Up to index of Isabelle/HOL/HOL-Complex/HOL4
theory HOL4Base(* AUTOMATICALLY GENERATED, DO NOT EDIT! *)
theory HOL4Base imports "../HOL4Compat" "../HOL4Syntax" begin
;setup_theory bool
constdefs
ARB :: "'a"
"ARB == SOME x::'a::type. True"
lemma ARB_DEF: "ARB = (SOME x::'a::type. True)"
by (import bool ARB_DEF)
constdefs
IN :: "'a => ('a => bool) => bool"
"IN == %(x::'a::type) f::'a::type => bool. f x"
lemma IN_DEF: "IN = (%(x::'a::type) f::'a::type => bool. f x)"
by (import bool IN_DEF)
constdefs
RES_FORALL :: "('a => bool) => ('a => bool) => bool"
"RES_FORALL ==
%(p::'a::type => bool) m::'a::type => bool. ALL x::'a::type. IN x p --> m x"
lemma RES_FORALL_DEF: "RES_FORALL =
(%(p::'a::type => bool) m::'a::type => bool.
ALL x::'a::type. IN x p --> m x)"
by (import bool RES_FORALL_DEF)
constdefs
RES_EXISTS :: "('a => bool) => ('a => bool) => bool"
"RES_EXISTS ==
%(p::'a::type => bool) m::'a::type => bool. EX x::'a::type. IN x p & m x"
lemma RES_EXISTS_DEF: "RES_EXISTS =
(%(p::'a::type => bool) m::'a::type => bool. EX x::'a::type. IN x p & m x)"
by (import bool RES_EXISTS_DEF)
constdefs
RES_EXISTS_UNIQUE :: "('a => bool) => ('a => bool) => bool"
"RES_EXISTS_UNIQUE ==
%(p::'a::type => bool) m::'a::type => bool.
RES_EXISTS p m &
RES_FORALL p
(%x::'a::type. RES_FORALL p (%y::'a::type. m x & m y --> x = y))"
lemma RES_EXISTS_UNIQUE_DEF: "RES_EXISTS_UNIQUE =
(%(p::'a::type => bool) m::'a::type => bool.
RES_EXISTS p m &
RES_FORALL p
(%x::'a::type. RES_FORALL p (%y::'a::type. m x & m y --> x = y)))"
by (import bool RES_EXISTS_UNIQUE_DEF)
constdefs
RES_SELECT :: "('a => bool) => ('a => bool) => 'a"
"RES_SELECT ==
%(p::'a::type => bool) m::'a::type => bool. SOME x::'a::type. IN x p & m x"
lemma RES_SELECT_DEF: "RES_SELECT =
(%(p::'a::type => bool) m::'a::type => bool. SOME x::'a::type. IN x p & m x)"
by (import bool RES_SELECT_DEF)
lemma EXCLUDED_MIDDLE: "ALL t::bool. t | ~ t"
by (import bool EXCLUDED_MIDDLE)
lemma FORALL_THM: "All (f::'a::type => bool) = All f"
by (import bool FORALL_THM)
lemma EXISTS_THM: "Ex (f::'a::type => bool) = Ex f"
by (import bool EXISTS_THM)
lemma F_IMP: "ALL t::bool. ~ t --> t --> False"
by (import bool F_IMP)
lemma NOT_AND: "~ ((t::bool) & ~ t)"
by (import bool NOT_AND)
lemma AND_CLAUSES: "ALL t::bool.
(True & t) = t &
(t & True) = t & (False & t) = False & (t & False) = False & (t & t) = t"
by (import bool AND_CLAUSES)
lemma OR_CLAUSES: "ALL t::bool.
(True | t) = True &
(t | True) = True & (False | t) = t & (t | False) = t & (t | t) = t"
by (import bool OR_CLAUSES)
lemma IMP_CLAUSES: "ALL t::bool.
(True --> t) = t &
(t --> True) = True &
(False --> t) = True & (t --> t) = True & (t --> False) = (~ t)"
by (import bool IMP_CLAUSES)
lemma NOT_CLAUSES: "(ALL t::bool. (~ ~ t) = t) & (~ True) = False & (~ False) = True"
by (import bool NOT_CLAUSES)
lemma BOOL_EQ_DISTINCT: "True ~= False & False ~= True"
by (import bool BOOL_EQ_DISTINCT)
lemma EQ_CLAUSES: "ALL t::bool.
(True = t) = t &
(t = True) = t & (False = t) = (~ t) & (t = False) = (~ t)"
by (import bool EQ_CLAUSES)
lemma COND_CLAUSES: "ALL (t1::'a::type) t2::'a::type.
(if True then t1 else t2) = t1 & (if False then t1 else t2) = t2"
by (import bool COND_CLAUSES)
lemma SELECT_UNIQUE: "ALL (P::'a::type => bool) x::'a::type.
(ALL y::'a::type. P y = (y = x)) --> Eps P = x"
by (import bool SELECT_UNIQUE)
lemma BOTH_EXISTS_AND_THM: "ALL (P::bool) Q::bool.
(EX x::'a::type. P & Q) = ((EX x::'a::type. P) & (EX x::'a::type. Q))"
by (import bool BOTH_EXISTS_AND_THM)
lemma BOTH_FORALL_OR_THM: "ALL (P::bool) Q::bool.
(ALL x::'a::type. P | Q) = ((ALL x::'a::type. P) | (ALL x::'a::type. Q))"
by (import bool BOTH_FORALL_OR_THM)
lemma BOTH_FORALL_IMP_THM: "ALL (P::bool) Q::bool.
(ALL x::'a::type. P --> Q) =
((EX x::'a::type. P) --> (ALL x::'a::type. Q))"
by (import bool BOTH_FORALL_IMP_THM)
lemma BOTH_EXISTS_IMP_THM: "ALL (P::bool) Q::bool.
(EX x::'a::type. P --> Q) =
((ALL x::'a::type. P) --> (EX x::'a::type. Q))"
by (import bool BOTH_EXISTS_IMP_THM)
lemma OR_IMP_THM: "ALL (A::bool) B::bool. (A = (B | A)) = (B --> A)"
by (import bool OR_IMP_THM)
lemma DE_MORGAN_THM: "ALL (A::bool) B::bool. (~ (A & B)) = (~ A | ~ B) & (~ (A | B)) = (~ A & ~ B)"
by (import bool DE_MORGAN_THM)
lemma IMP_F_EQ_F: "ALL t::bool. (t --> False) = (t = False)"
by (import bool IMP_F_EQ_F)
lemma EQ_EXPAND: "ALL (t1::bool) t2::bool. (t1 = t2) = (t1 & t2 | ~ t1 & ~ t2)"
by (import bool EQ_EXPAND)
lemma COND_RATOR: "ALL (b::bool) (f::'a::type => 'b::type) (g::'a::type => 'b::type)
x::'a::type. (if b then f else g) x = (if b then f x else g x)"
by (import bool COND_RATOR)
lemma COND_ABS: "ALL (b::bool) (f::'a::type => 'b::type) g::'a::type => 'b::type.
(%x::'a::type. if b then f x else g x) = (if b then f else g)"
by (import bool COND_ABS)
lemma COND_EXPAND: "ALL (b::bool) (t1::bool) t2::bool.
(if b then t1 else t2) = ((~ b | t1) & (b | t2))"
by (import bool COND_EXPAND)
lemma ONE_ONE_THM: "ALL f::'a::type => 'b::type.
inj f = (ALL (x1::'a::type) x2::'a::type. f x1 = f x2 --> x1 = x2)"
by (import bool ONE_ONE_THM)
lemma ABS_REP_THM: "(All::(('a::type => bool) => bool) => bool)
(%P::'a::type => bool.
(op -->::bool => bool => bool)
((Ex::(('b::type => 'a::type) => bool) => bool)
((TYPE_DEFINITION::('a::type => bool)
=> ('b::type => 'a::type) => bool)
P))
((Ex::(('b::type => 'a::type) => bool) => bool)
(%x::'b::type => 'a::type.
(Ex::(('a::type => 'b::type) => bool) => bool)
(%abs::'a::type => 'b::type.
(op &::bool => bool => bool)
((All::('b::type => bool) => bool)
(%a::'b::type.
(op =::'b::type => 'b::type => bool) (abs (x a)) a))
((All::('a::type => bool) => bool)
(%r::'a::type.
(op =::bool => bool => bool) (P r)
((op =::'a::type => 'a::type => bool) (x (abs r))
r)))))))"
by (import bool ABS_REP_THM)
lemma LET_RAND: "(P::'b::type => bool) (Let (M::'a::type) (N::'a::type => 'b::type)) =
(let x::'a::type = M in P (N x))"
by (import bool LET_RAND)
lemma LET_RATOR: "Let (M::'a::type) (N::'a::type => 'b::type => 'c::type) (b::'b::type) =
(let x::'a::type = M in N x b)"
by (import bool LET_RATOR)
lemma SWAP_FORALL_THM: "ALL P::'a::type => 'b::type => bool.
(ALL x::'a::type. All (P x)) = (ALL (y::'b::type) x::'a::type. P x y)"
by (import bool SWAP_FORALL_THM)
lemma SWAP_EXISTS_THM: "ALL P::'a::type => 'b::type => bool.
(EX x::'a::type. Ex (P x)) = (EX (y::'b::type) x::'a::type. P x y)"
by (import bool SWAP_EXISTS_THM)
lemma AND_CONG: "ALL (P::bool) (P'::bool) (Q::bool) Q'::bool.
(Q --> P = P') & (P' --> Q = Q') --> (P & Q) = (P' & Q')"
by (import bool AND_CONG)
lemma OR_CONG: "ALL (P::bool) (P'::bool) (Q::bool) Q'::bool.
(~ Q --> P = P') & (~ P' --> Q = Q') --> (P | Q) = (P' | Q')"
by (import bool OR_CONG)
lemma COND_CONG: "ALL (P::bool) (Q::bool) (x::'a::type) (x'::'a::type) (y::'a::type)
y'::'a::type.
P = Q & (Q --> x = x') & (~ Q --> y = y') -->
(if P then x else y) = (if Q then x' else y')"
by (import bool COND_CONG)
lemma MONO_COND: "((x::bool) --> (y::bool)) -->
((z::bool) --> (w::bool)) -->
(if b::bool then x else z) --> (if b then y else w)"
by (import bool MONO_COND)
lemma SKOLEM_THM: "ALL P::'a::type => 'b::type => bool.
(ALL x::'a::type. Ex (P x)) =
(EX f::'a::type => 'b::type. ALL x::'a::type. P x (f x))"
by (import bool SKOLEM_THM)
lemma bool_case_thm: "(ALL (e0::'a::type) e1::'a::type.
(case True of True => e0 | False => e1) = e0) &
(ALL (e0::'a::type) e1::'a::type.
(case False of True => e0 | False => e1) = e1)"
by (import bool bool_case_thm)
lemma bool_case_ID: "ALL (x::'a::type) b::bool. (case b of True => x | _ => x) = x"
by (import bool bool_case_ID)
lemma boolAxiom: "ALL (e0::'a::type) e1::'a::type.
EX x::bool => 'a::type. x True = e0 & x False = e1"
by (import bool boolAxiom)
lemma UEXISTS_OR_THM: "ALL (P::'a::type => bool) Q::'a::type => bool.
(EX! x::'a::type. P x | Q x) --> Ex1 P | Ex1 Q"
by (import bool UEXISTS_OR_THM)
lemma UEXISTS_SIMP: "(EX! x::'a::type. (t::bool)) = (t & (ALL x::'a::type. All (op = x)))"
by (import bool UEXISTS_SIMP)
consts
RES_ABSTRACT :: "('a => bool) => ('a => 'b) => 'a => 'b"
specification (RES_ABSTRACT) RES_ABSTRACT_DEF: "(ALL (p::'a::type => bool) (m::'a::type => 'b::type) x::'a::type.
IN x p --> RES_ABSTRACT p m x = m x) &
(ALL (p::'a::type => bool) (m1::'a::type => 'b::type)
m2::'a::type => 'b::type.
(ALL x::'a::type. IN x p --> m1 x = m2 x) -->
RES_ABSTRACT p m1 = RES_ABSTRACT p m2)"
by (import bool RES_ABSTRACT_DEF)
lemma BOOL_FUN_CASES_THM: "ALL f::bool => bool.
f = (%b::bool. True) |
f = (%b::bool. False) | f = (%b::bool. b) | f = Not"
by (import bool BOOL_FUN_CASES_THM)
lemma BOOL_FUN_INDUCT: "ALL P::(bool => bool) => bool.
P (%b::bool. True) & P (%b::bool. False) & P (%b::bool. b) & P Not -->
All P"
by (import bool BOOL_FUN_INDUCT)
;end_setup
;setup_theory combin
constdefs
K :: "'a => 'b => 'a"
"K == %(x::'a::type) y::'b::type. x"
lemma K_DEF: "K = (%(x::'a::type) y::'b::type. x)"
by (import combin K_DEF)
constdefs
S :: "('a => 'b => 'c) => ('a => 'b) => 'a => 'c"
"S ==
%(f::'a::type => 'b::type => 'c::type) (g::'a::type => 'b::type)
x::'a::type. f x (g x)"
lemma S_DEF: "S =
(%(f::'a::type => 'b::type => 'c::type) (g::'a::type => 'b::type)
x::'a::type. f x (g x))"
by (import combin S_DEF)
constdefs
I :: "'a => 'a"
"(op ==::('a::type => 'a::type) => ('a::type => 'a::type) => prop)
(I::'a::type => 'a::type)
((S::('a::type => ('a::type => 'a::type) => 'a::type)
=> ('a::type => 'a::type => 'a::type) => 'a::type => 'a::type)
(K::'a::type => ('a::type => 'a::type) => 'a::type)
(K::'a::type => 'a::type => 'a::type))"
lemma I_DEF: "(op =::('a::type => 'a::type) => ('a::type => 'a::type) => bool)
(I::'a::type => 'a::type)
((S::('a::type => ('a::type => 'a::type) => 'a::type)
=> ('a::type => 'a::type => 'a::type) => 'a::type => 'a::type)
(K::'a::type => ('a::type => 'a::type) => 'a::type)
(K::'a::type => 'a::type => 'a::type))"
by (import combin I_DEF)
constdefs
C :: "('a => 'b => 'c) => 'b => 'a => 'c"
"C == %(f::'a::type => 'b::type => 'c::type) (x::'b::type) y::'a::type. f y x"
lemma C_DEF: "C =
(%(f::'a::type => 'b::type => 'c::type) (x::'b::type) y::'a::type. f y x)"
by (import combin C_DEF)
constdefs
W :: "('a => 'a => 'b) => 'a => 'b"
"W == %(f::'a::type => 'a::type => 'b::type) x::'a::type. f x x"
lemma W_DEF: "W = (%(f::'a::type => 'a::type => 'b::type) x::'a::type. f x x)"
by (import combin W_DEF)
lemma I_THM: "ALL x::'a::type. I x = x"
by (import combin I_THM)
lemma I_o_ID: "ALL f::'a::type => 'b::type. I o f = f & f o I = f"
by (import combin I_o_ID)
;end_setup
;setup_theory sum
lemma ISL_OR_ISR: "ALL x::'a::type + 'b::type. ISL x | ISR x"
by (import sum ISL_OR_ISR)
lemma INL: "ALL x::'a::type + 'b::type. ISL x --> Inl (OUTL x) = x"
by (import sum INL)
lemma INR: "ALL x::'a::type + 'b::type. ISR x --> Inr (OUTR x) = x"
by (import sum INR)
lemma sum_case_cong: "ALL (M::'b::type + 'c::type) (M'::'b::type + 'c::type)
(f::'b::type => 'a::type) g::'c::type => 'a::type.
