Up to index of Isabelle/HOL/HOL-Complex/HOL-Complex-Matrix
theory Matrix(* Title: HOL/Matrix/Matrix.thy
ID: $Id: Matrix.thy,v 1.11 2005/07/07 10:39:56 nipkow Exp $
Author: Steven Obua
*)
theory Matrix=MatrixGeneral:
instance matrix :: (minus) minus
by intro_classes
instance matrix :: (plus) plus
by (intro_classes)
instance matrix :: ("{plus,times}") times
by (intro_classes)
defs (overloaded)
plus_matrix_def: "A + B == combine_matrix (op +) A B"
diff_matrix_def: "A - B == combine_matrix (op -) A B"
minus_matrix_def: "- A == apply_matrix uminus A"
times_matrix_def: "A * B == mult_matrix (op *) (op +) A B"
lemma is_meet_combine_matrix_meet: "is_meet (combine_matrix meet)"
by (simp_all add: is_meet_def le_matrix_def meet_left_le meet_right_le meet_imp_le)
lemma is_join_combine_matrix_join: "is_join (combine_matrix join)"
by (simp_all add: is_join_def le_matrix_def join_left_le join_right_le join_imp_le)
instance matrix :: (lordered_ab_group) lordered_ab_group_meet
proof
fix A B C :: "('a::lordered_ab_group) matrix"
show "A + B + C = A + (B + C)"
apply (simp add: plus_matrix_def)
apply (rule combine_matrix_assoc[simplified associative_def, THEN spec, THEN spec, THEN spec])
apply (simp_all add: add_assoc)
done
show "A + B = B + A"
apply (simp add: plus_matrix_def)
apply (rule combine_matrix_commute[simplified commutative_def, THEN spec, THEN spec])
apply (simp_all add: add_commute)
done
show "0 + A = A"
apply (simp add: plus_matrix_def)
apply (rule combine_matrix_zero_l_neutral[simplified zero_l_neutral_def, THEN spec])
apply (simp)
done
show "- A + A = 0"
by (simp add: plus_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext)
show "A - B = A + - B"
by (simp add: plus_matrix_def diff_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext)
show "∃m::'a matrix => 'a matrix => 'a matrix. is_meet m"
by (auto intro: is_meet_combine_matrix_meet)
assume "A <= B"
then show "C + A <= C + B"
apply (simp add: plus_matrix_def)
apply (rule le_left_combine_matrix)
apply (simp_all)
done
qed
defs (overloaded)
abs_matrix_def: "abs (A::('a::lordered_ab_group) matrix) == join A (- A)"
instance matrix :: (lordered_ring) lordered_ring
proof
fix A B C :: "('a :: lordered_ring) matrix"
show "A * B * C = A * (B * C)"
apply (simp add: times_matrix_def)
apply (rule mult_matrix_assoc)
apply (simp_all add: associative_def ring_eq_simps)
done
show "(A + B) * C = A * C + B * C"
apply (simp add: times_matrix_def plus_matrix_def)
apply (rule l_distributive_matrix[simplified l_distributive_def, THEN spec, THEN spec, THEN spec])
apply (simp_all add: associative_def commutative_def ring_eq_simps)
done
show "A * (B + C) = A * B + A * C"
apply (simp add: times_matrix_def plus_matrix_def)
apply (rule r_distributive_matrix[simplified r_distributive_def, THEN spec, THEN spec, THEN spec])
apply (simp_all add: associative_def commutative_def ring_eq_simps)
done
show "abs A = join A (-A)"
by (simp add: abs_matrix_def)
