗ z = y"
by (force simp add: m_assoc [symmetric])
lemma (in group) rcos_self: "[| x ∈ carrier G; subgroup H G |] ==> x ∈ H #> x"
apply (simp add: r_coset_def)
apply (blast intro: sym l_one subgroup.subset [THEN subsetD]
subgroup.one_closed)
done
subsection {* Normal subgroups *}
lemma normal_imp_subgroup: "H \<lhd> G ==> subgroup H G"
by (simp add: normal_def subgroup_def)
lemma (in group) normalI:
"subgroup H G ==> (∀x ∈ carrier G. H #> x = x <# H) ==> H \<lhd> G";
by (simp add: normal_def normal_axioms_def prems)
lemma (in normal) inv_op_closed1:
"[|x ∈ carrier G; h ∈ H|] ==> (inv x) ⊗ h ⊗ x ∈ H"
apply (insert coset_eq)
apply (auto simp add: l_coset_def r_coset_def)
apply (drule bspec, assumption)
apply (drule equalityD1 [THEN subsetD], blast, clarify)
apply (simp add: m_assoc)
apply (simp add: m_assoc [symmetric])
done
lemma (in normal) inv_op_closed2:
"[|x ∈ carrier G; h ∈ H|] ==> x ⊗ h ⊗ (inv x) ∈ H"
apply (subgoal_tac "inv (inv x) ⊗ h ⊗ (inv x) ∈ H")
apply (simp add: );
apply (blast intro: inv_op_closed1)
done
text{*Alternative characterization of normal subgroups*}
lemma (in group) normal_inv_iff:
"(N \<lhd> G) =
(subgroup N G & (∀x ∈ carrier G. ∀h ∈ N. x ⊗ h ⊗ (inv x) ∈ N))"
(is "_ = ?rhs")
proof
assume N: "N \<lhd> G"
show ?rhs
by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)
next
assume ?rhs
hence sg: "subgroup N G"
and closed: "!!x. x∈carrier G ==> ∀h∈N. x ⊗ h ⊗ inv x ∈ N" by auto
hence sb: "N ⊆ carrier G" by (simp add: subgroup.subset)
show "N \<lhd> G"
proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)
fix x
assume x: "x ∈ carrier G"
show "(\<Union>h∈N. {h ⊗ x}) = (\<Union>h∈N. {x ⊗ h})"
proof
show "(\<Union>h∈N. {h ⊗ x}) ⊆ (\<Union>h∈N. {x ⊗ h})"
proof clarify
fix n
assume n: "n ∈ N"
show "n ⊗ x ∈ (\<Union>h∈N. {x ⊗ h})"
proof
from closed [of "inv x"]
show "inv x ⊗ n ⊗ x ∈ N" by (simp add: x n)
show "n ⊗ x ∈ {x ⊗ (inv x ⊗ n ⊗ x)}"
by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])
qed
qed
next
show "(\<Union>h∈N. {x ⊗ h}) ⊆ (\<Union>h∈N. {h ⊗ x})"
proof clarify
fix n
assume n: "n ∈ N"
show "x ⊗ n ∈ (\<Union>h∈N. {h ⊗ x})"
proof
show "x ⊗ n ⊗ inv x ∈ N" by (simp add: x n closed)
show "x ⊗ n ∈ {x ⊗ n ⊗ inv x ⊗ x}"
by (simp add: x n m_assoc sb [THEN subsetD])
qed
qed
qed
qed
qed
subsection{*More Properties of Cosets*}
lemma (in group) lcos_m_assoc:
"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]
==> g <# (h <# M) = (g ⊗ h) <# M"
by (force simp add: l_coset_def m_assoc)
lemma (in group) lcos_mult_one: "M ⊆ carrier G ==> \<one> <# M = M"
by (force simp add: l_coset_def)
lemma (in group) l_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |] ==> x <# H ⊆ carrier G"
by (auto simp add: l_coset_def subsetD)
lemma (in group) l_coset_swap:
"[|y ∈ x <# H; x ∈ carrier G; subgroup H G|] ==> x ∈ y <# H"
proof (simp add: l_coset_def)
assume "∃h∈H. y = x ⊗ h"
and x: "x ∈ carrier G"
and sb: "subgroup H G"
then obtain h' where h': "h' ∈ H & x ⊗ h' = y" by blast
show "∃h∈H. x = y ⊗ h"
proof
show "x = y ⊗ inv h'" using h' x sb