M = M' &
(ALL x::'b::type. M' = Inl x --> f x = (f'::'b::type => 'a::type) x) &
(ALL y::'c::type. M' = Inr y --> g y = (g'::'c::type => 'a::type) y) -->
sum_case f g M = sum_case f' g' M'"
by (import sum sum_case_cong)
;end_setup
;setup_theory one
;end_setup
;setup_theory option
lemma option_CLAUSES: "(op &::bool => bool => bool)
((All::('a::type => bool) => bool)
(%x::'a::type.
(All::('a::type => bool) => bool)
(%y::'a::type.
(op =::bool => bool => bool)
((op =::'a::type option => 'a::type option => bool)
((Some::'a::type ~=> 'a::type) x)
((Some::'a::type ~=> 'a::type) y))
((op =::'a::type => 'a::type => bool) x y))))
((op &::bool => bool => bool)
((All::('a::type => bool) => bool)
(%x::'a::type.
(op =::'a::type => 'a::type => bool)
((the::'a::type option => 'a::type)
((Some::'a::type ~=> 'a::type) x))
x))
((op &::bool => bool => bool)
((All::('a::type => bool) => bool)
(%x::'a::type.
(Not::bool => bool)
((op =::'a::type option => 'a::type option => bool)
(None::'a::type option) ((Some::'a::type ~=> 'a::type) x))))
((op &::bool => bool => bool)
((All::('a::type => bool) => bool)
(%x::'a::type.
(Not::bool => bool)
((op =::'a::type option => 'a::type option => bool)
((Some::'a::type ~=> 'a::type) x) (None::'a::type option))))
((op &::bool => bool => bool)
((All::('a::type => bool) => bool)
(%x::'a::type.
(op =::bool => bool => bool)
((IS_SOME::'a::type option => bool)
((Some::'a::type ~=> 'a::type) x))
(True::bool)))
((op &::bool => bool => bool)
((op =::bool => bool => bool)
((IS_SOME::'a::type option => bool) (None::'a::type option))
(False::bool))
((op &::bool => bool => bool)
((All::('a::type option => bool) => bool)
(%x::'a::type option.
(op =::bool => bool => bool)
((IS_NONE::'a::type option => bool) x)
((op =::'a::type option => 'a::type option => bool) x
(None::'a::type option))))
((op &::bool => bool => bool)
((All::('a::type option => bool) => bool)
(%x::'a::type option.
(op =::bool => bool => bool)
((Not::bool => bool)
((IS_SOME::'a::type option => bool) x))
((op =::'a::type option => 'a::type option => bool) x
(None::'a::type option))))
((op &::bool => bool => bool)
((All::('a::type option => bool) => bool)
(%x::'a::type option.
(op -->::bool => bool => bool)
((IS_SOME::'a::type option => bool) x)
((op =::'a::type option => 'a::type option => bool)
((Some::'a::type ~=> 'a::type)
((the::'a::type option => 'a::type) x))
x)))
((op &::bool => bool => bool)
((All::('a::type option => bool) => bool)
(%x::'a::type option.
(op =::'a::type option => 'a::type option => bool)
((option_case::'a::type option
=> ('a::type ~=> 'a::type) => 'a::type option ~=> 'a::type)
(None::'a::type option)
(Some::'a::type ~=> 'a::type) x)
x))
((op &::bool => bool => bool)
((All::('a::type option => bool) => bool)
(%x::'a::type option.
(op =::'a::type option
=> 'a::type option => bool)
((option_case::'a::type option
=> ('a::type ~=> 'a::type) => 'a::type option ~=> 'a::type)
x (Some::'a::type ~=> 'a::type) x)
x))
((op &::bool => bool => bool)
((All::('a::type option => bool) => bool)
(%x::'a::type option.
(op -->::bool => bool => bool)
((IS_NONE::'a::type option => bool) x)
((op =::'b::type => 'b::type => bool)
((option_case::'b::type
=> ('a::type => 'b::type) => 'a::type option => 'b::type)
(e::'b::type) (f::'a::type => 'b::type) x)
e)))
((op &::bool => bool => bool)
((All::('a::type option => bool) => bool)
(%x::'a::type option.
(op -->::bool => bool => bool)
((IS_SOME::'a::type option => bool) x)
((op =::'b::type => 'b::type => bool)
((option_case::'b::type
=> ('a::type => 'b::type) => 'a::type option => 'b::type)
e f x)
(f ((the::'a::type option => 'a::type)
x)))))
((op &::bool => bool => bool)
((All::('a::type option => bool) => bool)
(%x::'a::type option.
(op -->::bool => bool => bool)
((IS_SOME::'a::type option => bool) x)
((op =::'a::type option
=> 'a::type option => bool)
((option_case::'a::type option
=> ('a::type ~=> 'a::type) => 'a::type option ~=> 'a::type)
(ea::'a::type option) (Some::'a::type ~=> 'a::type) x)
x)))
((op &::bool => bool => bool)
((All::('b::type => bool) => bool)
(%u::'b::type.
(All::(('a::type => 'b::type) => bool)
=> bool)
(%f::'a::type => 'b::type.
(op =::'b::type => 'b::type => bool)
((option_case::'b::type
=> ('a::type => 'b::type) => 'a::type option => 'b::type)
u f (None::'a::type option))
u)))
((op &::bool => bool => bool)
((All::('b::type => bool) => bool)
(%u::'b::type.
(All::(('a::type => 'b::type) => bool)
=> bool)
(%f::'a::type => 'b::type.
(All::('a::type => bool) => bool)
(%x::'a::type.
(op =::'b::type => 'b::type => bool)
((option_case::'b::type
=> ('a::type => 'b::type)
=> 'a::type option => 'b::type)
u f ((Some::'a::type ~=> 'a::type) x))
(f x)))))
((op &::bool => bool => bool)
((All::(('a::type => 'b::type) => bool)
=> bool)
(%f::'a::type => 'b::type.
(All::('a::type => bool) => bool)
(%x::'a::type.
(op =::'b::type option => 'b::type option => bool)
((option_map::('a::type => 'b::type) => 'a::type option ~=> 'b::type)
f ((Some::'a::type ~=> 'a::type) x))
((Some::'b::type ~=> 'b::type) (f x)))))
((op &::bool => bool => bool)
((All::(('a::type => 'b::type) => bool)
=> bool)
(%f::'a::type => 'b::type.
(op =::'b::type option => 'b::type option => bool)
((option_map::('a::type => 'b::type) => 'a::type option ~=> 'b::type) f
(None::'a::type option))
(None::'b::type option)))
((op &::bool => bool => bool)
((op =::'a::type option
=> 'a::type option => bool)
((OPTION_JOIN::'a::type option option ~=> 'a::type)
(None::'a::type option option))
(None::'a::type option))
((All::('a::type option => bool)
=> bool)
(%x::'a::type option.
(op =::'a::type option => 'a::type option => bool)
((OPTION_JOIN::'a::type option option ~=> 'a::type)
((Some::'a::type option ~=> 'a::type option) x))
x))))))))))))))))))))"
by (import option option_CLAUSES)
lemma option_case_compute: "option_case (e::'b::type) (f::'a::type => 'b::type) (x::'a::type option) =
(if IS_SOME x then f (the x) else e)"
by (import option option_case_compute)
lemma OPTION_MAP_EQ_SOME: "ALL (f::'a::type => 'b::type) (x::'a::type option) y::'b::type.
(option_map f x = Some y) = (EX z::'a::type. x = Some z & y = f z)"
by (import option OPTION_MAP_EQ_SOME)
lemma OPTION_JOIN_EQ_SOME: "ALL (x::'a::type option option) xa::'a::type.
(OPTION_JOIN x = Some xa) = (x = Some (Some xa))"
by (import option OPTION_JOIN_EQ_SOME)
lemma option_case_cong: "ALL (M::'a::type option) (M'::'a::type option) (u::'b::type)
f::'a::type => 'b::type.
M = M' &
(M' = None --> u = (u'::'b::type)) &
(ALL x::'a::type. M' = Some x --> f x = (f'::'a::type => 'b::type) x) -->
option_case u f M = option_case u' f' M'"
by (import option option_case_cong)
;end_setup
;setup_theory marker
consts
stmarker :: "'a => 'a"
defs
stmarker_primdef: "stmarker == %x::'a::type. x"
lemma stmarker_def: "ALL x::'a::type. stmarker x = x"
by (import marker stmarker_def)
lemma move_left_conj: "ALL (x::bool) (xa::bool) xb::bool.
(x & stmarker xb) = (stmarker xb & x) &
((stmarker xb & x) & xa) = (stmarker xb & x & xa) &
(x & stmarker xb & xa) = (stmarker xb & x & xa)"
by (import marker move_left_conj)
lemma move_right_conj: "ALL (x::bool) (xa::bool) xb::bool.
(stmarker xb & x) = (x & stmarker xb) &
(x & xa & stmarker xb) = ((x & xa) & stmarker xb) &
((x & stmarker xb) & xa) = ((x & xa) & stmarker xb)"
by (import marker move_right_conj)
lemma move_left_disj: "ALL (x::bool) (xa::bool) xb::bool.
(x | stmarker xb) = (stmarker xb | x) &
((stmarker xb | x) | xa) = (stmarker xb | x | xa) &
(x | stmarker xb | xa) = (stmarker xb | x | xa)"
by (import marker move_left_disj)
lemma move_right_disj: "ALL (x::bool) (xa::bool) xb::bool.
(stmarker xb | x) = (x | stmarker xb) &
(x | xa | stmarker xb) = ((x | xa) | stmarker xb) &
((x | stmarker xb) | xa) = ((x | xa) | stmarker xb)"
by (import marker move_right_disj)
;end_setup
;setup_theory relation
constdefs
TC :: "('a => 'a => bool) => 'a => 'a => bool"
"TC ==
%(R::'a::type => 'a::type => bool) (a::'a::type) b::'a::type.
ALL P::'a::type => 'a::type => bool.
(ALL (x::'a::type) y::'a::type. R x y --> P x y) &
(ALL (x::'a::type) (y::'a::type) z::'a::type.
P x y & P y z --> P x z) -->
P a b"
lemma TC_DEF: "ALL (R::'a::type => 'a::type => bool) (a::'a::type) b::'a::type.
TC R a b =
(ALL P::'a::type => 'a::type => bool.
(ALL (x::'a::type) y::'a::type. R x y --> P x y) &
(ALL (x::'a::type) (y::'a::type) z::'a::type.
P x y & P y z --> P x z) -->
P a b)"
by (import relation TC_DEF)
constdefs
RTC :: "('a => 'a => bool) => 'a => 'a => bool"
"RTC ==
%(R::'a::type => 'a::type => bool) (a::'a::type) b::'a::type.
ALL P::'a::type => 'a::type => bool.
(ALL x::'a::type. P x x) &
(ALL (x::'a::type) (y::'a::type) z::'a::type.
R x y & P y z --> P x z) -->
P a b"
lemma RTC_DEF: "ALL (R::'a::type => 'a::type => bool) (a::'a::type) b::'a::type.
RTC R a b =
(ALL P::'a::type => 'a::type => bool.
(ALL x::'a::type. P x x) &
(ALL (x::'a::type) (y::'a::type) z::'a::type.
R x y & P y z --> P x z) -->
P a b)"
by (import relation RTC_DEF)
consts
RC :: "('a => 'a => bool) => 'a => 'a => bool"
defs
RC_primdef: "RC ==
%(R::'a::type => 'a::type => bool) (x::'a::type) y::'a::type. x = y | R x y"
lemma RC_def: "ALL (R::'a::type => 'a::type => bool) (x::'a::type) y::'a::type.
RC R x y = (x = y | R x y)"
by (import relation RC_def)
consts
transitive :: "('a => 'a => bool) => bool"
defs
transitive_primdef: "transitive ==
%R::'a::type => 'a::type => bool.
ALL (x::'a::type) (y::'a::type) z::'a::type. R x y & R y z --> R x z"
lemma transitive_def: "ALL R::'a::type => 'a::type => bool.
transitive R =
(ALL (x::'a::type) (y::'a::type) z::'a::type. R x y & R y z --> R x z)"
by (import relation transitive_def)
constdefs
pred_reflexive :: "('a => 'a => bool) => bool"
"pred_reflexive == %R::'a::type => 'a::type => bool. ALL x::'a::type. R x x"
lemma reflexive_def: "ALL R::'a::type => 'a::type => bool.
pred_reflexive R = (ALL x::'a::type. R x x)"
by (import relation reflexive_def)
lemma TC_TRANSITIVE: "ALL x::'a::type => 'a::type => bool. transitive (TC x)"
by (import relation TC_TRANSITIVE)
lemma RTC_INDUCT: "ALL (x::'a::type => 'a::type => bool) xa::'a::type => 'a::type => bool.
(ALL x::'a::type. xa x x) &
(ALL (xb::'a::type) (y::'a::type) z::'a::type.
x xb y & xa y z --> xa xb z) -->
(ALL (xb::'a::type) xc::'a::type. RTC x xb xc --> xa xb xc)"
by (import relation RTC_INDUCT)
lemma TC_RULES: "ALL x::'a::type => 'a::type => bool.
(ALL (xa::'a::type) xb::'a::type. x xa xb --> TC x xa xb) &
(ALL (xa::'a::type) (xb::'a::type) xc::'a::type.
TC x xa xb & TC x xb xc --> TC x xa xc)"
by (import relation TC_RULES)
lemma RTC_RULES: "ALL x::'a::type => 'a::type => bool.
(ALL xa::'a::type. RTC x xa xa) &
(ALL (xa::'a::type) (xb::'a::type) xc::'a::type.
x xa xb & RTC x xb xc --> RTC x xa xc)"
by (import relation RTC_RULES)
lemma RTC_STRONG_INDUCT: "ALL (R::'a::type => 'a::type => bool) P::'a::type => 'a::type => bool.
(ALL x::'a::type. P x x) &
(ALL (x::'a::type) (y::'a::type) z::'a::type.
R x y & RTC R y z & P y z --> P x z) -->
(ALL (x::'a::type) y::'a::type. RTC R x y --> P x y)"
by (import relation RTC_STRONG_INDUCT)
lemma RTC_RTC: "ALL (R::'a::type => 'a::type => bool) (x::'a::type) y::'a::type.
RTC R x y --> (ALL z::'a::type. RTC R y z --> RTC R x z)"
by (import relation RTC_RTC)
lemma RTC_TRANSITIVE: "ALL x::'a::type => 'a::type => bool. transitive (RTC x)"
by (import relation RTC_TRANSITIVE)
lemma RTC_REFLEXIVE: "ALL R::'a::type => 'a::type => bool. pred_reflexive (RTC R)"
by (import relation RTC_REFLEXIVE)
lemma RC_REFLEXIVE: "ALL R::'a::type => 'a::type => bool. pred_reflexive (RC R)"
by (import relation RC_REFLEXIVE)
lemma TC_SUBSET: "ALL (x::'a::type => 'a::type => bool) (xa::'a::type) xb::'a::type.
x xa xb --> TC x xa xb"
by (import relation TC_SUBSET)
lemma RTC_SUBSET: "ALL (R::'a::type => 'a::type => bool) (x::'a::type) y::'a::type.
R x y --> RTC R x y"
by (import relation RTC_SUBSET)
lemma RC_SUBSET: "ALL (R::'a::type => 'a::type => bool) (x::'a::type) y::'a::type.
R x y --> RC R x y"
by (import relation RC_SUBSET)
lemma RC_RTC: "ALL (R::'a::type => 'a::type => bool) (x::'a::type) y::'a::type.