assume a: "A ≤ B"
assume b: "0 ≤ C"
from a b show "C * A ≤ C * B"
apply (simp add: times_matrix_def)
apply (rule le_left_mult)
apply (simp_all add: add_mono mult_left_mono)
done
from a b show "A * C ≤ B * C"
apply (simp add: times_matrix_def)
apply (rule le_right_mult)
apply (simp_all add: add_mono mult_right_mono)
done
qed
lemma Rep_matrix_add[simp]: "Rep_matrix ((a::('a::lordered_ab_group)matrix)+b) j i = (Rep_matrix a j i) + (Rep_matrix b j i)"
by (simp add: plus_matrix_def)
lemma Rep_matrix_mult: "Rep_matrix ((a::('a::lordered_ring) matrix) * b) j i =
foldseq (op +) (% k. (Rep_matrix a j k) * (Rep_matrix b k i)) (max (ncols a) (nrows b))"
apply (simp add: times_matrix_def)
apply (simp add: Rep_mult_matrix)
done
lemma apply_matrix_add: "! x y. f (x+y) = (f x) + (f y) ==> f 0 = (0::'a) ==> apply_matrix f ((a::('a::lordered_ab_group) matrix) + b) = (apply_matrix f a) + (apply_matrix f b)"
apply (subst Rep_matrix_inject[symmetric])
apply (rule ext)+
apply (simp)
done
lemma singleton_matrix_add: "singleton_matrix j i ((a::_::lordered_ab_group)+b) = (singleton_matrix j i a) + (singleton_matrix j i b)"
apply (subst Rep_matrix_inject[symmetric])
apply (rule ext)+
apply (simp)
done
lemma nrows_mult: "nrows ((A::('a::lordered_ring) matrix) * B) <= nrows A"
by (simp add: times_matrix_def mult_nrows)
lemma ncols_mult: "ncols ((A::('a::lordered_ring) matrix) * B) <= ncols B"
by (simp add: times_matrix_def mult_ncols)
constdefs
one_matrix :: "nat => ('a::{zero,one}) matrix"
"one_matrix n == Abs_matrix (% j i. if j = i & j < n then 1 else 0)"
lemma Rep_one_matrix[simp]: "Rep_matrix (one_matrix n) j i = (if (j = i & j < n) then 1 else 0)"
apply (simp add: one_matrix_def)
apply (simplesubst RepAbs_matrix)
apply (rule exI[of _ n], simp add: split_if)+
by (simp add: split_if)
lemma nrows_one_matrix[simp]: "nrows ((one_matrix n) :: ('a::axclass_0_neq_1)matrix) = n" (is "?r = _")
proof -
have "?r <= n" by (simp add: nrows_le)
moreover have "n <= ?r" by (simp add:le_nrows, arith)
ultimately show "?r = n" by simp
qed
lemma ncols_one_matrix[simp]: "ncols ((one_matrix n) :: ('a::axclass_0_neq_1)matrix) = n" (is "?r = _")
proof -
have "?r <= n" by (simp add: ncols_le)
moreover have "n <= ?r" by (simp add: le_ncols, arith)
ultimately show "?r = n" by simp
qed
lemma one_matrix_mult_right[simp]: "ncols A <= n ==> (A::('a::{lordered_ring,ring_1}) matrix) * (one_matrix n) = A"
apply (subst Rep_matrix_inject[THEN sym])
apply (rule ext)+
apply (simp add: times_matrix_def Rep_mult_matrix)
apply (rule_tac j1="xa" in ssubst[OF foldseq_almostzero])
apply (simp_all)
by (simp add: max_def ncols)
lemma one_matrix_mult_left[simp]: "nrows A <= n ==> (one_matrix n) * A = (A::('a::{lordered_ring, ring_1}) matrix)"
apply (subst Rep_matrix_inject[THEN sym])
apply (rule ext)+
apply (simp add: times_matrix_def Rep_mult_matrix)
apply (rule_tac j1="x" in ssubst[OF foldseq_almostzero])
apply (simp_all)