by (auto simp add: m_assoc subgroup.subset [THEN subsetD])
show "inv h' ∈ H" using h' sb
by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed)
qed
qed
lemma (in group) l_coset_carrier:
"[| y ∈ x <# H; x ∈ carrier G; subgroup H G |] ==> y ∈ carrier G"
by (auto simp add: l_coset_def m_assoc
subgroup.subset [THEN subsetD] subgroup.m_closed)
lemma (in group) l_repr_imp_subset:
assumes y: "y ∈ x <# H" and x: "x ∈ carrier G" and sb: "subgroup H G"
shows "y <# H ⊆ x <# H"
proof -
from y
obtain h' where "h' ∈ H" "x ⊗ h' = y" by (auto simp add: l_coset_def)
thus ?thesis using x sb
by (auto simp add: l_coset_def m_assoc
subgroup.subset [THEN subsetD] subgroup.m_closed)
qed
lemma (in group) l_repr_independence:
assumes y: "y ∈ x <# H" and x: "x ∈ carrier G" and sb: "subgroup H G"
shows "x <# H = y <# H"
proof
show "x <# H ⊆ y <# H"
by (rule l_repr_imp_subset,
(blast intro: l_coset_swap l_coset_carrier y x sb)+)
show "y <# H ⊆ x <# H" by (rule l_repr_imp_subset [OF y x sb])
qed
lemma (in group) setmult_subset_G:
"[|H ⊆ carrier G; K ⊆ carrier G|] ==> H <#> K ⊆ carrier G"
by (auto simp add: set_mult_def subsetD)
lemma (in group) subgroup_mult_id: "subgroup H G ==> H <#> H = H"
apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def)
apply (rule_tac x = x in bexI)
apply (rule bexI [of _ "\<one>"])
apply (auto simp add: subgroup.m_closed subgroup.one_closed
r_one subgroup.subset [THEN subsetD])
done
subsubsection {* Set of inverses of an @{text r_coset}. *}
lemma (in normal) rcos_inv:
assumes x: "x ∈ carrier G"
shows "set_inv (H #> x) = H #> (inv x)"
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe)
fix h
assume "h ∈ H"
show "inv x ⊗ inv h ∈ (\<Union>j∈H. {j ⊗ inv x})"
proof
show "inv x ⊗ inv h ⊗ x ∈ H"
by (simp add: inv_op_closed1 prems)
show "inv x ⊗ inv h ∈ {inv x ⊗ inv h ⊗ x ⊗ inv x}"
by (simp add: prems m_assoc)
qed
next
fix h
assume "h ∈ H"
show "h ⊗ inv x ∈ (\<Union>j∈H. {inv x ⊗ inv j})"
proof
show "x ⊗ inv h ⊗ inv x ∈ H"
by (simp add: inv_op_closed2 prems)
show "h ⊗ inv x ∈ {inv x ⊗ inv (x ⊗ inv h ⊗ inv x)}"
by (simp add: prems m_assoc [symmetric] inv_mult_group)
qed
qed
subsubsection {*Theorems for @{text "<#>"} with @{text "#>"} or @{text "<#"}.*}
lemma (in group) setmult_rcos_assoc:
"[|H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G|]
==> H <#> (K #> x) = (H <#> K) #> x"
by (force simp add: r_coset_def set_mult_def m_assoc)
lemma (in group) rcos_assoc_lcos:
"[|H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G|]
==> (H #> x) <#> K = H <#> (x <# K)"
by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc)
lemma (in normal) rcos_mult_step1:
"[|x ∈ carrier G; y ∈ carrier G|]
==> (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y"
by (simp add: setmult_rcos_assoc subset
r_coset_subset_G l_coset_subset_G rcos_assoc_lcos)
lemma (in normal) rcos_mult_step2:
"[|x ∈ carrier G; y ∈ carrier G|]
==> (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y"
by (insert coset_eq, simp add: normal_def)
lemma (in normal) rcos_mult_step3:
"[|x ∈ carrier G; y ∈ carrier G|]
==> (H <#> (H #> x)) #> y = H #> (x ⊗ y)"
by (simp add: setmult_rcos_assoc coset_mult_assoc
subgroup_mult_id subset prems)
lemma (in normal) rcos_sum:
"[|x ∈ carrier G; y ∈ carrier G|]
==> (H #> x) <#> (H #> y) = H #> (x ⊗ y)"
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)
lemma (in normal) rcosets_mult_eq: "M ∈ rcosets H ==> H <#> M = M"
-- {* generalizes @{text subgroup_mult_id} *}
by (auto simp add: RCOSETS_def subset
setmult_rcos_assoc subgroup_mult_id prems)
subsubsection{*An Equivalence Relation*}
constdefs (structure G)
r_congruent :: "[('a,'b)monoid_scheme, 'a set] => ('a*'a)set"
("rcong\<index> _")
"rcong H ≡ {(x,y). x ∈ carrier G & y ∈ carrier G & inv x ⊗ y ∈ H}"
lemma (in subgroup) equiv_rcong:
includes group G
shows "equiv (carrier G) (rcong H)"
proof (intro equiv.intro)
show "refl (carrier G) (rcong H)"
by (auto simp add: r_congruent_def refl_def)
next
show "sym (rcong H)"
proof (simp add: r_congruent_def sym_def, clarify)
fix x y
assume [simp]: "x ∈ carrier G" "y ∈ carrier G"
and "inv x ⊗ y ∈ H"
hence "inv (inv x ⊗ y) ∈ H" by (simp add: m_inv_closed)
thus "inv y ⊗ x ∈ H" by (simp add: inv_mult_group)
qed
next
show "trans (rcong H)"
proof (simp add: r_congruent_def trans_def, clarify)
fix x y z
assume [simp]: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
and "inv x ⊗ y ∈ H" and "inv y ⊗ z ∈ H"
hence "(inv x ⊗ y) ⊗ (inv y ⊗ z) ∈ H" by simp
hence "inv x ⊗ (y ⊗ inv y) ⊗ z ∈ H" by (simp add: m_assoc del: r_inv)
thus "inv x ⊗ z ∈ H" by simp
qed
qed
text{*Equivalence classes of @{text rcong} correspond to left cosets.
Was there a mistake in the definitions? I'd have expected them to
correspond to right cosets.*}
(* CB: This is correct, but subtle.
We call H #> a the right coset of a relative to H. According to
Jacobson, this is what the majority of group theory literature does.
He then defines the notion of congruence relation ~ over monoids as
equivalence relation with a ~ a' & b ~ b' ==> a*b ~ a'*b'.
Our notion of right congruence induced by K: rcong K appears only in
the context where K is a normal subgroup. Jacobson doesn't name it.
But in this context left and right cosets are identical.
*)
lemma (in subgroup) l_coset_eq_rcong:
includes group G
assumes a: "a ∈ carrier G"
shows "a <# H = rcong H `` {a}"
by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a )
subsubsection{*Two distinct right cosets are disjoint*}
lemma (in group) rcos_equation:
includes subgroup H G
shows
"[|ha ⊗ a = h ⊗ b; a ∈ carrier G; b ∈ carrier G;
h ∈ H; ha ∈ H; hb ∈ H|]
==> hb ⊗ a ∈ (\<Union>h∈H. {h ⊗ b})"
apply (rule UN_I [of "hb ⊗ ((inv ha) ⊗ h)"])
apply (simp add: );
apply (simp add: m_assoc transpose_inv)
done
lemma (in group) rcos_disjoint:
includes subgroup H G
shows "[|a ∈ rcosets H; b ∈ rcosets H; a≠b|] ==> a ∩ b = {}"
apply (simp add: RCOSETS_def r_coset_def)
apply (blast intro: rcos_equation prems sym)
done
subsection {*Order of a Group and Lagrange's Theorem*}
constdefs
order :: "('a, 'b) monoid_scheme => nat"