RC R x y --> RTC R x y"
by (import relation RC_RTC)
lemma TC_INDUCT: "ALL (x::'a::type => 'a::type => bool) xa::'a::type => 'a::type => bool.
(ALL (xb::'a::type) y::'a::type. x xb y --> xa xb y) &
(ALL (x::'a::type) (y::'a::type) z::'a::type.
xa x y & xa y z --> xa x z) -->
(ALL (xb::'a::type) xc::'a::type. TC x xb xc --> xa xb xc)"
by (import relation TC_INDUCT)
lemma TC_INDUCT_LEFT1: "ALL (x::'a::type => 'a::type => bool) xa::'a::type => 'a::type => bool.
(ALL (xb::'a::type) y::'a::type. x xb y --> xa xb y) &
(ALL (xb::'a::type) (y::'a::type) z::'a::type.
x xb y & xa y z --> xa xb z) -->
(ALL (xb::'a::type) xc::'a::type. TC x xb xc --> xa xb xc)"
by (import relation TC_INDUCT_LEFT1)
lemma TC_STRONG_INDUCT: "ALL (R::'a::type => 'a::type => bool) P::'a::type => 'a::type => bool.
(ALL (x::'a::type) y::'a::type. R x y --> P x y) &
(ALL (x::'a::type) (y::'a::type) z::'a::type.
P x y & P y z & TC R x y & TC R y z --> P x z) -->
(ALL (u::'a::type) v::'a::type. TC R u v --> P u v)"
by (import relation TC_STRONG_INDUCT)
lemma TC_STRONG_INDUCT_LEFT1: "ALL (R::'a::type => 'a::type => bool) P::'a::type => 'a::type => bool.
(ALL (x::'a::type) y::'a::type. R x y --> P x y) &
(ALL (x::'a::type) (y::'a::type) z::'a::type.
R x y & P y z & TC R y z --> P x z) -->
(ALL (u::'a::type) v::'a::type. TC R u v --> P u v)"
by (import relation TC_STRONG_INDUCT_LEFT1)
lemma TC_RTC: "ALL (R::'a::type => 'a::type => bool) (x::'a::type) y::'a::type.
TC R x y --> RTC R x y"
by (import relation TC_RTC)
lemma RTC_TC_RC: "ALL (R::'a::type => 'a::type => bool) (x::'a::type) y::'a::type.
RTC R x y --> RC R x y | TC R x y"
by (import relation RTC_TC_RC)
lemma TC_RC_EQNS: "ALL R::'a::type => 'a::type => bool. RC (TC R) = RTC R & TC (RC R) = RTC R"
by (import relation TC_RC_EQNS)
lemma RC_IDEM: "ALL R::'a::type => 'a::type => bool. RC (RC R) = RC R"
by (import relation RC_IDEM)
lemma TC_IDEM: "ALL R::'a::type => 'a::type => bool. TC (TC R) = TC R"
by (import relation TC_IDEM)
lemma RTC_IDEM: "ALL R::'a::type => 'a::type => bool. RTC (RTC R) = RTC R"
by (import relation RTC_IDEM)
lemma RTC_CASES1: "ALL (x::'a::type => 'a::type => bool) (xa::'a::type) xb::'a::type.
RTC x xa xb = (xa = xb | (EX u::'a::type. x xa u & RTC x u xb))"
by (import relation RTC_CASES1)
lemma RTC_CASES2: "ALL (x::'a::type => 'a::type => bool) (xa::'a::type) xb::'a::type.
RTC x xa xb = (xa = xb | (EX u::'a::type. RTC x xa u & x u xb))"
by (import relation RTC_CASES2)
lemma RTC_CASES_RTC_TWICE: "ALL (x::'a::type => 'a::type => bool) (xa::'a::type) xb::'a::type.
RTC x xa xb = (EX u::'a::type. RTC x xa u & RTC x u xb)"
by (import relation RTC_CASES_RTC_TWICE)
lemma TC_CASES1: "ALL (R::'a::type => 'a::type => bool) (x::'a::type) z::'a::type.
TC R x z --> R x z | (EX y::'a::type. R x y & TC R y z)"
by (import relation TC_CASES1)
lemma TC_CASES2: "ALL (R::'a::type => 'a::type => bool) (x::'a::type) z::'a::type.
TC R x z --> R x z | (EX y::'a::type. TC R x y & R y z)"
by (import relation TC_CASES2)
lemma TC_MONOTONE: "ALL (R::'a::type => 'a::type => bool) Q::'a::type => 'a::type => bool.
(ALL (x::'a::type) y::'a::type. R x y --> Q x y) -->
(ALL (x::'a::type) y::'a::type. TC R x y --> TC Q x y)"
by (import relation TC_MONOTONE)
lemma RTC_MONOTONE: "ALL (R::'a::type => 'a::type => bool) Q::'a::type => 'a::type => bool.
(ALL (x::'a::type) y::'a::type. R x y --> Q x y) -->
(ALL (x::'a::type) y::'a::type. RTC R x y --> RTC Q x y)"
by (import relation RTC_MONOTONE)
constdefs
WF :: "('a => 'a => bool) => bool"
"WF ==
%R::'a::type => 'a::type => bool.
ALL B::'a::type => bool.
Ex B -->
(EX min::'a::type. B min & (ALL b::'a::type. R b min --> ~ B b))"
lemma WF_DEF: "ALL R::'a::type => 'a::type => bool.
WF R =
(ALL B::'a::type => bool.
Ex B -->
(EX min::'a::type. B min & (ALL b::'a::type. R b min --> ~ B b)))"
by (import relation WF_DEF)
lemma WF_INDUCTION_THM: "ALL R::'a::type => 'a::type => bool.
WF R -->
(ALL P::'a::type => bool.
(ALL x::'a::type. (ALL y::'a::type. R y x --> P y) --> P x) -->
All P)"
by (import relation WF_INDUCTION_THM)
lemma WF_NOT_REFL: "ALL (x::'a::type => 'a::type => bool) (xa::'a::type) xb::'a::type.
WF x --> x xa xb --> xa ~= xb"
by (import relation WF_NOT_REFL)
constdefs
EMPTY_REL :: "'a => 'a => bool"
"EMPTY_REL == %(x::'a::type) y::'a::type. False"
lemma EMPTY_REL_DEF: "ALL (x::'a::type) y::'a::type. EMPTY_REL x y = False"
by (import relation EMPTY_REL_DEF)
lemma WF_EMPTY_REL: "WF EMPTY_REL"
by (import relation WF_EMPTY_REL)
lemma WF_SUBSET: "ALL (x::'a::type => 'a::type => bool) xa::'a::type => 'a::type => bool.
WF x & (ALL (xb::'a::type) y::'a::type. xa xb y --> x xb y) --> WF xa"
by (import relation WF_SUBSET)
lemma WF_TC: "ALL R::'a::type => 'a::type => bool. WF R --> WF (TC R)"
by (import relation WF_TC)
consts
inv_image :: "('b => 'b => bool) => ('a => 'b) => 'a => 'a => bool"
defs
inv_image_primdef: "relation.inv_image ==
%(R::'b::type => 'b::type => bool) (f::'a::type => 'b::type) (x::'a::type)
y::'a::type. R (f x) (f y)"
lemma inv_image_def: "ALL (R::'b::type => 'b::type => bool) f::'a::type => 'b::type.
relation.inv_image R f = (%(x::'a::type) y::'a::type. R (f x) (f y))"
by (import relation inv_image_def)
lemma WF_inv_image: "ALL (R::'b::type => 'b::type => bool) f::'a::type => 'b::type.
WF R --> WF (relation.inv_image R f)"
by (import relation WF_inv_image)
constdefs
RESTRICT :: "('a => 'b) => ('a => 'a => bool) => 'a => 'a => 'b"
"RESTRICT ==
%(f::'a::type => 'b::type) (R::'a::type => 'a::type => bool) (x::'a::type)
y::'a::type. if R y x then f y else ARB"
lemma RESTRICT_DEF: "ALL (f::'a::type => 'b::type) (R::'a::type => 'a::type => bool) x::'a::type.
RESTRICT f R x = (%y::'a::type. if R y x then f y else ARB)"
by (import relation RESTRICT_DEF)
lemma RESTRICT_LEMMA: "ALL (x::'a::type => 'b::type) (xa::'a::type => 'a::type => bool)
(xb::'a::type) xc::'a::type. xa xb xc --> RESTRICT x xa xc xb = x xb"
by (import relation RESTRICT_LEMMA)
consts
approx :: "('a => 'a => bool) => (('a => 'b) => 'a => 'b) => 'a => ('a => 'b) => bool"
defs
approx_primdef: "approx ==
%(R::'a::type => 'a::type => bool)
(M::('a::type => 'b::type) => 'a::type => 'b::type) (x::'a::type)
f::'a::type => 'b::type.
f = RESTRICT (%y::'a::type. M (RESTRICT f R y) y) R x"
lemma approx_def: "ALL (R::'a::type => 'a::type => bool)
(M::('a::type => 'b::type) => 'a::type => 'b::type) (x::'a::type)
f::'a::type => 'b::type.
approx R M x f = (f = RESTRICT (%y::'a::type. M (RESTRICT f R y) y) R x)"
by (import relation approx_def)
consts
the_fun :: "('a => 'a => bool) => (('a => 'b) => 'a => 'b) => 'a => 'a => 'b"
defs
the_fun_primdef: "the_fun ==
%(R::'a::type => 'a::type => bool)
(M::('a::type => 'b::type) => 'a::type => 'b::type) x::'a::type.
Eps (approx R M x)"
lemma the_fun_def: "ALL (R::'a::type => 'a::type => bool)
(M::('a::type => 'b::type) => 'a::type => 'b::type) x::'a::type.
the_fun R M x = Eps (approx R M x)"
by (import relation the_fun_def)
constdefs
WFREC :: "('a => 'a => bool) => (('a => 'b) => 'a => 'b) => 'a => 'b"
"WFREC ==
%(R::'a::type => 'a::type => bool)
(M::('a::type => 'b::type) => 'a::type => 'b::type) x::'a::type.
M (RESTRICT
(the_fun (TC R)
(%(f::'a::type => 'b::type) v::'a::type. M (RESTRICT f R v) v) x)
R x)
x"
lemma WFREC_DEF: "ALL (R::'a::type => 'a::type => bool)
M::('a::type => 'b::type) => 'a::type => 'b::type.
WFREC R M =
(%x::'a::type.
M (RESTRICT
(the_fun (TC R)
(%(f::'a::type => 'b::type) v::'a::type. M (RESTRICT f R v) v)
x)
R x)
x)"
by (import relation WFREC_DEF)
lemma WFREC_THM: "ALL (R::'a::type => 'a::type => bool)
M::('a::type => 'b::type) => 'a::type => 'b::type.
WF R --> (ALL x::'a::type. WFREC R M x = M (RESTRICT (WFREC R M) R x) x)"
by (import relation WFREC_THM)
lemma WFREC_COROLLARY: "ALL (M::('a::type => 'b::type) => 'a::type => 'b::type)
(R::'a::type => 'a::type => bool) f::'a::type => 'b::type.
f = WFREC R M --> WF R --> (ALL x::'a::type. f x = M (RESTRICT f R x) x)"
by (import relation WFREC_COROLLARY)
lemma WF_RECURSION_THM: "ALL R::'a::type => 'a::type => bool.
WF R -->
(ALL M::('a::type => 'b::type) => 'a::type => 'b::type.
EX! f::'a::type => 'b::type.
ALL x::'a::type. f x = M (RESTRICT f R x) x)"
by (import relation WF_RECURSION_THM)
;end_setup
;setup_theory pair
lemma CURRY_ONE_ONE_THM: "(curry (f::'a::type * 'b::type => 'c::type) =
curry (g::'a::type * 'b::type => 'c::type)) =
(f = g)"
by (import pair CURRY_ONE_ONE_THM)
lemma UNCURRY_ONE_ONE_THM: "(op =::bool => bool => bool)
((op =::('a::type * 'b::type => 'c::type)
=> ('a::type * 'b::type => 'c::type) => bool)
((split::('a::type => 'b::type => 'c::type)
=> 'a::type * 'b::type => 'c::type)
(f::'a::type => 'b::type => 'c::type))
((split::('a::type => 'b::type => 'c::type)
=> 'a::type * 'b::type => 'c::type)
(g::'a::type => 'b::type => 'c::type)))
((op =::('a::type => 'b::type => 'c::type)
=> ('a::type => 'b::type => 'c::type) => bool)
f g)"
by (import pair UNCURRY_ONE_ONE_THM)
lemma pair_Axiom: "ALL f::'a::type => 'b::type => 'c::type.
EX x::'a::type * 'b::type => 'c::type.
ALL (xa::'a::type) y::'b::type. x (xa, y) = f xa y"
by (import pair pair_Axiom)
lemma UNCURRY_CONG: "ALL (M::'a::type * 'b::type) (M'::'a::type * 'b::type)
f::'a::type => 'b::type => 'c::type.
M = M' &
(ALL (x::'a::type) y::'b::type.
M' = (x, y) -->
f x y = (f'::'a::type => 'b::type => 'c::type) x y) -->
split f M = split f' M'"
by (import pair UNCURRY_CONG)
lemma ELIM_PEXISTS: "(EX p::'a::type * 'b::type.
(P::'a::type => 'b::type => bool) (fst p) (snd p)) =
(EX p1::'a::type. Ex (P p1))"
by (import pair ELIM_PEXISTS)
lemma ELIM_PFORALL: "(ALL p::'a::type * 'b::type.
(P::'a::type => 'b::type => bool) (fst p) (snd p)) =
(ALL p1::'a::type. All (P p1))"
by (import pair ELIM_PFORALL)
lemma PFORALL_THM: "(All::(('a::type => 'b::type => bool) => bool) => bool)
(%x::'a::type => 'b::type => bool.
(op =::bool => bool => bool)
((All::('a::type => bool) => bool)
(%xa::'a::type. (All::('b::type => bool) => bool) (x xa)))
((All::('a::type * 'b::type => bool) => bool)
((split::('a::type => 'b::type => bool)
=> 'a::type * 'b::type => bool)
x)))"
by (import pair PFORALL_THM)
lemma PEXISTS_THM: "(All::(('a::type => 'b::type => bool) => bool) => bool)
(%x::'a::type => 'b::type => bool.
(op =::bool => bool => bool)
((Ex::('a::type => bool) => bool)
(%xa::'a::type. (Ex::('b::type => bool) => bool) (x xa)))
((Ex::('a::type * 'b::type => bool) => bool)
((split::('a::type => 'b::type => bool)
=> 'a::type * 'b::type => bool)
x)))"
by (import pair PEXISTS_THM)
lemma LET2_RAND: "(All::(('c::type => 'd::type) => bool) => bool)
(%x::'c::type => 'd::type.
(All::('a::type * 'b::type => bool) => bool)
(%xa::'a::type * 'b::type.
(All::(('a::type => 'b::type => 'c::type) => bool) => bool)
(%xb::'a::type => 'b::type => 'c::type.
(op =::'d::type => 'd::type => bool)
(x ((Let::'a::type * 'b::type
=> ('a::type * 'b::type => 'c::type) => 'c::type)
xa ((split::('a::type => 'b::type => 'c::type)
=> 'a::type * 'b::type => 'c::type)
xb)))
((Let::'a::type * 'b::type
=> ('a::type * 'b::type => 'd::type) => 'd::type)
xa ((split::('a::type => 'b::type => 'd::type)
=> 'a::type * 'b::type => 'd::type)
(%(xa::'a::type) y::'b::type. x (xb xa y)))))))"
by (import pair LET2_RAND)
lemma LET2_RATOR: "(All::('a1::type * 'a2::type => bool) => bool)
(%x::'a1::type * 'a2::type.