by (simp add: max_def nrows)
lemma transpose_matrix_mult: "transpose_matrix ((A::('a::{lordered_ring,comm_ring}) matrix)*B) = (transpose_matrix B) * (transpose_matrix A)"
apply (simp add: times_matrix_def)
apply (subst transpose_mult_matrix)
apply (simp_all add: mult_commute)
done
lemma transpose_matrix_add: "transpose_matrix ((A::('a::lordered_ab_group) matrix)+B) = transpose_matrix A + transpose_matrix B"
by (simp add: plus_matrix_def transpose_combine_matrix)
lemma transpose_matrix_diff: "transpose_matrix ((A::('a::lordered_ab_group) matrix)-B) = transpose_matrix A - transpose_matrix B"
by (simp add: diff_matrix_def transpose_combine_matrix)
lemma transpose_matrix_minus: "transpose_matrix (-(A::('a::lordered_ring) matrix)) = - transpose_matrix (A::('a::lordered_ring) matrix)"
by (simp add: minus_matrix_def transpose_apply_matrix)
constdefs
right_inverse_matrix :: "('a::{lordered_ring, ring_1}) matrix => 'a matrix => bool"
"right_inverse_matrix A X == (A * X = one_matrix (max (nrows A) (ncols X))) ∧ nrows X ≤ ncols A"
left_inverse_matrix :: "('a::{lordered_ring, ring_1}) matrix => 'a matrix => bool"
"left_inverse_matrix A X == (X * A = one_matrix (max(nrows X) (ncols A))) ∧ ncols X ≤ nrows A"
inverse_matrix :: "('a::{lordered_ring, ring_1}) matrix => 'a matrix => bool"
"inverse_matrix A X == (right_inverse_matrix A X) ∧ (left_inverse_matrix A X)"
lemma right_inverse_matrix_dim: "right_inverse_matrix A X ==> nrows A = ncols X"
apply (insert ncols_mult[of A X], insert nrows_mult[of A X])
by (simp add: right_inverse_matrix_def)
lemma left_inverse_matrix_dim: "left_inverse_matrix A Y ==> ncols A = nrows Y"
apply (insert ncols_mult[of Y A], insert nrows_mult[of Y A])
by (simp add: left_inverse_matrix_def)
lemma left_right_inverse_matrix_unique:
assumes "left_inverse_matrix A Y" "right_inverse_matrix A X"
shows "X = Y"
proof -
have "Y = Y * one_matrix (nrows A)"
apply (subst one_matrix_mult_right)
apply (insert prems)
by (simp_all add: left_inverse_matrix_def)
also have "… = Y * (A * X)"
apply (insert prems)
apply (frule right_inverse_matrix_dim)
by (simp add: right_inverse_matrix_def)
also have "… = (Y * A) * X" by (simp add: mult_assoc)
also have "… = X"
apply (insert prems)
apply (frule left_inverse_matrix_dim)
apply (simp_all add: left_inverse_matrix_def right_inverse_matrix_def one_matrix_mult_left)
done
ultimately show "X = Y" by (simp)
qed
lemma inverse_matrix_inject: "[| inverse_matrix A X; inverse_matrix A Y |] ==> X = Y"
by (auto simp add: inverse_matrix_def left_right_inverse_matrix_unique)
lemma one_matrix_inverse: "inverse_matrix (one_matrix n) (one_matrix n)"
by (simp add: inverse_matrix_def left_inverse_matrix_def right_inverse_matrix_def)
lemma zero_imp_mult_zero: "(a::'a::ring) = 0 | b = 0 ==> a * b = 0"
by auto
lemma Rep_matrix_zero_imp_mult_zero:
"! j i k. (Rep_matrix A j k = 0) | (Rep_matrix B k i) = 0 ==> A * B = (0::('a::lordered_ring) matrix)"