"order S ≡ card (carrier S)"
lemma (in group) rcos_self:
includes subgroup
shows "x ∈ carrier G ==> x ∈ H #> x"
apply (simp add: r_coset_def)
apply (rule_tac x="\<one>" in bexI)
apply (auto simp add: );
done
lemma (in group) rcosets_part_G:
includes subgroup
shows "\<Union>(rcosets H) = carrier G"
apply (rule equalityI)
apply (force simp add: RCOSETS_def r_coset_def)
apply (auto simp add: RCOSETS_def intro: rcos_self prems)
done
lemma (in group) cosets_finite:
"[|c ∈ rcosets H; H ⊆ carrier G; finite (carrier G)|] ==> finite c"
apply (auto simp add: RCOSETS_def)
apply (simp add: r_coset_subset_G [THEN finite_subset])
done
text{*The next two lemmas support the proof of @{text card_cosets_equal}.*}
lemma (in group) inj_on_f:
"[|H ⊆ carrier G; a ∈ carrier G|] ==> inj_on (λy. y ⊗ inv a) (H #> a)"
apply (rule inj_onI)
apply (subgoal_tac "x ∈ carrier G & y ∈ carrier G")
prefer 2 apply (blast intro: r_coset_subset_G [THEN subsetD])
apply (simp add: subsetD)
done
lemma (in group) inj_on_g:
"[|H ⊆ carrier G; a ∈ carrier G|] ==> inj_on (λy. y ⊗ a) H"
by (force simp add: inj_on_def subsetD)
lemma (in group) card_cosets_equal:
"[|c ∈ rcosets H; H ⊆ carrier G; finite(carrier G)|]
==> card c = card H"
apply (auto simp add: RCOSETS_def)
apply (rule card_bij_eq)
apply (rule inj_on_f, assumption+)
apply (force simp add: m_assoc subsetD r_coset_def)
apply (rule inj_on_g, assumption+)
apply (force simp add: m_assoc subsetD r_coset_def)
txt{*The sets @{term "H #> a"} and @{term "H"} are finite.*}
apply (simp add: r_coset_subset_G [THEN finite_subset])
apply (blast intro: finite_subset)
done
lemma (in group) rcosets_subset_PowG:
"subgroup H G ==> rcosets H ⊆ Pow(carrier G)"
apply (simp add: RCOSETS_def)
apply (blast dest: r_coset_subset_G subgroup.subset)
done
theorem (in group) lagrange:
"[|finite(carrier G); subgroup H G|]
==> card(rcosets H) * card(H) = order(G)"
apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])
apply (subst mult_commute)
apply (rule card_partition)
apply (simp add: rcosets_subset_PowG [THEN finite_subset])
apply (simp add: rcosets_part_G)
apply (simp add: card_cosets_equal subgroup.subset)
apply (simp add: rcos_disjoint)
done
subsection {*Quotient Groups: Factorization of a Group*}
constdefs
FactGroup :: "[('a,'b) monoid_scheme, 'a set] => ('a set) monoid"
(infixl "Mod" 65)
--{*Actually defined for groups rather than monoids*}
"FactGroup G H ≡
(|carrier = rcosetsG H, mult = set_mult G, one = H|)),"
lemma (in normal) setmult_closed:
"[|K1 ∈ rcosets H; K2 ∈ rcosets H|] ==> K1 <#> K2 ∈ rcosets H"
by (auto simp add: rcos_sum RCOSETS_def)
lemma (in normal) setinv_closed:
"K ∈ rcosets H ==> set_inv K ∈ rcosets H"
by (auto simp add: rcos_inv RCOSETS_def)
lemma (in normal) rcosets_assoc:
"[|M1 ∈ rcosets H; M2 ∈ rcosets H; M3 ∈ rcosets H|]
==> M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)"
by (auto simp add: RCOSETS_def rcos_sum m_assoc)
lemma (in subgroup) subgroup_in_rcosets:
includes group G
shows "H ∈ rcosets H"
proof -
have "H #> \<one> = H"