(All::(('a1::type => 'a2::type => 'b::type => 'c::type) => bool)
=> bool)
(%xa::'a1::type => 'a2::type => 'b::type => 'c::type.
(All::('b::type => bool) => bool)
(%xb::'b::type.
(op =::'c::type => 'c::type => bool)
((Let::'a1::type * 'a2::type
=> ('a1::type * 'a2::type => 'b::type => 'c::type)
=> 'b::type => 'c::type)
x ((split::('a1::type
=> 'a2::type => 'b::type => 'c::type)
=> 'a1::type * 'a2::type
=> 'b::type => 'c::type)
xa)
xb)
((Let::'a1::type * 'a2::type
=> ('a1::type * 'a2::type => 'c::type) => 'c::type)
x ((split::('a1::type => 'a2::type => 'c::type)
=> 'a1::type * 'a2::type => 'c::type)
(%(x::'a1::type) y::'a2::type. xa x y xb))))))"
by (import pair LET2_RATOR)
lemma pair_case_cong: "ALL (x::'a::type * 'b::type) (xa::'a::type * 'b::type)
xb::'a::type => 'b::type => 'c::type.
x = xa &
(ALL (x::'a::type) y::'b::type.
xa = (x, y) -->
xb x y = (f'::'a::type => 'b::type => 'c::type) x y) -->
split xb x = split f' xa"
by (import pair pair_case_cong)
constdefs
LEX :: "('a => 'a => bool) => ('b => 'b => bool) => 'a * 'b => 'a * 'b => bool"
"LEX ==
%(R1::'a::type => 'a::type => bool) (R2::'b::type => 'b::type => bool)
(s::'a::type, t::'b::type) (u::'a::type, v::'b::type).
R1 s u | s = u & R2 t v"
lemma LEX_DEF: "ALL (R1::'a::type => 'a::type => bool) R2::'b::type => 'b::type => bool.
LEX R1 R2 =
(%(s::'a::type, t::'b::type) (u::'a::type, v::'b::type).
R1 s u | s = u & R2 t v)"
by (import pair LEX_DEF)
lemma WF_LEX: "ALL (x::'a::type => 'a::type => bool) xa::'b::type => 'b::type => bool.
WF x & WF xa --> WF (LEX x xa)"
by (import pair WF_LEX)
constdefs
RPROD :: "('a => 'a => bool) => ('b => 'b => bool) => 'a * 'b => 'a * 'b => bool"
"RPROD ==
%(R1::'a::type => 'a::type => bool) (R2::'b::type => 'b::type => bool)
(s::'a::type, t::'b::type) (u::'a::type, v::'b::type). R1 s u & R2 t v"
lemma RPROD_DEF: "ALL (R1::'a::type => 'a::type => bool) R2::'b::type => 'b::type => bool.
RPROD R1 R2 =
(%(s::'a::type, t::'b::type) (u::'a::type, v::'b::type). R1 s u & R2 t v)"
by (import pair RPROD_DEF)
lemma WF_RPROD: "ALL (R::'a::type => 'a::type => bool) Q::'b::type => 'b::type => bool.
WF R & WF Q --> WF (RPROD R Q)"
by (import pair WF_RPROD)
;end_setup
;setup_theory num
;end_setup
;setup_theory prim_rec
lemma LESS_0_0: "0 < Suc 0"
by (import prim_rec LESS_0_0)
lemma LESS_LEMMA1: "ALL (x::nat) xa::nat. x < Suc xa --> x = xa | x < xa"
by (import prim_rec LESS_LEMMA1)
lemma LESS_LEMMA2: "ALL (m::nat) n::nat. m = n | m < n --> m < Suc n"
by (import prim_rec LESS_LEMMA2)
lemma LESS_THM: "ALL (m::nat) n::nat. (m < Suc n) = (m = n | m < n)"
by (import prim_rec LESS_THM)
lemma LESS_SUC_IMP: "ALL (x::nat) xa::nat. x < Suc xa --> x ~= xa --> x < xa"
by (import prim_rec LESS_SUC_IMP)
lemma EQ_LESS: "ALL n::nat. Suc (m::nat) = n --> m < n"
by (import prim_rec EQ_LESS)
lemma NOT_LESS_EQ: "ALL (m::nat) n::nat. m = n --> ~ m < n"
by (import prim_rec NOT_LESS_EQ)
constdefs
SIMP_REC_REL :: "(nat => 'a) => 'a => ('a => 'a) => nat => bool"
"(op ==::((nat => 'a::type)
=> 'a::type => ('a::type => 'a::type) => nat => bool)
=> ((nat => 'a::type)
=> 'a::type => ('a::type => 'a::type) => nat => bool)
=> prop)
(SIMP_REC_REL::(nat => 'a::type)
=> 'a::type => ('a::type => 'a::type) => nat => bool)
(%(fun::nat => 'a::type) (x::'a::type) (f::'a::type => 'a::type) n::nat.
(op &::bool => bool => bool)
((op =::'a::type => 'a::type => bool) (fun (0::nat)) x)
((All::(nat => bool) => bool)
(%m::nat.
(op -->::bool => bool => bool) ((op <::nat => nat => bool) m n)
((op =::'a::type => 'a::type => bool)
(fun ((Suc::nat => nat) m)) (f (fun m))))))"
lemma SIMP_REC_REL: "(All::((nat => 'a::type) => bool) => bool)
(%fun::nat => 'a::type.
(All::('a::type => bool) => bool)
(%x::'a::type.
(All::(('a::type => 'a::type) => bool) => bool)
(%f::'a::type => 'a::type.
(All::(nat => bool) => bool)
(%n::nat.
(op =::bool => bool => bool)
((SIMP_REC_REL::(nat => 'a::type)
=> 'a::type
=> ('a::type => 'a::type) => nat => bool)
fun x f n)
((op &::bool => bool => bool)
((op =::'a::type => 'a::type => bool) (fun (0::nat))
x)
((All::(nat => bool) => bool)
(%m::nat.
(op -->::bool => bool => bool)
((op <::nat => nat => bool) m n)
((op =::'a::type => 'a::type => bool)
(fun ((Suc::nat => nat) m))
(f (fun m))))))))))"
by (import prim_rec SIMP_REC_REL)
lemma SIMP_REC_EXISTS: "ALL (x::'a::type) (f::'a::type => 'a::type) n::nat.
EX fun::nat => 'a::type. SIMP_REC_REL fun x f n"
by (import prim_rec SIMP_REC_EXISTS)
lemma SIMP_REC_REL_UNIQUE: "ALL (x::'a::type) (xa::'a::type => 'a::type) (xb::nat => 'a::type)
(xc::nat => 'a::type) (xd::nat) xe::nat.
SIMP_REC_REL xb x xa xd & SIMP_REC_REL xc x xa xe -->
(ALL n::nat. n < xd & n < xe --> xb n = xc n)"
by (import prim_rec SIMP_REC_REL_UNIQUE)
lemma SIMP_REC_REL_UNIQUE_RESULT: "ALL (x::'a::type) (f::'a::type => 'a::type) n::nat.
EX! y::'a::type.
EX g::nat => 'a::type. SIMP_REC_REL g x f (Suc n) & y = g n"
by (import prim_rec SIMP_REC_REL_UNIQUE_RESULT)
consts
SIMP_REC :: "'a => ('a => 'a) => nat => 'a"
specification (SIMP_REC) SIMP_REC: "ALL (x::'a::type) (f'::'a::type => 'a::type) n::nat.
EX g::nat => 'a::type.
SIMP_REC_REL g x f' (Suc n) & SIMP_REC x f' n = g n"
by (import prim_rec SIMP_REC)
lemma LESS_SUC_SUC: "ALL m::nat. m < Suc m & m < Suc (Suc m)"
by (import prim_rec LESS_SUC_SUC)
lemma SIMP_REC_THM: "ALL (x::'a::type) f::'a::type => 'a::type.
SIMP_REC x f 0 = x &
(ALL m::nat. SIMP_REC x f (Suc m) = f (SIMP_REC x f m))"
by (import prim_rec SIMP_REC_THM)
constdefs
PRE :: "nat => nat"
"PRE == %m::nat. if m = 0 then 0 else SOME n::nat. m = Suc n"
lemma PRE_DEF: "ALL m::nat. PRE m = (if m = 0 then 0 else SOME n::nat. m = Suc n)"
by (import prim_rec PRE_DEF)
lemma PRE: "PRE 0 = 0 & (ALL m::nat. PRE (Suc m) = m)"
by (import prim_rec PRE)
constdefs
PRIM_REC_FUN :: "'a => ('a => nat => 'a) => nat => nat => 'a"
"PRIM_REC_FUN ==
%(x::'a::type) f::'a::type => nat => 'a::type.
SIMP_REC (%n::nat. x) (%(fun::nat => 'a::type) n::nat. f (fun (PRE n)) n)"
lemma PRIM_REC_FUN: "ALL (x::'a::type) f::'a::type => nat => 'a::type.
PRIM_REC_FUN x f =
SIMP_REC (%n::nat. x) (%(fun::nat => 'a::type) n::nat. f (fun (PRE n)) n)"
by (import prim_rec PRIM_REC_FUN)
lemma PRIM_REC_EQN: "ALL (x::'a::type) f::'a::type => nat => 'a::type.
(ALL n::nat. PRIM_REC_FUN x f 0 n = x) &
(ALL (m::nat) n::nat.
PRIM_REC_FUN x f (Suc m) n = f (PRIM_REC_FUN x f m (PRE n)) n)"
by (import prim_rec PRIM_REC_EQN)
constdefs
PRIM_REC :: "'a => ('a => nat => 'a) => nat => 'a"
"PRIM_REC ==
%(x::'a::type) (f::'a::type => nat => 'a::type) m::nat.
PRIM_REC_FUN x f m (PRE m)"
lemma PRIM_REC: "ALL (x::'a::type) (f::'a::type => nat => 'a::type) m::nat.
PRIM_REC x f m = PRIM_REC_FUN x f m (PRE m)"
by (import prim_rec PRIM_REC)
lemma PRIM_REC_THM: "ALL (x::'a::type) f::'a::type => nat => 'a::type.
PRIM_REC x f 0 = x &
(ALL m::nat. PRIM_REC x f (Suc m) = f (PRIM_REC x f m) m)"
by (import prim_rec PRIM_REC_THM)
lemma DC: "ALL (P::'a::type => bool) (R::'a::type => 'a::type => bool) a::'a::type.
P a & (ALL x::'a::type. P x --> (EX y::'a::type. P y & R x y)) -->
(EX x::nat => 'a::type.
x 0 = a & (ALL n::nat. P (x n) & R (x n) (x (Suc n))))"
by (import prim_rec DC)
lemma num_Axiom_old: "ALL (e::'a::type) f::'a::type => nat => 'a::type.
EX! fn1::nat => 'a::type.
fn1 0 = e & (ALL n::nat. fn1 (Suc n) = f (fn1 n) n)"
by (import prim_rec num_Axiom_old)
lemma num_Axiom: "ALL (e::'a::type) f::nat => 'a::type => 'a::type.
EX x::nat => 'a::type. x 0 = e & (ALL n::nat. x (Suc n) = f n (x n))"
by (import prim_rec num_Axiom)
consts
wellfounded :: "('a => 'a => bool) => bool"
defs
wellfounded_primdef: "wellfounded ==
%R::'a::type => 'a::type => bool.
~ (EX f::nat => 'a::type. ALL n::nat. R (f (Suc n)) (f n))"
lemma wellfounded_def: "ALL R::'a::type => 'a::type => bool.
wellfounded R =
(~ (EX f::nat => 'a::type. ALL n::nat. R (f (Suc n)) (f n)))"
by (import prim_rec wellfounded_def)
lemma WF_IFF_WELLFOUNDED: "ALL R::'a::type => 'a::type => bool. WF R = wellfounded R"
by (import prim_rec WF_IFF_WELLFOUNDED)
lemma WF_PRED: "WF (%(x::nat) y::nat. y = Suc x)"
by (import prim_rec WF_PRED)
lemma WF_LESS: "(WF::(nat => nat => bool) => bool) (op <::nat => nat => bool)"
by (import prim_rec WF_LESS)
consts
measure :: "('a => nat) => 'a => 'a => bool"
defs
measure_primdef: "prim_rec.measure == relation.inv_image op <"
lemma measure_def: "prim_rec.measure = relation.inv_image op <"
by (import prim_rec measure_def)
lemma WF_measure: "ALL x::'a::type => nat. WF (prim_rec.measure x)"
by (import prim_rec WF_measure)
lemma measure_thm: "ALL (x::'a::type => nat) (xa::'a::type) xb::'a::type.
prim_rec.measure x xa xb = (x xa < x xb)"
by (import prim_rec measure_thm)
;end_setup
;setup_theory arithmetic
constdefs
nat_elim__magic :: "nat => nat"
"nat_elim__magic == %n::nat. n"
lemma nat_elim__magic: "ALL n::nat. nat_elim__magic n = n"
by (import arithmetic nat_elim__magic)
consts
EVEN :: "nat => bool"
specification (EVEN) EVEN: "EVEN 0 = True & (ALL n::nat. EVEN (Suc n) = (~ EVEN n))"
by (import arithmetic EVEN)
consts
ODD :: "nat => bool"
specification (ODD) ODD: "ODD 0 = False & (ALL n::nat. ODD (Suc n) = (~ ODD n))"
by (import arithmetic ODD)
lemma TWO: "2 = Suc 1"
by (import arithmetic TWO)
lemma NORM_0: "(op =::nat => nat => bool) (0::nat) (0::nat)"
by (import arithmetic NORM_0)
lemma num_case_compute: "ALL n::nat.
nat_case (f::'a::type) (g::nat => 'a::type) n =
(if n = 0 then f else g (PRE n))"
by (import arithmetic num_case_compute)
lemma ADD_CLAUSES: "0 + (m::nat) = m &
m + 0 = m & Suc m + (n::nat) = Suc (m + n) & m + Suc n = Suc (m + n)"
by (import arithmetic ADD_CLAUSES)
lemma LESS_ADD: "ALL (m::nat) n::nat. n < m --> (EX p::nat. p + n = m)"
by (import arithmetic LESS_ADD)
lemma LESS_ANTISYM: "ALL (m::nat) n::nat. ~ (m < n & n < m)"
by (import arithmetic LESS_ANTISYM)
lemma LESS_LESS_SUC: "ALL (x::nat) xa::nat. ~ (x < xa & xa < Suc x)"
by (import arithmetic LESS_LESS_SUC)
lemma FUN_EQ_LEMMA: "ALL (f::'a::type => bool) (x1::'a::type) x2::'a::type.
f x1 & ~ f x2 --> x1 ~= x2"
by (import arithmetic FUN_EQ_LEMMA)
lemma LESS_NOT_SUC: "ALL (m::nat) n::nat. m < n & n ~= Suc m --> Suc m < n"
by (import arithmetic LESS_NOT_SUC)
lemma LESS_0_CASES: "ALL m::nat. 0 = m | 0 < m"
by (import arithmetic LESS_0_CASES)
lemma LESS_CASES_IMP: "ALL (m::nat) n::nat. ~ m < n & m ~= n --> n < m"
by (import arithmetic LESS_CASES_IMP)
lemma LESS_CASES: "ALL (m::nat) n::nat. m < n | n <= m"
by (import arithmetic LESS_CASES)
lemma LESS_EQ_SUC_REFL: "ALL m::nat. m <= Suc m"
by (import arithmetic LESS_EQ_SUC_REFL)
lemma LESS_ADD_NONZERO: "ALL (m::nat) n::nat. n ~= 0 --> m < m + n"
by (import arithmetic LESS_ADD_NONZERO)
lemma LESS_EQ_ANTISYM: "ALL (x::nat) xa::nat. ~ (x < xa & xa <= x)"
by (import arithmetic LESS_EQ_ANTISYM)
lemma SUB_0: "ALL m::nat. 0 - m = 0 & m - 0 = m"
by (import arithmetic SUB_0)
lemma SUC_SUB1: "ALL m::nat. Suc m - 1 = m"
by (import arithmetic SUC_SUB1)
lemma PRE_SUB1: "ALL m::nat. PRE m = m - 1"
by (import arithmetic PRE_SUB1)
lemma MULT_CLAUSES: "ALL (x::nat) xa::nat.