apply (subst Rep_matrix_inject[symmetric])
apply (rule ext)+
apply (auto simp add: Rep_matrix_mult foldseq_zero zero_imp_mult_zero)
done
lemma add_nrows: "nrows (A::('a::comm_monoid_add) matrix) <= u ==> nrows B <= u ==> nrows (A + B) <= u"
apply (simp add: plus_matrix_def)
apply (rule combine_nrows)
apply (simp_all)
done
lemma move_matrix_row_mult: "move_matrix ((A::('a::lordered_ring) matrix) * B) j 0 = (move_matrix A j 0) * B"
apply (subst Rep_matrix_inject[symmetric])
apply (rule ext)+
apply (auto simp add: Rep_matrix_mult foldseq_zero)
apply (rule_tac foldseq_zerotail[symmetric])
apply (auto simp add: nrows zero_imp_mult_zero max2)
apply (rule order_trans)
apply (rule ncols_move_matrix_le)
apply (simp add: max1)
done
lemma move_matrix_col_mult: "move_matrix ((A::('a::lordered_ring) matrix) * B) 0 i = A * (move_matrix B 0 i)"
apply (subst Rep_matrix_inject[symmetric])
apply (rule ext)+
apply (auto simp add: Rep_matrix_mult foldseq_zero)
apply (rule_tac foldseq_zerotail[symmetric])
apply (auto simp add: ncols zero_imp_mult_zero max1)
apply (rule order_trans)
apply (rule nrows_move_matrix_le)
apply (simp add: max2)
done
lemma move_matrix_add: "((move_matrix (A + B) j i)::(('a::lordered_ab_group) matrix)) = (move_matrix A j i) + (move_matrix B j i)"
apply (subst Rep_matrix_inject[symmetric])
apply (rule ext)+
apply (simp)
done
lemma move_matrix_mult: "move_matrix ((A::('a::lordered_ring) matrix)*B) j i = (move_matrix A j 0) * (move_matrix B 0 i)"
by (simp add: move_matrix_ortho[of "A*B"] move_matrix_col_mult move_matrix_row_mult)
constdefs
scalar_mult :: "('a::lordered_ring) => 'a matrix => 'a matrix"
"scalar_mult a m == apply_matrix (op * a) m"
lemma scalar_mult_zero[simp]: "scalar_mult y 0 = 0"
by (simp add: scalar_mult_def)
lemma scalar_mult_add: "scalar_mult y (a+b) = (scalar_mult y a) + (scalar_mult y b)"
by (simp add: scalar_mult_def apply_matrix_add ring_eq_simps)
lemma Rep_scalar_mult[simp]: "Rep_matrix (scalar_mult y a) j i = y * (Rep_matrix a j i)"
by (simp add: scalar_mult_def)
lemma scalar_mult_singleton[simp]: "scalar_mult y (singleton_matrix j i x) = singleton_matrix j i (y * x)"
apply (subst Rep_matrix_inject[symmetric])
apply (rule ext)+
apply (auto)
done
lemma Rep_minus[simp]: "Rep_matrix (-(A::_::lordered_ab_group)) x y = - (Rep_matrix A x y)"
by (simp add: minus_matrix_def)
lemma join_matrix: "join (A::('a::lordered_ring) matrix) B = combine_matrix join A B"
apply (insert join_unique[of "(combine_matrix join)::('a matrix => 'a matrix => 'a matrix)", simplified is_join_combine_matrix_join])
apply (simp)
done
lemma meet_matrix: "meet (A::('a::lordered_ring) matrix) B = combine_matrix meet A B"
apply (insert meet_unique[of "(combine_matrix meet)::('a matrix => 'a matrix => 'a matrix)", simplified is_meet_combine_matrix_meet])
apply (simp)
done
lemma Rep_abs[simp]: "Rep_matrix (abs (A::_::lordered_ring)) x y = abs (Rep_matrix A x y)"