by (rule coset_join2, auto)
then show ?thesis
by (auto simp add: RCOSETS_def)
qed
lemma (in normal) rcosets_inv_mult_group_eq:
"M ∈ rcosets H ==> set_inv M <#> M = H"
by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset prems)
theorem (in normal) factorgroup_is_group:
"group (G Mod H)"
apply (simp add: FactGroup_def)
apply (rule groupI)
apply (simp add: setmult_closed)
apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group])
apply (simp add: restrictI setmult_closed rcosets_assoc)
apply (simp add: normal_imp_subgroup
subgroup_in_rcosets rcosets_mult_eq)
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed)
done
lemma mult_FactGroup [simp]: "X ⊗(G Mod H) X' = X <#>G X'"
by (simp add: FactGroup_def)
lemma (in normal) inv_FactGroup:
"X ∈ carrier (G Mod H) ==> invG Mod H X = set_inv X"
apply (rule group.inv_equality [OF factorgroup_is_group])
apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)
done
text{*The coset map is a homomorphism from @{term G} to the quotient group
@{term "G Mod H"}*}
lemma (in normal) r_coset_hom_Mod:
"(λa. H #> a) ∈ hom G (G Mod H)"
by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum)
subsection{*The First Isomorphism Theorem*}
text{*The quotient by the kernel of a homomorphism is isomorphic to the
range of that homomorphism.*}
constdefs
kernel :: "('a, 'm) monoid_scheme => ('b, 'n) monoid_scheme =>
('a => 'b) => 'a set"
--{*the kernel of a homomorphism*}
"kernel G H h ≡ {x. x ∈ carrier G & h x = \<one>H}";
lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"
apply (rule subgroup.intro)
apply (auto simp add: kernel_def group.intro prems)
done
text{*The kernel of a homomorphism is a normal subgroup*}
lemma (in group_hom) normal_kernel: "(kernel G H h) \<lhd> G"
apply (simp add: group.normal_inv_iff subgroup_kernel group.intro prems)
apply (simp add: kernel_def)
done
lemma (in group_hom) FactGroup_nonempty:
assumes X: "X ∈ carrier (G Mod kernel G H h)"
shows "X ≠ {}"
proof -
from X
obtain g where "g ∈ carrier G"
and "X = kernel G H h #> g"
by (auto simp add: FactGroup_def RCOSETS_def)
thus ?thesis
by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)
qed
lemma (in group_hom) FactGroup_contents_mem:
assumes X: "X ∈ carrier (G Mod (kernel G H h))"
shows "contents (h`X) ∈ carrier H"
proof -
from X
obtain g where g: "g ∈ carrier G"
and "X = kernel G H h #> g"
by (auto simp add: FactGroup_def RCOSETS_def)
hence "h ` X = {h g}" by (auto simp add: kernel_def r_coset_def image_def g)
thus ?thesis by (auto simp add: g)
qed
lemma (in group_hom) FactGroup_hom:
"(λX. contents (h`X)) ∈ hom (G Mod (kernel G H h)) H"
apply (simp add: hom_def FactGroup_contents_mem normal.factorgroup_is_group [OF normal_kernel] group.axioms monoid.m_closed)
proof (simp add: hom_def funcsetI FactGroup_contents_mem, intro ballI)
fix X and X'
assume X: "X ∈ carrier (G Mod kernel G H h)"
and X': "X' ∈ carrier (G Mod kernel G H h)"
then
obtain g and g'
where "g ∈ carrier G" and "g' ∈ carrier G"
and "X = kernel G H h #> g" and "X' = kernel G H h #> g'"