0 * x = 0 &
x * 0 = 0 &
1 * x = x &
x * 1 = x & Suc x * xa = x * xa + xa & x * Suc xa = x + x * xa"
by (import arithmetic MULT_CLAUSES)
lemma PRE_SUB: "ALL (m::nat) n::nat. PRE (m - n) = PRE m - n"
by (import arithmetic PRE_SUB)
lemma ADD_EQ_1: "ALL (m::nat) n::nat. (m + n = 1) = (m = 1 & n = 0 | m = 0 & n = 1)"
by (import arithmetic ADD_EQ_1)
lemma ADD_INV_0_EQ: "ALL (m::nat) n::nat. (m + n = m) = (n = 0)"
by (import arithmetic ADD_INV_0_EQ)
lemma PRE_SUC_EQ: "ALL (m::nat) n::nat. 0 < n --> (m = PRE n) = (Suc m = n)"
by (import arithmetic PRE_SUC_EQ)
lemma INV_PRE_EQ: "ALL (m::nat) n::nat. 0 < m & 0 < n --> (PRE m = PRE n) = (m = n)"
by (import arithmetic INV_PRE_EQ)
lemma LESS_SUC_NOT: "ALL (m::nat) n::nat. m < n --> ~ n < Suc m"
by (import arithmetic LESS_SUC_NOT)
lemma ADD_EQ_SUB: "ALL (m::nat) (n::nat) p::nat. n <= p --> (m + n = p) = (m = p - n)"
by (import arithmetic ADD_EQ_SUB)
lemma LESS_ADD_1: "ALL (x::nat) xa::nat. xa < x --> (EX xb::nat. x = xa + (xb + 1))"
by (import arithmetic LESS_ADD_1)
lemma NOT_ODD_EQ_EVEN: "ALL (n::nat) m::nat. Suc (n + n) ~= m + m"
by (import arithmetic NOT_ODD_EQ_EVEN)
lemma MULT_SUC_EQ: "ALL (p::nat) (m::nat) n::nat. (n * Suc p = m * Suc p) = (n = m)"
by (import arithmetic MULT_SUC_EQ)
lemma MULT_EXP_MONO: "ALL (p::nat) (q::nat) (n::nat) m::nat.
(n * Suc q ^ p = m * Suc q ^ p) = (n = m)"
by (import arithmetic MULT_EXP_MONO)
lemma LESS_ADD_SUC: "ALL (m::nat) n::nat. m < m + Suc n"
by (import arithmetic LESS_ADD_SUC)
lemma LESS_OR_EQ_ADD: "ALL (n::nat) m::nat. n < m | (EX p::nat. n = p + m)"
by (import arithmetic LESS_OR_EQ_ADD)
lemma WOP: "(All::((nat => bool) => bool) => bool)
(%P::nat => bool.
(op -->::bool => bool => bool) ((Ex::(nat => bool) => bool) P)
((Ex::(nat => bool) => bool)
(%n::nat.
(op &::bool => bool => bool) (P n)
((All::(nat => bool) => bool)
(%m::nat.
(op -->::bool => bool => bool)
((op <::nat => nat => bool) m n)
((Not::bool => bool) (P m)))))))"
by (import arithmetic WOP)
lemma INV_PRE_LESS: "ALL m>0. ALL n::nat. (PRE m < PRE n) = (m < n)"
by (import arithmetic INV_PRE_LESS)
lemma INV_PRE_LESS_EQ: "ALL n>0. ALL m::nat. (PRE m <= PRE n) = (m <= n)"
by (import arithmetic INV_PRE_LESS_EQ)
lemma SUB_EQ_EQ_0: "ALL (m::nat) n::nat. (m - n = m) = (m = 0 | n = 0)"
by (import arithmetic SUB_EQ_EQ_0)
lemma SUB_LESS_OR: "ALL (m::nat) n::nat. n < m --> n <= m - 1"
by (import arithmetic SUB_LESS_OR)
lemma LESS_SUB_ADD_LESS: "ALL (n::nat) (m::nat) i::nat. i < n - m --> i + m < n"
by (import arithmetic LESS_SUB_ADD_LESS)
lemma LESS_EQ_SUB_LESS: "ALL (x::nat) xa::nat. xa <= x --> (ALL c::nat. (x - xa < c) = (x < xa + c))"
by (import arithmetic LESS_EQ_SUB_LESS)
lemma NOT_SUC_LESS_EQ: "ALL (x::nat) xa::nat. (~ Suc x <= xa) = (xa <= x)"
by (import arithmetic NOT_SUC_LESS_EQ)
lemma SUB_LESS_EQ_ADD: "ALL (m::nat) p::nat. m <= p --> (ALL n::nat. (p - m <= n) = (p <= m + n))"
by (import arithmetic SUB_LESS_EQ_ADD)
lemma SUB_CANCEL: "ALL (x::nat) (xa::nat) xb::nat.
xa <= x & xb <= x --> (x - xa = x - xb) = (xa = xb)"
by (import arithmetic SUB_CANCEL)
lemma NOT_EXP_0: "ALL (m::nat) n::nat. Suc n ^ m ~= 0"
by (import arithmetic NOT_EXP_0)
lemma ZERO_LESS_EXP: "ALL (m::nat) n::nat. 0 < Suc n ^ m"
by (import arithmetic ZERO_LESS_EXP)
lemma ODD_OR_EVEN: "ALL x::nat. EX xa::nat. x = Suc (Suc 0) * xa | x = Suc (Suc 0) * xa + 1"
by (import arithmetic ODD_OR_EVEN)
lemma LESS_EXP_SUC_MONO: "ALL (n::nat) m::nat. Suc (Suc m) ^ n < Suc (Suc m) ^ Suc n"
by (import arithmetic LESS_EXP_SUC_MONO)
lemma LESS_LESS_CASES: "ALL (m::nat) n::nat. m = n | m < n | n < m"
by (import arithmetic LESS_LESS_CASES)
lemma LESS_EQUAL_ADD: "ALL (m::nat) n::nat. m <= n --> (EX p::nat. n = m + p)"
by (import arithmetic LESS_EQUAL_ADD)
lemma MULT_EQ_1: "ALL (x::nat) y::nat. (x * y = 1) = (x = 1 & y = 1)"
by (import arithmetic MULT_EQ_1)
consts
FACT :: "nat => nat"
specification (FACT) FACT: "FACT 0 = 1 & (ALL n::nat. FACT (Suc n) = Suc n * FACT n)"
by (import arithmetic FACT)
lemma FACT_LESS: "ALL n::nat. 0 < FACT n"
by (import arithmetic FACT_LESS)
lemma EVEN_ODD: "ALL n::nat. EVEN n = (~ ODD n)"
by (import arithmetic EVEN_ODD)
lemma ODD_EVEN: "ALL x::nat. ODD x = (~ EVEN x)"
by (import arithmetic ODD_EVEN)
lemma EVEN_OR_ODD: "ALL x::nat. EVEN x | ODD x"
by (import arithmetic EVEN_OR_ODD)
lemma EVEN_AND_ODD: "ALL x::nat. ~ (EVEN x & ODD x)"
by (import arithmetic EVEN_AND_ODD)
lemma EVEN_ADD: "ALL (m::nat) n::nat. EVEN (m + n) = (EVEN m = EVEN n)"
by (import arithmetic EVEN_ADD)
lemma EVEN_MULT: "ALL (m::nat) n::nat. EVEN (m * n) = (EVEN m | EVEN n)"
by (import arithmetic EVEN_MULT)
lemma ODD_ADD: "ALL (m::nat) n::nat. ODD (m + n) = (ODD m ~= ODD n)"
by (import arithmetic ODD_ADD)
lemma ODD_MULT: "ALL (m::nat) n::nat. ODD (m * n) = (ODD m & ODD n)"
by (import arithmetic ODD_MULT)
lemma EVEN_DOUBLE: "ALL n::nat. EVEN (2 * n)"
by (import arithmetic EVEN_DOUBLE)
lemma ODD_DOUBLE: "ALL x::nat. ODD (Suc (2 * x))"
by (import arithmetic ODD_DOUBLE)
lemma EVEN_ODD_EXISTS: "ALL x::nat.
(EVEN x --> (EX m::nat. x = 2 * m)) &
(ODD x --> (EX m::nat. x = Suc (2 * m)))"
by (import arithmetic EVEN_ODD_EXISTS)
lemma EVEN_EXISTS: "ALL n::nat. EVEN n = (EX m::nat. n = 2 * m)"
by (import arithmetic EVEN_EXISTS)
lemma ODD_EXISTS: "ALL n::nat. ODD n = (EX m::nat. n = Suc (2 * m))"
by (import arithmetic ODD_EXISTS)
lemma NOT_SUC_LESS_EQ_0: "ALL x::nat. ~ Suc x <= 0"
by (import arithmetic NOT_SUC_LESS_EQ_0)
lemma NOT_LEQ: "ALL (x::nat) xa::nat. (~ x <= xa) = (Suc xa <= x)"
by (import arithmetic NOT_LEQ)
lemma NOT_NUM_EQ: "ALL (x::nat) xa::nat. (x ~= xa) = (Suc x <= xa | Suc xa <= x)"
by (import arithmetic NOT_NUM_EQ)
lemma NOT_GREATER_EQ: "ALL (x::nat) xa::nat. (~ xa <= x) = (Suc x <= xa)"
by (import arithmetic NOT_GREATER_EQ)
lemma SUC_ADD_SYM: "ALL (m::nat) n::nat. Suc (m + n) = Suc n + m"
by (import arithmetic SUC_ADD_SYM)
lemma NOT_SUC_ADD_LESS_EQ: "ALL (m::nat) n::nat. ~ Suc (m + n) <= m"
by (import arithmetic NOT_SUC_ADD_LESS_EQ)
lemma SUB_LEFT_ADD: "ALL (m::nat) (n::nat) p::nat.
m + (n - p) = (if n <= p then m else m + n - p)"
by (import arithmetic SUB_LEFT_ADD)
lemma SUB_RIGHT_ADD: "ALL (m::nat) (n::nat) p::nat. m - n + p = (if m <= n then p else m + p - n)"
by (import arithmetic SUB_RIGHT_ADD)
lemma SUB_LEFT_SUB: "ALL (m::nat) (n::nat) p::nat.
m - (n - p) = (if n <= p then m else m + p - n)"
by (import arithmetic SUB_LEFT_SUB)
lemma SUB_LEFT_SUC: "ALL (m::nat) n::nat. Suc (m - n) = (if m <= n then Suc 0 else Suc m - n)"
by (import arithmetic SUB_LEFT_SUC)
lemma SUB_LEFT_LESS_EQ: "ALL (m::nat) (n::nat) p::nat. (m <= n - p) = (m + p <= n | m <= 0)"
by (import arithmetic SUB_LEFT_LESS_EQ)
lemma SUB_RIGHT_LESS_EQ: "ALL (m::nat) (n::nat) p::nat. (m - n <= p) = (m <= n + p)"
by (import arithmetic SUB_RIGHT_LESS_EQ)
lemma SUB_RIGHT_LESS: "ALL (m::nat) (n::nat) p::nat. (m - n < p) = (m < n + p & 0 < p)"
by (import arithmetic SUB_RIGHT_LESS)
lemma SUB_RIGHT_GREATER_EQ: "ALL (m::nat) (n::nat) p::nat. (p <= m - n) = (n + p <= m | p <= 0)"
by (import arithmetic SUB_RIGHT_GREATER_EQ)
lemma SUB_LEFT_GREATER: "ALL (m::nat) (n::nat) p::nat. (n - p < m) = (n < m + p & 0 < m)"
by (import arithmetic SUB_LEFT_GREATER)
lemma SUB_RIGHT_GREATER: "ALL (m::nat) (n::nat) p::nat. (p < m - n) = (n + p < m)"
by (import arithmetic SUB_RIGHT_GREATER)
lemma SUB_LEFT_EQ: "ALL (m::nat) (n::nat) p::nat. (m = n - p) = (m + p = n | m <= 0 & n <= p)"
by (import arithmetic SUB_LEFT_EQ)
lemma SUB_RIGHT_EQ: "ALL (m::nat) (n::nat) p::nat. (m - n = p) = (m = n + p | m <= n & p <= 0)"
by (import arithmetic SUB_RIGHT_EQ)
lemma LE: "(ALL n::nat. (n <= 0) = (n = 0)) &
(ALL (m::nat) n::nat. (m <= Suc n) = (m = Suc n | m <= n))"
by (import arithmetic LE)
lemma DA: "ALL (k::nat) n::nat. 0 < n --> (EX (x::nat) q::nat. k = q * n + x & x < n)"
by (import arithmetic DA)
lemma DIV_LESS_EQ: "ALL n>0. ALL k::nat. k div n <= k"
by (import arithmetic DIV_LESS_EQ)
lemma DIV_UNIQUE: "ALL (n::nat) (k::nat) q::nat.
(EX r::nat. k = q * n + r & r < n) --> k div n = q"
by (import arithmetic DIV_UNIQUE)
lemma MOD_UNIQUE: "ALL (n::nat) (k::nat) r::nat.
(EX q::nat. k = q * n + r & r < n) --> k mod n = r"
by (import arithmetic MOD_UNIQUE)
lemma DIV_MULT: "ALL (n::nat) r::nat. r < n --> (ALL q::nat. (q * n + r) div n = q)"
by (import arithmetic DIV_MULT)
lemma MOD_EQ_0: "ALL n>0. ALL k::nat. k * n mod n = 0"
by (import arithmetic MOD_EQ_0)
lemma ZERO_MOD: "(All::(nat => bool) => bool)
(%n::nat.
(op -->::bool => bool => bool) ((op <::nat => nat => bool) (0::nat) n)
((op =::nat => nat => bool) ((op mod::nat => nat => nat) (0::nat) n)
(0::nat)))"
by (import arithmetic ZERO_MOD)
lemma ZERO_DIV: "(All::(nat => bool) => bool)
(%n::nat.
(op -->::bool => bool => bool) ((op <::nat => nat => bool) (0::nat) n)
((op =::nat => nat => bool) ((op div::nat => nat => nat) (0::nat) n)
(0::nat)))"
by (import arithmetic ZERO_DIV)
lemma MOD_MULT: "ALL (n::nat) r::nat. r < n --> (ALL q::nat. (q * n + r) mod n = r)"
by (import arithmetic MOD_MULT)
lemma MOD_TIMES: "ALL n>0. ALL (q::nat) r::nat. (q * n + r) mod n = r mod n"
by (import arithmetic MOD_TIMES)
lemma MOD_PLUS: "ALL n>0. ALL (j::nat) k::nat. (j mod n + k mod n) mod n = (j + k) mod n"
by (import arithmetic MOD_PLUS)
lemma MOD_MOD: "ALL n>0. ALL k::nat. k mod n mod n = k mod n"
by (import arithmetic MOD_MOD)
lemma ADD_DIV_ADD_DIV: "ALL x>0. ALL (xa::nat) r::nat. (xa * x + r) div x = xa + r div x"
by (import arithmetic ADD_DIV_ADD_DIV)
lemma MOD_MULT_MOD: "ALL (m::nat) n::nat.