by (simp add: abs_lattice join_matrix)
end
lemma is_meet_combine_matrix_meet:
is_meet (combine_matrix meet)
lemma is_join_combine_matrix_join:
is_join (combine_matrix join)
lemma Rep_matrix_add:
Rep_matrix (a + b) j i = Rep_matrix a j i + Rep_matrix b j i
lemma Rep_matrix_mult:
Rep_matrix (a * b) j i = foldseq op + (%k. Rep_matrix a j k * Rep_matrix b k i) (max (ncols a) (nrows b))
lemma apply_matrix_add:
[| ∀x y. f (x + y) = f x + f y; f (0::'a) = (0::'a) |] ==> apply_matrix f (a + b) = apply_matrix f a + apply_matrix f b
lemma singleton_matrix_add:
singleton_matrix j i (a + b) = singleton_matrix j i a + singleton_matrix j i b
lemma nrows_mult:
nrows (A * B) ≤ nrows A
lemma ncols_mult:
ncols (A * B) ≤ ncols B
lemma Rep_one_matrix:
Rep_matrix (one_matrix n) j i = (if j = i ∧ j < n then 1::'a else 0::'a)
lemma nrows_one_matrix:
nrows (one_matrix n) = n
lemma ncols_one_matrix:
ncols (one_matrix n) = n
lemma one_matrix_mult_right:
ncols A ≤ n ==> A * one_matrix n = A
lemma one_matrix_mult_left:
nrows A ≤ n ==> one_matrix n * A = A
lemma transpose_matrix_mult:
transpose_matrix (A * B) = transpose_matrix B * transpose_matrix A
lemma transpose_matrix_add:
transpose_matrix (A + B) = transpose_matrix A + transpose_matrix B
lemma transpose_matrix_diff:
transpose_matrix (A - B) = transpose_matrix A - transpose_matrix B
lemma transpose_matrix_minus:
transpose_matrix (- A) = - transpose_matrix A
lemma right_inverse_matrix_dim:
right_inverse_matrix A X ==> nrows A = ncols X
lemma left_inverse_matrix_dim:
left_inverse_matrix A Y ==> ncols A = nrows Y
lemma left_right_inverse_matrix_unique:
[| left_inverse_matrix A Y; right_inverse_matrix A X |] ==> X = Y
lemma inverse_matrix_inject:
[| inverse_matrix A X; inverse_matrix A Y |] ==> X = Y
lemma one_matrix_inverse:
inverse_matrix (one_matrix n) (one_matrix n)
lemma zero_imp_mult_zero:
a = (0::'a) ∨ b = (0::'a) ==> a * b = (0::'a)
lemma Rep_matrix_zero_imp_mult_zero:
∀j i k. Rep_matrix A j k = (0::'a) ∨ Rep_matrix B k i = (0::'a) ==> A * B = 0
lemma add_nrows:
[| nrows A ≤ u; nrows B ≤ u |] ==> nrows (A + B) ≤ u
lemma move_matrix_row_mult:
move_matrix (A * B) j 0 = move_matrix A j 0 * B
lemma move_matrix_col_mult:
move_matrix (A * B) 0 i = A * move_matrix B 0 i
lemma move_matrix_add:
move_matrix (A + B) j i = move_matrix A j i + move_matrix B j i
lemma move_matrix_mult:
move_matrix (A * B) j i = move_matrix A j 0 * move_matrix B 0 i
lemma scalar_mult_zero:
scalar_mult y 0 = 0
lemma scalar_mult_add:
scalar_mult y (a + b) = scalar_mult y a + scalar_mult y b
lemma Rep_scalar_mult:
Rep_matrix (scalar_mult y a) j i = y * Rep_matrix a j i
lemma scalar_mult_singleton:
scalar_mult y (singleton_matrix j i x) = singleton_matrix j i (y * x)
lemma Rep_minus:
Rep_matrix (- A) x y = - Rep_matrix A x y
lemma join_matrix:
join A B = combine_matrix join A B
lemma meet_matrix:
meet A B = combine_matrix meet A B
lemma Rep_abs:
Rep_matrix ¦A¦ x y = ¦Rep_matrix A x y¦