by (auto simp add: FactGroup_def RCOSETS_def)
hence all: "∀x∈X. h x = h g" "∀x∈X'. h x = h g'"
and Xsub: "X ⊆ carrier G" and X'sub: "X' ⊆ carrier G"
by (force simp add: kernel_def r_coset_def image_def)+
hence "h ` (X <#> X') = {h g ⊗H h g'}" using X X'
by (auto dest!: FactGroup_nonempty
simp add: set_mult_def image_eq_UN
subsetD [OF Xsub] subsetD [OF X'sub])
thus "contents (h ` (X <#> X')) = contents (h ` X) ⊗H contents (h ` X')"
by (simp add: all image_eq_UN FactGroup_nonempty X X')
qed
text{*Lemma for the following injectivity result*}
lemma (in group_hom) FactGroup_subset:
"[|g ∈ carrier G; g' ∈ carrier G; h g = h g'|]
==> kernel G H h #> g ⊆ kernel G H h #> g'"
apply (clarsimp simp add: kernel_def r_coset_def image_def);
apply (rename_tac y)
apply (rule_tac x="y ⊗ g ⊗ inv g'" in exI)
apply (simp add: G.m_assoc);
done
lemma (in group_hom) FactGroup_inj_on:
"inj_on (λX. contents (h ` X)) (carrier (G Mod kernel G H h))"
proof (simp add: inj_on_def, clarify)
fix X and X'
assume X: "X ∈ carrier (G Mod kernel G H h)"
and X': "X' ∈ carrier (G Mod kernel G H h)"
then
obtain g and g'
where gX: "g ∈ carrier G" "g' ∈ carrier G"
"X = kernel G H h #> g" "X' = kernel G H h #> g'"
by (auto simp add: FactGroup_def RCOSETS_def)
hence all: "∀x∈X. h x = h g" "∀x∈X'. h x = h g'"
by (force simp add: kernel_def r_coset_def image_def)+
assume "contents (h ` X) = contents (h ` X')"
hence h: "h g = h g'"
by (simp add: image_eq_UN all FactGroup_nonempty X X')
show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX)
qed
text{*If the homomorphism @{term h} is onto @{term H}, then so is the
homomorphism from the quotient group*}
lemma (in group_hom) FactGroup_onto:
assumes h: "h ` carrier G = carrier H"
shows "(λX. contents (h ` X)) ` carrier (G Mod kernel G H h) = carrier H"
proof
show "(λX. contents (h ` X)) ` carrier (G Mod kernel G H h) ⊆ carrier H"
by (auto simp add: FactGroup_contents_mem)
show "carrier H ⊆ (λX. contents (h ` X)) ` carrier (G Mod kernel G H h)"
proof
fix y
assume y: "y ∈ carrier H"
with h obtain g where g: "g ∈ carrier G" "h g = y"
by (blast elim: equalityE);
hence "(\<Union>x∈kernel G H h #> g. {h x}) = {y}"
by (auto simp add: y kernel_def r_coset_def)
with g show "y ∈ (λX. contents (h ` X)) ` carrier (G Mod kernel G H h)"
by (auto intro!: bexI simp add: FactGroup_def RCOSETS_def image_eq_UN)
qed
qed
text{*If @{term h} is a homomorphism from @{term G} onto @{term H}, then the
quotient group @{term "G Mod (kernel G H h)"} is isomorphic to @{term H}.*}
theorem (in group_hom) FactGroup_iso:
"h ` carrier G = carrier H
==> (λX. contents (h`X)) ∈ (G Mod (kernel G H h)) ≅ H"
by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def
FactGroup_onto)
end
lemma coset_mult_assoc:
[| group G; M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |] ==> M #>G g #>G h = M #>G g ⊗G h
lemma coset_mult_one:
[| group G; M ⊆ carrier G |] ==> M #>G \<one>G = M
lemma coset_mult_inv1:
[| group G; M #>G x ⊗G invG y = M; x ∈ carrier G; y ∈ carrier G; M ⊆ carrier G |] ==> M #>G x = M #>G y