0 < n & 0 < m --> (ALL x::nat. x mod (n * m) mod n = x mod n)"
by (import arithmetic MOD_MULT_MOD)
lemma DIVMOD_ID: "(All::(nat => bool) => bool)
(%n::nat.
(op -->::bool => bool => bool) ((op <::nat => nat => bool) (0::nat) n)
((op &::bool => bool => bool)
((op =::nat => nat => bool) ((op div::nat => nat => nat) n n)
(1::nat))
((op =::nat => nat => bool) ((op mod::nat => nat => nat) n n)
(0::nat))))"
by (import arithmetic DIVMOD_ID)
lemma DIV_DIV_DIV_MULT: "ALL (x::nat) xa::nat.
0 < x & 0 < xa --> (ALL xb::nat. xb div x div xa = xb div (x * xa))"
by (import arithmetic DIV_DIV_DIV_MULT)
lemma DIV_P: "ALL (P::nat => bool) (p::nat) q::nat.
0 < q --> P (p div q) = (EX (k::nat) r::nat. p = k * q + r & r < q & P k)"
by (import arithmetic DIV_P)
lemma MOD_P: "ALL (P::nat => bool) (p::nat) q::nat.
0 < q --> P (p mod q) = (EX (k::nat) r::nat. p = k * q + r & r < q & P r)"
by (import arithmetic MOD_P)
lemma MOD_TIMES2: "ALL n>0. ALL (j::nat) k::nat. j mod n * (k mod n) mod n = j * k mod n"
by (import arithmetic MOD_TIMES2)
lemma MOD_COMMON_FACTOR: "ALL (n::nat) (p::nat) q::nat.
0 < n & 0 < q --> n * (p mod q) = n * p mod (n * q)"
by (import arithmetic MOD_COMMON_FACTOR)
lemma num_case_cong: "ALL (M::nat) (M'::nat) (b::'a::type) f::nat => 'a::type.
M = M' &
(M' = 0 --> b = (b'::'a::type)) &
(ALL n::nat. M' = Suc n --> f n = (f'::nat => 'a::type) n) -->
nat_case b f M = nat_case b' f' M'"
by (import arithmetic num_case_cong)
lemma SUC_ELIM_THM: "ALL P::nat => nat => bool.
(ALL n::nat. P (Suc n) n) = (ALL n>0. P n (n - 1))"
by (import arithmetic SUC_ELIM_THM)
lemma SUB_ELIM_THM: "(P::nat => bool) ((a::nat) - (b::nat)) =
(ALL x::nat. (b = a + x --> P 0) & (a = b + x --> P x))"
by (import arithmetic SUB_ELIM_THM)
lemma PRE_ELIM_THM: "(P::nat => bool) (PRE (n::nat)) =
(ALL m::nat. (n = 0 --> P 0) & (n = Suc m --> P m))"
by (import arithmetic PRE_ELIM_THM)
lemma MULT_INCREASES: "ALL (m::nat) n::nat. 1 < m & 0 < n --> Suc n <= m * n"
by (import arithmetic MULT_INCREASES)
lemma EXP_ALWAYS_BIG_ENOUGH: "ALL b>1. ALL n::nat. EX m::nat. n <= b ^ m"
by (import arithmetic EXP_ALWAYS_BIG_ENOUGH)
lemma EXP_EQ_0: "ALL (n::nat) m::nat. (n ^ m = 0) = (n = 0 & 0 < m)"
by (import arithmetic EXP_EQ_0)
lemma EXP_1: "(All::(nat => bool) => bool)
(%x::nat.
(op &::bool => bool => bool)
((op =::nat => nat => bool) ((op ^::nat => nat => nat) (1::nat) x)
(1::nat))
((op =::nat => nat => bool) ((op ^::nat => nat => nat) x (1::nat)) x))"
by (import arithmetic EXP_1)
lemma EXP_EQ_1: "ALL (n::nat) m::nat. (n ^ m = 1) = (n = 1 | m = 0)"
by (import arithmetic EXP_EQ_1)
lemma MIN_MAX_EQ: "ALL (x::nat) xa::nat. (min x xa = max x xa) = (x = xa)"
by (import arithmetic MIN_MAX_EQ)
lemma MIN_MAX_LT: "ALL (x::nat) xa::nat. (min x xa < max x xa) = (x ~= xa)"
by (import arithmetic MIN_MAX_LT)
lemma MIN_MAX_PRED: "ALL (P::nat => bool) (m::nat) n::nat.
P m & P n --> P (min m n) & P (max m n)"
by (import arithmetic MIN_MAX_PRED)
lemma MIN_LT: "ALL (x::nat) xa::nat.
(min xa x < xa) = (xa ~= x & min xa x = x) &
(min xa x < x) = (xa ~= x & min xa x = xa) &
(xa < min xa x) = False & (x < min xa x) = False"
by (import arithmetic MIN_LT)
lemma MAX_LT: "ALL (x::nat) xa::nat.
(xa < max xa x) = (xa ~= x & max xa x = x) &
(x < max xa x) = (xa ~= x & max xa x = xa) &
(max xa x < xa) = False & (max xa x < x) = False"
by (import arithmetic MAX_LT)
lemma MIN_LE: "ALL (x::nat) xa::nat. min xa x <= xa & min xa x <= x"
by (import arithmetic MIN_LE)
lemma MAX_LE: "ALL (x::nat) xa::nat. xa <= max xa x & x <= max xa x"
by (import arithmetic MAX_LE)
lemma MIN_0: "ALL x::nat. min x 0 = 0 & min 0 x = 0"
by (import arithmetic MIN_0)
lemma MAX_0: "ALL x::nat. max x 0 = x & max 0 x = x"
by (import arithmetic MAX_0)
lemma EXISTS_GREATEST: "ALL P::nat => bool.
(Ex P & (EX x::nat. ALL y::nat. x < y --> ~ P y)) =
(EX x::nat. P x & (ALL y::nat. x < y --> ~ P y))"
by (import arithmetic EXISTS_GREATEST)
;end_setup
;setup_theory hrat
constdefs
trat_1 :: "nat * nat"
"trat_1 == (0, 0)"
lemma trat_1: "trat_1 = (0, 0)"
by (import hrat trat_1)
constdefs
trat_inv :: "nat * nat => nat * nat"
"trat_inv == %(x::nat, y::nat). (y, x)"
lemma trat_inv: "ALL (x::nat) y::nat. trat_inv (x, y) = (y, x)"
by (import hrat trat_inv)
constdefs
trat_add :: "nat * nat => nat * nat => nat * nat"
"trat_add ==
%(x::nat, y::nat) (x'::nat, y'::nat).
(PRE (Suc x * Suc y' + Suc x' * Suc y), PRE (Suc y * Suc y'))"
lemma trat_add: "ALL (x::nat) (y::nat) (x'::nat) y'::nat.
trat_add (x, y) (x', y') =
(PRE (Suc x * Suc y' + Suc x' * Suc y), PRE (Suc y * Suc y'))"
by (import hrat trat_add)
constdefs
trat_mul :: "nat * nat => nat * nat => nat * nat"
"trat_mul ==
%(x::nat, y::nat) (x'::nat, y'::nat).
(PRE (Suc x * Suc x'), PRE (Suc y * Suc y'))"
lemma trat_mul: "ALL (x::nat) (y::nat) (x'::nat) y'::nat.
trat_mul (x, y) (x', y') = (PRE (Suc x * Suc x'), PRE (Suc y * Suc y'))"
by (import hrat trat_mul)
consts
trat_sucint :: "nat => nat * nat"
specification (trat_sucint) trat_sucint: "trat_sucint 0 = trat_1 &
(ALL n::nat. trat_sucint (Suc n) = trat_add (trat_sucint n) trat_1)"
by (import hrat trat_sucint)
constdefs
trat_eq :: "nat * nat => nat * nat => bool"
"trat_eq ==
%(x::nat, y::nat) (x'::nat, y'::nat). Suc x * Suc y' = Suc x' * Suc y"
lemma trat_eq: "ALL (x::nat) (y::nat) (x'::nat) y'::nat.
trat_eq (x, y) (x', y') = (Suc x * Suc y' = Suc x' * Suc y)"
by (import hrat trat_eq)
lemma TRAT_EQ_REFL: "ALL p::nat * nat. trat_eq p p"
by (import hrat TRAT_EQ_REFL)
lemma TRAT_EQ_SYM: "ALL (p::nat * nat) q::nat * nat. trat_eq p q = trat_eq q p"
by (import hrat TRAT_EQ_SYM)
lemma TRAT_EQ_TRANS: "ALL (p::nat * nat) (q::nat * nat) r::nat * nat.
trat_eq p q & trat_eq q r --> trat_eq p r"
by (import hrat TRAT_EQ_TRANS)
lemma TRAT_EQ_AP: "ALL (p::nat * nat) q::nat * nat. p = q --> trat_eq p q"
by (import hrat TRAT_EQ_AP)
lemma TRAT_ADD_SYM_EQ: "ALL (h::nat * nat) i::nat * nat. trat_add h i = trat_add i h"
by (import hrat TRAT_ADD_SYM_EQ)
lemma TRAT_MUL_SYM_EQ: "ALL (h::nat * nat) i::nat * nat. trat_mul h i = trat_mul i h"
by (import hrat TRAT_MUL_SYM_EQ)
lemma TRAT_INV_WELLDEFINED: "ALL (p::nat * nat) q::nat * nat.
trat_eq p q --> trat_eq (trat_inv p) (trat_inv q)"
by (import hrat TRAT_INV_WELLDEFINED)
lemma TRAT_ADD_WELLDEFINED: "ALL (p::nat * nat) (q::nat * nat) r::nat * nat.
trat_eq p q --> trat_eq (trat_add p r) (trat_add q r)"
by (import hrat TRAT_ADD_WELLDEFINED)
lemma TRAT_ADD_WELLDEFINED2: "ALL (p1::nat * nat) (p2::nat * nat) (q1::nat * nat) q2::nat * nat.
trat_eq p1 p2 & trat_eq q1 q2 -->
trat_eq (trat_add p1 q1) (trat_add p2 q2)"
by (import hrat TRAT_ADD_WELLDEFINED2)
lemma TRAT_MUL_WELLDEFINED: "ALL (p::nat * nat) (q::nat * nat) r::nat * nat.
trat_eq p q --> trat_eq (trat_mul p r) (trat_mul q r)"
by (import hrat TRAT_MUL_WELLDEFINED)
lemma TRAT_MUL_WELLDEFINED2: "ALL (p1::nat * nat) (p2::nat * nat) (q1::nat * nat) q2::nat * nat.
trat_eq p1 p2 & trat_eq q1 q2 -->
trat_eq (trat_mul p1 q1) (trat_mul p2 q2)"
by (import hrat TRAT_MUL_WELLDEFINED2)
lemma TRAT_ADD_SYM: "ALL (h::nat * nat) i::nat * nat. trat_eq (trat_add h i) (trat_add i h)"
by (import hrat TRAT_ADD_SYM)
lemma TRAT_ADD_ASSOC: "ALL (h::nat * nat) (i::nat * nat) j::nat * nat.
trat_eq (trat_add h (trat_add i j)) (trat_add (trat_add h i) j)"
by (import hrat TRAT_ADD_ASSOC)
lemma TRAT_MUL_SYM: "ALL (h::nat * nat) i::nat * nat. trat_eq (trat_mul h i) (trat_mul i h)"
by (import hrat TRAT_MUL_SYM)
lemma TRAT_MUL_ASSOC: "ALL (h::nat * nat) (i::nat * nat) j::nat * nat.
trat_eq (trat_mul h (trat_mul i j)) (trat_mul (trat_mul h i) j)"
by (import hrat TRAT_MUL_ASSOC)
lemma TRAT_LDISTRIB: "ALL (h::nat * nat) (i::nat * nat) j::nat * nat.
trat_eq (trat_mul h (trat_add i j))
(trat_add (trat_mul h i) (trat_mul h j))"
by (import hrat TRAT_LDISTRIB)
lemma TRAT_MUL_LID: "ALL h::nat * nat. trat_eq (trat_mul trat_1 h) h"
by (import hrat TRAT_MUL_LID)
lemma TRAT_MUL_LINV: "ALL h::nat * nat. trat_eq (trat_mul (trat_inv h) h) trat_1"
by (import hrat TRAT_MUL_LINV)
lemma TRAT_NOZERO: "ALL (h::nat * nat) i::nat * nat. ~ trat_eq (trat_add h i) h"
by (import hrat TRAT_NOZERO)
lemma TRAT_ADD_TOTAL: "ALL (h::nat * nat) i::nat * nat.
trat_eq h i |
(EX d::nat * nat. trat_eq h (trat_add i d)) |
(EX d::nat * nat. trat_eq i (trat_add h d))"
by (import hrat TRAT_ADD_TOTAL)
lemma TRAT_SUCINT_0: "ALL n::nat. trat_eq (trat_sucint n) (n, 0)"
by (import hrat TRAT_SUCINT_0)
lemma TRAT_ARCH: "ALL h::nat * nat.
EX (n::nat) d::nat * nat. trat_eq (trat_sucint n) (trat_add h d)"
by (import hrat TRAT_ARCH)
lemma TRAT_SUCINT: "trat_eq (trat_sucint 0) trat_1 &
(ALL n::nat.
trat_eq (trat_sucint (Suc n)) (trat_add (trat_sucint n) trat_1))"
by (import hrat TRAT_SUCINT)
lemma TRAT_EQ_EQUIV: "ALL (p::nat * nat) q::nat * nat. trat_eq p q = (trat_eq p = trat_eq q)"
by (import hrat TRAT_EQ_EQUIV)
typedef (open) hrat = "{x::nat * nat => bool. EX xa::nat * nat. x = trat_eq xa}"
by (rule typedef_helper,import hrat hrat_TY_DEF)
lemmas hrat_TY_DEF = typedef_hol2hol4 [OF type_definition_hrat]
consts
mk_hrat :: "(nat * nat => bool) => hrat"
dest_hrat :: "hrat => nat * nat => bool"
specification (dest_hrat mk_hrat) hrat_tybij: "(ALL a::hrat. mk_hrat (dest_hrat a) = a) &
(ALL r::nat * nat => bool.
(EX x::nat * nat. r = trat_eq x) = (dest_hrat (mk_hrat r) = r))"
by (import hrat hrat_tybij)
constdefs
hrat_1 :: "hrat"
"hrat_1 == mk_hrat (trat_eq trat_1)"
lemma hrat_1: "hrat_1 = mk_hrat (trat_eq trat_1)"
by (import hrat hrat_1)
constdefs
hrat_inv :: "hrat => hrat"
"hrat_inv == %T1::hrat. mk_hrat (trat_eq (trat_inv (Eps (dest_hrat T1))))"
lemma hrat_inv: "ALL T1::hrat.
hrat_inv T1 = mk_hrat (trat_eq (trat_inv (Eps (dest_hrat T1))))"
by (import hrat hrat_inv)
constdefs
hrat_add :: "hrat => hrat => hrat"
"hrat_add ==
%(T1::hrat) T2::hrat.
mk_hrat (trat_eq (trat_add (Eps (dest_hrat T1)) (Eps (dest_hrat T2))))"
lemma hrat_add: "ALL (T1::hrat) T2::hrat.
hrat_add T1 T2 =
mk_hrat (trat_eq (trat_add (Eps (dest_hrat T1)) (Eps (dest_hrat T2))))"
by (import hrat hrat_add)
constdefs
hrat_mul :: "hrat => hrat => hrat"
"hrat_mul ==
%(T1::hrat) T2::hrat.
mk_hrat (trat_eq (trat_mul (Eps (dest_hrat T1)) (Eps (dest_hrat T2))))"
lemma hrat_mul: "ALL (T1::hrat) T2::hrat.
hrat_mul T1 T2 =
mk_hrat (trat_eq (trat_mul (Eps (dest_hrat T1)) (Eps (dest_hrat T2))))"
by (import hrat hrat_mul)
constdefs
hrat_sucint :: "nat => hrat"
"hrat_sucint == %T1::nat. mk_hrat (trat_eq (trat_sucint T1))"
lemma hrat_sucint: "ALL T1::nat. hrat_sucint T1 = mk_hrat (trat_eq (trat_sucint T1))"
by (import hrat hrat_sucint)
lemma HRAT_ADD_SYM: "ALL (h::hrat) i::hrat. hrat_add h i = hrat_add i h"
by (import hrat HRAT_ADD_SYM)
lemma HRAT_ADD_ASSOC: "ALL (h::hrat) (i::hrat) j::hrat.
hrat_add h (hrat_add i j) = hrat_add (hrat_add h i) j"
by (import hrat HRAT_ADD_ASSOC)
lemma HRAT_MUL_SYM: "ALL (h::hrat) i::hrat. hrat_mul h i = hrat_mul i h"
by (import hrat HRAT_MUL_SYM)
lemma HRAT_MUL_ASSOC: "ALL (h::hrat) (i::hrat) j::hrat.
hrat_mul h (hrat_mul i j) = hrat_mul (hrat_mul h i) j"
by (import hrat HRAT_MUL_ASSOC)
lemma HRAT_LDISTRIB: "ALL (h::hrat) (i::hrat) j::hrat.
hrat_mul h (hrat_add i j) = hrat_add (hrat_mul h i) (hrat_mul h j)"
by (import hrat HRAT_LDISTRIB)
lemma HRAT_MUL_LID: "ALL h::hrat. hrat_mul hrat_1 h = h"
by (import hrat HRAT_MUL_LID)
lemma HRAT_MUL_LINV: "ALL h::hrat. hrat_mul (hrat_inv h) h = hrat_1"
by (import hrat HRAT_MUL_LINV)
lemma HRAT_NOZERO: "ALL (h::hrat) i::hrat. hrat_add h i ~= h"
by (import hrat HRAT_NOZERO)
lemma HRAT_ADD_TOTAL: "ALL (h::hrat) i::hrat.
h = i | (EX x::hrat. h = hrat_add i x) | (EX x::hrat. i = hrat_add h x)"
by (import hrat HRAT_ADD_TOTAL)
lemma HRAT_ARCH: "ALL h::hrat. EX (x::nat) xa::hrat. hrat_sucint x = hrat_add h xa"
by (import hrat HRAT_ARCH)
lemma HRAT_SUCINT: "hrat_sucint 0 = hrat_1 &
(ALL x::nat. hrat_sucint (Suc x) = hrat_add (hrat_sucint x) hrat_1)"
by (import hrat HRAT_SUCINT)
;end_setup
;setup_theory hreal
constdefs
hrat_lt :: "hrat => hrat => bool"
"hrat_lt == %(x::hrat) y::hrat. EX d::hrat. y = hrat_add x d"
lemma hrat_lt: "ALL (x::hrat) y::hrat. hrat_lt x y = (EX d::hrat. y = hrat_add x d)"
by (import hreal hrat_lt)
lemma HRAT_LT_REFL: "ALL x::hrat. ~ hrat_lt x x"
by (import hreal HRAT_LT_REFL)
lemma HRAT_LT_TRANS: "ALL (x::hrat) (y::hrat) z::hrat. hrat_lt x y & hrat_lt y z --> hrat_lt x z"
by (import hreal HRAT_LT_TRANS)
lemma HRAT_LT_ANTISYM: "ALL (x::hrat) y::hrat. ~ (hrat_lt x y & hrat_lt y x)"
by (import hreal HRAT_LT_ANTISYM)
lemma HRAT_LT_TOTAL: "ALL (x::hrat) y::hrat. x = y | hrat_lt x y | hrat_lt y x"
by (import hreal HRAT_LT_TOTAL)
lemma HRAT_MUL_RID: "ALL x::hrat. hrat_mul x hrat_1 = x"
by (import hreal HRAT_MUL_RID)
lemma HRAT_MUL_RINV: "ALL x::hrat. hrat_mul x (hrat_inv x) = hrat_1"
by (import hreal HRAT_MUL_RINV)
lemma HRAT_RDISTRIB: "ALL (x::hrat) (y::hrat) z::hrat.
hrat_mul (hrat_add x y) z = hrat_add (hrat_mul x z) (hrat_mul y z)"
by (import hreal HRAT_RDISTRIB)
lemma HRAT_LT_ADDL: "ALL (x::hrat) y::hrat. hrat_lt x (hrat_add x y)"
by (import hreal HRAT_LT_ADDL)
lemma HRAT_LT_ADDR: "ALL (x::hrat) xa::hrat. hrat_lt xa (hrat_add x xa)"
by (import hreal HRAT_LT_ADDR)
lemma HRAT_LT_GT: "ALL (x::hrat) y::hrat. hrat_lt x y --> ~ hrat_lt y x"
by (import hreal HRAT_LT_GT)
lemma HRAT_LT_NE: "ALL (x::hrat) y::hrat. hrat_lt x y --> x ~= y"
by (import hreal HRAT_LT_NE)
lemma HRAT_EQ_LADD: "ALL (x::hrat) (y::hrat) z::hrat. (hrat_add x y = hrat_add x z) = (y = z)"
by (import hreal HRAT_EQ_LADD)
lemma HRAT_EQ_LMUL: "ALL (x::hrat) (y::hrat) z::hrat. (hrat_mul x y = hrat_mul x z) = (y = z)"
by (import hreal HRAT_EQ_LMUL)
lemma HRAT_LT_ADD2: "ALL (u::hrat) (v::hrat) (x::hrat) y::hrat.
hrat_lt u x & hrat_lt v y --> hrat_lt (hrat_add u v) (hrat_add x y)"
by (import hreal HRAT_LT_ADD2)
lemma HRAT_LT_LADD: "ALL (x::hrat) (y::hrat) z::hrat.
hrat_lt (hrat_add z x) (hrat_add z y) = hrat_lt x y"
by (import hreal HRAT_LT_LADD)
lemma HRAT_LT_RADD: "ALL (x::hrat) (y::hrat) z::hrat.
hrat_lt (hrat_add x z) (hrat_add y z) = hrat_lt x y"
by (import hreal HRAT_LT_RADD)
lemma HRAT_LT_MUL2: "ALL (u::hrat) (v::hrat) (x::hrat) y::hrat.
hrat_lt u x & hrat_lt v y --> hrat_lt (hrat_mul u v) (hrat_mul x y)"
by (import hreal HRAT_LT_MUL2)
lemma HRAT_LT_LMUL: "ALL (x::hrat) (y::hrat) z::hrat.
hrat_lt (hrat_mul z x) (hrat_mul z y) = hrat_lt x y"
by (import hreal HRAT_LT_LMUL)
lemma HRAT_LT_RMUL: "ALL (x::hrat) (y::hrat) z::hrat.
hrat_lt (hrat_mul x z) (hrat_mul y z) = hrat_lt x y"
by (import hreal HRAT_LT_RMUL)
lemma HRAT_LT_LMUL1: "ALL (x::hrat) y::hrat. hrat_lt (hrat_mul x y) y = hrat_lt x hrat_1"
by (import hreal HRAT_LT_LMUL1)
lemma HRAT_LT_RMUL1: "ALL (x::hrat) y::hrat. hrat_lt (hrat_mul x y) x = hrat_lt y hrat_1"
by (import hreal HRAT_LT_RMUL1)
lemma HRAT_GT_LMUL1: "ALL (x::hrat) y::hrat. hrat_lt y (hrat_mul x y) = hrat_lt hrat_1 x"
by (import hreal HRAT_GT_LMUL1)
lemma HRAT_LT_L1: "ALL (x::hrat) y::hrat.
hrat_lt (hrat_mul (hrat_inv x) y) hrat_1 = hrat_lt y x"
by (import hreal HRAT_LT_L1)
lemma HRAT_LT_R1: "ALL (x::hrat) y::hrat.
hrat_lt (hrat_mul x (hrat_inv y)) hrat_1 = hrat_lt x y"
by (import hreal HRAT_LT_R1)
lemma HRAT_GT_L1: "ALL (x::hrat) y::hrat.
hrat_lt hrat_1 (hrat_mul (hrat_inv x) y) = hrat_lt x y"
by (import hreal HRAT_GT_L1)
lemma HRAT_INV_MUL: "ALL (x::hrat) y::hrat.
hrat_inv (hrat_mul x y) = hrat_mul (hrat_inv x) (hrat_inv y)"
by (import hreal HRAT_INV_MUL)
lemma HRAT_UP: "ALL x::hrat. Ex (hrat_lt x)"
by (import hreal HRAT_UP)
lemma HRAT_DOWN: "ALL x::hrat. EX xa::hrat. hrat_lt xa x"
by (import hreal HRAT_DOWN)
lemma HRAT_DOWN2: "ALL (x::hrat) y::hrat. EX xa::hrat. hrat_lt xa x & hrat_lt xa y"
by (import hreal HRAT_DOWN2)
lemma HRAT_MEAN: "ALL (x::hrat) y::hrat.
hrat_lt x y --> (EX xa::hrat. hrat_lt x xa & hrat_lt xa y)"
by (import hreal HRAT_MEAN)
constdefs
isacut :: "(hrat => bool) => bool"
"isacut ==
%C::hrat => bool.
Ex C &
(EX x::hrat. ~ C x) &
(ALL (x::hrat) y::hrat. C x & hrat_lt y x --> C y) &
(ALL x::hrat. C x --> (EX y::hrat. C y & hrat_lt x y))"
lemma isacut: "ALL C::hrat => bool.
isacut C =
(Ex C &
(EX x::hrat. ~ C x) &
(ALL (x::hrat) y::hrat. C x & hrat_lt y x --> C y) &
(ALL x::hrat. C x --> (EX y::hrat. C y & hrat_lt x y)))"
by (import hreal isacut)
constdefs
cut_of_hrat :: "hrat => hrat => bool"
"cut_of_hrat == %(x::hrat) y::hrat. hrat_lt y x"
lemma cut_of_hrat: "ALL x::hrat. cut_of_hrat x = (%y::hrat. hrat_lt y x)"
by (import hreal cut_of_hrat)
lemma ISACUT_HRAT: "ALL h::hrat. isacut (cut_of_hrat h)"
by (import hreal ISACUT_HRAT)
typedef (open) hreal = "Collect isacut"
by (rule typedef_helper,import hreal hreal_TY_DEF)
lemmas hreal_TY_DEF = typedef_hol2hol4 [OF type_definition_hreal]
consts
hreal :: "(hrat => bool) => hreal"
cut :: "hreal => hrat => bool"
specification (cut hreal) hreal_tybij: "(ALL a::hreal. hreal (hreal.cut a) = a) &
(ALL r::hrat => bool. isacut r = (hreal.cut (hreal r) = r))"
by (import hreal hreal_tybij)
lemma EQUAL_CUTS: "ALL (X::hreal) Y::hreal. hreal.cut X = hreal.cut Y --> X = Y"
by (import hreal EQUAL_CUTS)
lemma CUT_ISACUT: "ALL x::hreal. isacut (hreal.cut x)"
by (import hreal CUT_ISACUT)
lemma CUT_NONEMPTY: "ALL x::hreal. Ex (hreal.cut x)"
by (import hreal CUT_NONEMPTY)
lemma CUT_BOUNDED: "ALL x::hreal. EX xa::hrat. ~ hreal.cut x xa"
by (import hreal CUT_BOUNDED)
lemma CUT_DOWN: "ALL (x::hreal) (xa::hrat) xb::hrat.
hreal.cut x xa & hrat_lt xb xa --> hreal.cut x xb"
by (import hreal CUT_DOWN)
lemma CUT_UP: "ALL (x::hreal) xa::hrat.
hreal.cut x xa --> (EX y::hrat. hreal.cut x y & hrat_lt xa y)"
by (import hreal CUT_UP)
lemma CUT_UBOUND: "ALL (x::hreal) (xa::hrat) xb::hrat.
~ hreal.cut x xa & hrat_lt xa xb --> ~ hreal.cut x xb"
by (import hreal CUT_UBOUND)
lemma CUT_STRADDLE: "ALL (X::hreal) (x::hrat) y::hrat.
hreal.cut X x & ~ hreal.cut X y --> hrat_lt x y"
by (import hreal CUT_STRADDLE)
lemma CUT_NEARTOP_ADD: "ALL (X::hreal) e::hrat.
EX x::hrat. hreal.cut X x & ~ hreal.cut X (hrat_add x e)"
by (import hreal CUT_NEARTOP_ADD)
lemma CUT_NEARTOP_MUL: "ALL (X::hreal) u::hrat.
hrat_lt hrat_1 u -->
(EX x::hrat. hreal.cut X x & ~ hreal.cut X (hrat_mul u x))"
by (import hreal CUT_NEARTOP_MUL)
constdefs
hreal_1 :: "hreal"
"hreal_1 == hreal (cut_of_hrat hrat_1)"
lemma hreal_1: "hreal_1 = hreal (cut_of_hrat hrat_1)"
by (import hreal hreal_1)
constdefs
hreal_add :: "hreal => hreal => hreal"
"hreal_add ==
%(X::hreal) Y::hreal.
hreal
(%w::hrat.
EX (x::hrat) y::hrat.
w = hrat_add x y & hreal.cut X x & hreal.cut Y y)"
lemma hreal_add: "ALL (X::hreal) Y::hreal.
hreal_add X Y =
hreal
(%w::hrat.
EX (x::hrat) y::hrat.
w = hrat_add x y & hreal.cut X x & hreal.cut Y y)"
by (import hreal hreal_add)
constdefs
hreal_mul :: "hreal => hreal => hreal"
"hreal_mul ==
%(X::hreal) Y::hreal.
hreal
(%w::hrat.
EX (x::hrat) y::hrat.
w = hrat_mul x y & hreal.cut X x & hreal.cut Y y)"
lemma hreal_mul: "ALL (X::hreal) Y::hreal.
hreal_mul X Y =
hreal
(%w::hrat.
EX (x::hrat) y::hrat.
w = hrat_mul x y & hreal.cut X x & hreal.cut Y y)"
by (import hreal hreal_mul)
constdefs
hreal_inv :: "hreal => hreal"
"hreal_inv ==
%X::hreal.
hreal
(%w::hrat.
EX d::hrat.
hrat_lt d hrat_1 &
(ALL x::hrat. hreal.cut X x --> hrat_lt (hrat_mul w x) d))"
lemma hreal_inv: "ALL X::hreal.
hreal_inv X =
hreal
(%w::hrat.
EX d::hrat.
hrat_lt d hrat_1 &
(ALL x::hrat. hreal.cut X x --> hrat_lt (hrat_mul w x) d))"
by (import hreal hreal_inv)
constdefs
hreal_sup :: "(hreal => bool) => hreal"
"hreal_sup ==
%P::hreal => bool. hreal (%w::hrat. EX X::hreal. P X & hreal.cut X w)"
lemma hreal_sup: "ALL P::hreal => bool.
hreal_sup P = hreal (%w::hrat. EX X::hreal. P X & hreal.cut X w)"
by (import hreal hreal_sup)
constdefs
hreal_lt :: "hreal => hreal => bool"
"hreal_lt ==
%(X::hreal) Y::hreal.