lemma coset_mult_inv2:
[| group G; M #>G x = M #>G y; x ∈ carrier G; y ∈ carrier G; M ⊆ carrier G |] ==> M #>G x ⊗G invG y = M
lemma coset_join1:
[| group G; H #>G x = H; x ∈ carrier G; subgroup H G |] ==> x ∈ H
lemma solve_equation:
[| group G; subgroup H G; x ∈ H; y ∈ H |] ==> ∃h∈H. y = h ⊗G x
lemma repr_independence:
[| group G; y ∈ H #>G x; x ∈ carrier G; subgroup H G |] ==> H #>G x = H #>G y
lemma coset_join2:
[| group G; x ∈ carrier G; subgroup H G; x ∈ H |] ==> H #>G x = H
lemma r_coset_subset_G:
[| group G; H ⊆ carrier G; x ∈ carrier G |] ==> H #>G x ⊆ carrier G
lemma rcosI:
[| group G; h ∈ H; H ⊆ carrier G; x ∈ carrier G |] ==> h ⊗G x ∈ H #>G x
lemma rcosetsI:
[| group G; H ⊆ carrier G; x ∈ carrier G |] ==> H #>G x ∈ rcosetsG H
lemma transpose_inv:
[| group G; x ⊗G y = z; x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==> invG x ⊗G z = y
lemma rcos_self:
[| group G; x ∈ carrier G; subgroup H G |] ==> x ∈ H #>G x
lemma normal_imp_subgroup:
H \<lhd> G ==> subgroup H G
lemma normalI:
[| group G; subgroup H G; ∀x∈carrier G. H #>G x = x <#G H |] ==> H \<lhd> G
lemma inv_op_closed1:
[| H \<lhd> G; x ∈ carrier G; h ∈ H |] ==> invG x ⊗G h ⊗G x ∈ H
lemma inv_op_closed2:
[| H \<lhd> G; x ∈ carrier G; h ∈ H |] ==> x ⊗G h ⊗G invG x ∈ H
lemma normal_inv_iff:
group G ==> N \<lhd> G = (subgroup N G ∧ (∀x∈carrier G. ∀h∈N. x ⊗G h ⊗G invG x ∈ N))
lemma lcos_m_assoc:
[| group G; M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |] ==> g <#G (h <#G M) = g ⊗G h <#G M
lemma lcos_mult_one:
[| group G; M ⊆ carrier G |] ==> \<one>G <#G M = M
lemma l_coset_subset_G:
[| group G; H ⊆ carrier G; x ∈ carrier G |] ==> x <#G H ⊆ carrier G
lemma l_coset_swap:
[| group G; y ∈ x <#G H; x ∈ carrier G; subgroup H G |] ==> x ∈ y <#G H
lemma l_coset_carrier:
[| group G; y ∈ x <#G H; x ∈ carrier G; subgroup H G |] ==> y ∈ carrier G
lemma l_repr_imp_subset:
[| group G; y ∈ x <#G H; x ∈ carrier G; subgroup H G |] ==> y <#G H ⊆ x <#G H
lemma l_repr_independence:
[| group G; y ∈ x <#G H; x ∈ carrier G; subgroup H G |] ==> x <#G H = y <#G H
lemma setmult_subset_G:
[| group G; H ⊆ carrier G; K ⊆ carrier G |] ==> H <#>G K ⊆ carrier G
lemma subgroup_mult_id:
[| group G; subgroup H G |] ==> H <#>G H = H
lemma rcos_inv:
[| H \<lhd> G; x ∈ carrier G |] ==> set_invG (H #>G x) = H #>G invG x
lemma setmult_rcos_assoc:
[| group G; H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G |] ==> H <#>G (K #>G x) = H <#>G K #>G x
lemma rcos_assoc_lcos:
[| group G; H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G |] ==> H #>G x <#>G K = H <#>G (x <#G K)
lemma rcos_mult_step1:
[| H \<lhd> G; x ∈ carrier G; y ∈ carrier G |] ==> H #>G x <#>G (H #>G y) = H <#>G (x <#G H) #>G y
lemma rcos_mult_step2:
[| H \<lhd> G; x ∈ carrier G; y ∈ carrier G |] ==> H <#>G (x <#G H) #>G y = H <#>G (H #>G x) #>G y
lemma rcos_mult_step3:
[| H \<lhd> G; x ∈ carrier G; y ∈ carrier G |] ==> H <#>G (H #>G x) #>G y = H #>G x ⊗G y
lemma rcos_sum:
[| H \<lhd> G; x ∈ carrier G; y ∈ carrier G |] ==> H #>G x <#>G (H #>G y) = H #>G x ⊗G y
lemma rcosets_mult_eq:
[| H \<lhd> G; M ∈ rcosetsG H |] ==> H <#>G M = M
lemma equiv_rcong:
[| subgroup H G; group G |] ==> equiv (carrier G) rcongG H
lemma l_coset_eq_rcong:
[| subgroup H G; group G; a ∈ carrier G |] ==> a <#G H = rcongG H `` {a}
lemma rcos_equation:
[| group G; subgroup H G; ha ⊗G a = h ⊗G b; a ∈ carrier G; b ∈ carrier G; h ∈ H; ha ∈ H; hb ∈ H |] ==> hb ⊗G a ∈ (UN h:H. {h ⊗G b})
lemma rcos_disjoint:
[| group G; subgroup H G; a ∈ rcosetsG H; b ∈ rcosetsG H; a ≠ b |] ==> a ∩ b = {}
lemma rcos_self:
[| group G; subgroup H G; x ∈ carrier G |] ==> x ∈ H #>G x
lemma rcosets_part_G:
[| group G; subgroup H G |] ==> Union (rcosetsG H) = carrier G
lemma cosets_finite:
[| group G; c ∈ rcosetsG H; H ⊆ carrier G; finite (carrier G) |] ==> finite c
lemma inj_on_f:
[| group G; H ⊆ carrier G; a ∈ carrier G |] ==> inj_on (%y. y ⊗G invG a) (H #>G a)
lemma inj_on_g:
[| group G; H ⊆ carrier G; a ∈ carrier G |] ==> inj_on (%y. y ⊗G a) H
lemma card_cosets_equal:
[| group G; c ∈ rcosetsG H; H ⊆ carrier G; finite (carrier G) |] ==> card c = card H
lemma rcosets_subset_PowG:
[| group G; subgroup H G |] ==> rcosetsG H ⊆ Pow (carrier G)
theorem lagrange:
[| group G; finite (carrier G); subgroup H G |] ==> card (rcosetsG H) * card H = order G
lemma setmult_closed:
[| H \<lhd> G; K1.0 ∈ rcosetsG H; K2.0 ∈ rcosetsG H |] ==> K1.0 <#>G K2.0 ∈ rcosetsG H
lemma setinv_closed:
[| H \<lhd> G; K ∈ rcosetsG H |] ==> set_invG K ∈ rcosetsG H
lemma rcosets_assoc:
[| H \<lhd> G; M1.0 ∈ rcosetsG H; M2.0 ∈ rcosetsG H; M3.0 ∈ rcosetsG H |] ==> M1.0 <#>G M2.0 <#>G M3.0 = M1.0 <#>G (M2.0 <#>G M3.0)
lemma subgroup_in_rcosets:
[| subgroup H G; group G |] ==> H ∈ rcosetsG H
lemma rcosets_inv_mult_group_eq:
[| H \<lhd> G; M ∈ rcosetsG H |] ==> set_invG M <#>G M = H
theorem factorgroup_is_group:
H \<lhd> G ==> group (G Mod H)
lemma mult_FactGroup:
X ⊗G Mod H X' = X <#>G X'
lemma inv_FactGroup:
[| H \<lhd> G; X ∈ carrier (G Mod H) |] ==> invG Mod H X = set_invG X
lemma r_coset_hom_Mod:
H \<lhd> G ==> op #>G H ∈ hom G (G Mod H)
lemma subgroup_kernel:
group_hom G H h ==> subgroup (kernel G H h) G
lemma normal_kernel:
group_hom G H h ==> kernel G H h \<lhd> G
lemma FactGroup_nonempty:
[| group_hom G H h; X ∈ carrier (G Mod kernel G H h) |] ==> X ≠ {}
lemma FactGroup_contents_mem:
[| group_hom G H h; X ∈ carrier (G Mod kernel G H h) |] ==> contents (h ` X) ∈ carrier H
lemma FactGroup_hom:
group_hom G H h ==> (%X. contents (h ` X)) ∈ hom (G Mod kernel G H h) H
lemma FactGroup_subset:
[| group_hom G H h; g ∈ carrier G; g' ∈ carrier G; h g = h g' |] ==> kernel G H h #>G g ⊆ kernel G H h #>G g'
lemma FactGroup_inj_on:
group_hom G H h ==> inj_on (%X. contents (h ` X)) (carrier (G Mod kernel G H h))
lemma FactGroup_onto:
[| group_hom G H h; h ` carrier G = carrier H |] ==> (%X. contents (h ` X)) ` carrier (G Mod kernel G H h) = carrier H
theorem FactGroup_iso:
[| group_hom G H h; h ` carrier G = carrier H |] ==> (%X. contents (h ` X)) ∈ G Mod kernel G H h ≅ H