X ~= Y & (ALL x::hrat. hreal.cut X x --> hreal.cut Y x)"
lemma hreal_lt: "ALL (X::hreal) Y::hreal.
hreal_lt X Y = (X ~= Y & (ALL x::hrat. hreal.cut X x --> hreal.cut Y x))"
by (import hreal hreal_lt)
lemma HREAL_INV_ISACUT: "ALL X::hreal.
isacut
(%w::hrat.
EX d::hrat.
hrat_lt d hrat_1 &
(ALL x::hrat. hreal.cut X x --> hrat_lt (hrat_mul w x) d))"
by (import hreal HREAL_INV_ISACUT)
lemma HREAL_ADD_ISACUT: "ALL (X::hreal) Y::hreal.
isacut
(%w::hrat.
EX (x::hrat) y::hrat.
w = hrat_add x y & hreal.cut X x & hreal.cut Y y)"
by (import hreal HREAL_ADD_ISACUT)
lemma HREAL_MUL_ISACUT: "ALL (X::hreal) Y::hreal.
isacut
(%w::hrat.
EX (x::hrat) y::hrat.
w = hrat_mul x y & hreal.cut X x & hreal.cut Y y)"
by (import hreal HREAL_MUL_ISACUT)
lemma HREAL_ADD_SYM: "ALL (X::hreal) Y::hreal. hreal_add X Y = hreal_add Y X"
by (import hreal HREAL_ADD_SYM)
lemma HREAL_MUL_SYM: "ALL (X::hreal) Y::hreal. hreal_mul X Y = hreal_mul Y X"
by (import hreal HREAL_MUL_SYM)
lemma HREAL_ADD_ASSOC: "ALL (X::hreal) (Y::hreal) Z::hreal.
hreal_add X (hreal_add Y Z) = hreal_add (hreal_add X Y) Z"
by (import hreal HREAL_ADD_ASSOC)
lemma HREAL_MUL_ASSOC: "ALL (X::hreal) (Y::hreal) Z::hreal.
hreal_mul X (hreal_mul Y Z) = hreal_mul (hreal_mul X Y) Z"
by (import hreal HREAL_MUL_ASSOC)
lemma HREAL_LDISTRIB: "ALL (X::hreal) (Y::hreal) Z::hreal.
hreal_mul X (hreal_add Y Z) = hreal_add (hreal_mul X Y) (hreal_mul X Z)"
by (import hreal HREAL_LDISTRIB)
lemma HREAL_MUL_LID: "ALL X::hreal. hreal_mul hreal_1 X = X"
by (import hreal HREAL_MUL_LID)
lemma HREAL_MUL_LINV: "ALL X::hreal. hreal_mul (hreal_inv X) X = hreal_1"
by (import hreal HREAL_MUL_LINV)
lemma HREAL_NOZERO: "ALL (X::hreal) Y::hreal. hreal_add X Y ~= X"
by (import hreal HREAL_NOZERO)
constdefs
hreal_sub :: "hreal => hreal => hreal"
"hreal_sub ==
%(Y::hreal) X::hreal.
hreal
(%w::hrat. EX x::hrat. ~ hreal.cut X x & hreal.cut Y (hrat_add x w))"
lemma hreal_sub: "ALL (Y::hreal) X::hreal.
hreal_sub Y X =
hreal
(%w::hrat. EX x::hrat. ~ hreal.cut X x & hreal.cut Y (hrat_add x w))"
by (import hreal hreal_sub)
lemma HREAL_LT_LEMMA: "ALL (X::hreal) Y::hreal.
hreal_lt X Y --> (EX x::hrat. ~ hreal.cut X x & hreal.cut Y x)"
by (import hreal HREAL_LT_LEMMA)
lemma HREAL_SUB_ISACUT: "ALL (X::hreal) Y::hreal.
hreal_lt X Y -->
isacut
(%w::hrat. EX x::hrat. ~ hreal.cut X x & hreal.cut Y (hrat_add x w))"
by (import hreal HREAL_SUB_ISACUT)
lemma HREAL_SUB_ADD: "ALL (X::hreal) Y::hreal. hreal_lt X Y --> hreal_add (hreal_sub Y X) X = Y"
by (import hreal HREAL_SUB_ADD)
lemma HREAL_LT_TOTAL: "ALL (X::hreal) Y::hreal. X = Y | hreal_lt X Y | hreal_lt Y X"
by (import hreal HREAL_LT_TOTAL)
lemma HREAL_LT: "ALL (X::hreal) Y::hreal. hreal_lt X Y = (EX D::hreal. Y = hreal_add X D)"
by (import hreal HREAL_LT)
lemma HREAL_ADD_TOTAL: "ALL (X::hreal) Y::hreal.
X = Y |
(EX D::hreal. Y = hreal_add X D) | (EX D::hreal. X = hreal_add Y D)"
by (import hreal HREAL_ADD_TOTAL)
lemma HREAL_SUP_ISACUT: "ALL P::hreal => bool.
Ex P & (EX Y::hreal. ALL X::hreal. P X --> hreal_lt X Y) -->
isacut (%w::hrat. EX X::hreal. P X & hreal.cut X w)"
by (import hreal HREAL_SUP_ISACUT)
lemma HREAL_SUP: "ALL P::hreal => bool.
Ex P & (EX Y::hreal. ALL X::hreal. P X --> hreal_lt X Y) -->
(ALL Y::hreal.
(EX X::hreal. P X & hreal_lt Y X) = hreal_lt Y (hreal_sup P))"
by (import hreal HREAL_SUP)
;end_setup
;setup_theory numeral
lemma numeral_suc: "Suc ALT_ZERO = NUMERAL_BIT1 ALT_ZERO &
(ALL x::nat. Suc (NUMERAL_BIT1 x) = NUMERAL_BIT2 x) &
(ALL x::nat. Suc (NUMERAL_BIT2 x) = NUMERAL_BIT1 (Suc x))"
by (import numeral numeral_suc)
constdefs
iZ :: "nat => nat"
"iZ == %x::nat. x"
lemma iZ: "ALL x::nat. iZ x = x"
by (import numeral iZ)
constdefs
iiSUC :: "nat => nat"
"iiSUC == %n::nat. Suc (Suc n)"
lemma iiSUC: "ALL n::nat. iiSUC n = Suc (Suc n)"
by (import numeral iiSUC)
lemma numeral_distrib: "(op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::nat => nat => bool) ((op +::nat => nat => nat) (0::nat) x) x))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::nat => nat => bool) ((op +::nat => nat => nat) x (0::nat))
x))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(All::(nat => bool) => bool)
(%xa::nat.
(op =::nat => nat => bool)
((op +::nat => nat => nat) ((NUMERAL::nat => nat) x)
((NUMERAL::nat => nat) xa))
((NUMERAL::nat => nat)
((iZ::nat => nat) ((op +::nat => nat => nat) x xa))))))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::nat => nat => bool)
((op *::nat => nat => nat) (0::nat) x) (0::nat)))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::nat => nat => bool)
((op *::nat => nat => nat) x (0::nat)) (0::nat)))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(All::(nat => bool) => bool)
(%xa::nat.
(op =::nat => nat => bool)
((op *::nat => nat => nat) ((NUMERAL::nat => nat) x)
((NUMERAL::nat => nat) xa))
((NUMERAL::nat => nat)
((op *::nat => nat => nat) x xa)))))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::nat => nat => bool)
((op -::nat => nat => nat) (0::nat) x) (0::nat)))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::nat => nat => bool)
((op -::nat => nat => nat) x (0::nat)) x))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(All::(nat => bool) => bool)
(%xa::nat.
(op =::nat => nat => bool)
((op -::nat => nat => nat)
((NUMERAL::nat => nat) x)
((NUMERAL::nat => nat) xa))
((NUMERAL::nat => nat)
((op -::nat => nat => nat) x xa)))))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::nat => nat => bool)
((op ^::nat => nat => nat) (0::nat)
((NUMERAL::nat => nat)
((NUMERAL_BIT1::nat => nat) x)))
(0::nat)))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::nat => nat => bool)
((op ^::nat => nat => nat) (0::nat)
((NUMERAL::nat => nat)
((NUMERAL_BIT2::nat => nat) x)))
(0::nat)))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::nat => nat => bool)
((op ^::nat => nat => nat) x (0::nat))
(1::nat)))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(All::(nat => bool) => bool)
(%xa::nat.
(op =::nat => nat => bool)
((op ^::nat => nat => nat)
((NUMERAL::nat => nat) x) ((NUMERAL::nat => nat) xa))
((NUMERAL::nat => nat)
((op ^::nat => nat => nat) x xa)))))
((op &::bool => bool => bool)
((op =::nat => nat => bool)
((Suc::nat => nat) (0::nat)) (1::nat))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::nat => nat => bool)
((Suc::nat => nat)
((NUMERAL::nat => nat) x))
((NUMERAL::nat => nat)
((Suc::nat => nat) x))))
((op &::bool => bool => bool)
((op =::nat => nat => bool)
((PRE::nat => nat) (0::nat)) (0::nat))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::nat => nat => bool) ((PRE::nat => nat) ((NUMERAL::nat => nat) x))
((NUMERAL::nat => nat) ((PRE::nat => nat) x))))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::bool => bool => bool)
((op =::nat => nat => bool) ((NUMERAL::nat => nat) x) (0::nat))
((op =::nat => nat => bool) x (ALT_ZERO::nat))))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::bool => bool => bool)
((op =::nat => nat => bool) (0::nat) ((NUMERAL::nat => nat) x))
((op =::nat => nat => bool) x (ALT_ZERO::nat))))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(All::(nat => bool) => bool)
(%xa::nat.
(op =::bool => bool => bool)
((op =::nat => nat => bool) ((NUMERAL::nat => nat) x)
((NUMERAL::nat => nat) xa))
((op =::nat => nat => bool) x xa))))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::bool => bool => bool)
((op <::nat => nat => bool) x (0::nat)) (False::bool)))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::bool => bool => bool)
((op <::nat => nat => bool) (0::nat) ((NUMERAL::nat => nat) x))
((op <::nat => nat => bool) (ALT_ZERO::nat) x)))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(All::(nat => bool) => bool)
(%xa::nat.
(op =::bool => bool => bool)
((op <::nat => nat => bool) ((NUMERAL::nat => nat) x)
((NUMERAL::nat => nat) xa))
((op <::nat => nat => bool) x xa))))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::bool => bool => bool)
((op <::nat => nat => bool) x (0::nat)) (False::bool)))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::bool => bool => bool)
((op <::nat => nat => bool) (0::nat)
((NUMERAL::nat => nat) x))
((op <::nat => nat => bool) (ALT_ZERO::nat) x)))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(All::(nat => bool) => bool)
(%xa::nat.
(op =::bool => bool => bool)
((op <::nat => nat => bool)
((NUMERAL::nat => nat) xa)
((NUMERAL::nat => nat) x))
((op <::nat => nat => bool) xa x))))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::bool => bool => bool)
((op <=::nat => nat => bool) (0::nat) x)
(True::bool)))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::bool => bool => bool)
((op <=::nat => nat => bool)
((NUMERAL::nat => nat) x) (0::nat))
((op <=::nat => nat => bool) x (ALT_ZERO::nat))))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(All::(nat => bool) => bool)
(%xa::nat.
(op =::bool => bool => bool)
((op <=::nat => nat => bool)
((NUMERAL::nat => nat) x)
((NUMERAL::nat => nat) xa))
((op <=::nat => nat => bool) x xa))))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::bool => bool => bool)
((op <=::nat => nat => bool) (0::nat) x)
(True::bool)))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::bool => bool => bool)
((op <=::nat => nat => bool) x (0::nat))
((op =::nat => nat => bool) x (0::nat))))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(All::(nat => bool) => bool)
(%xa::nat.
(op =::bool => bool => bool)
((op <=::nat => nat => bool)
((NUMERAL::nat => nat) xa) ((NUMERAL::nat => nat) x))
((op <=::nat => nat => bool) xa x))))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::bool => bool => bool)
((ODD::nat => bool)
((NUMERAL::nat => nat) x))
((ODD::nat => bool) x)))
((op &::bool => bool => bool)
((All::(nat => bool) => bool)
(%x::nat.
(op =::bool => bool => bool)
((EVEN::nat => bool)
((NUMERAL::nat => nat) x))
((EVEN::nat => bool) x)))
((op &::bool => bool => bool)
((Not::bool => bool)
((ODD::nat => bool) (0::nat)))
((EVEN::nat => bool)
(0::nat))))))))))))))))))))))))))))))))))))"
by (import numeral numeral_distrib)
lemma numeral_iisuc: "iiSUC ALT_ZERO = NUMERAL_BIT2 ALT_ZERO &
iiSUC (NUMERAL_BIT1 (n::nat)) = NUMERAL_BIT1 (Suc n) &
iiSUC (NUMERAL_BIT2 n) = NUMERAL_BIT2 (Suc n)"
by (import numeral numeral_iisuc)
lemma numeral_add: "ALL (x::nat) xa::nat.
iZ (ALT_ZERO + x) = x &
iZ (x + ALT_ZERO) = x &
iZ (NUMERAL_BIT1 x + NUMERAL_BIT1 xa) = NUMERAL_BIT2 (iZ (x + xa)) &
iZ (NUMERAL_BIT1 x + NUMERAL_BIT2 xa) = NUMERAL_BIT1 (Suc (x + xa)) &
iZ (NUMERAL_BIT2 x + NUMERAL_BIT1 xa) = NUMERAL_BIT1 (Suc (x + xa)) &
iZ (NUMERAL_BIT2 x + NUMERAL_BIT2 xa) = NUMERAL_BIT2 (Suc (x + xa)) &
Suc (ALT_ZERO + x) = Suc x &
Suc (x + ALT_ZERO) = Suc x &
Suc (NUMERAL_BIT1 x + NUMERAL_BIT1 xa) = NUMERAL_BIT1 (Suc (x + xa)) &
Suc (NUMERAL_BIT1 x + NUMERAL_BIT2 xa) = NUMERAL_BIT2 (Suc (x + xa)) &
Suc (NUMERAL_BIT2 x + NUMERAL_BIT1 xa) = NUMERAL_BIT2 (Suc (x + xa)) &
Suc (NUMERAL_BIT2 x + NUMERAL_BIT2 xa) = NUMERAL_BIT1 (iiSUC (x + xa)) &
iiSUC (ALT_ZERO + x) = iiSUC x &
iiSUC (x + ALT_ZERO) = iiSUC x &
iiSUC (NUMERAL_BIT1 x + NUMERAL_BIT1 xa) = NUMERAL_BIT2 (Suc (x + xa)) &
iiSUC (NUMERAL_BIT1 x + NUMERAL_BIT2 xa) =
NUMERAL_BIT1 (iiSUC (x + xa)) &
iiSUC (NUMERAL_BIT2 x + NUMERAL_BIT1 xa) =
NUMERAL_BIT1 (iiSUC (x + xa)) &
iiSUC (NUMERAL_BIT2 x + NUMERAL_BIT2 xa) = NUMERAL_BIT2 (iiSUC (x + xa))"
by (import numeral numeral_add)
lemma numeral_eq: "ALL (x::nat) xa::nat.
(ALT_ZERO = NUMERAL_BIT1 x) = False &
(NUMERAL_BIT1 x = ALT_ZERO) = False &
(ALT_ZERO = NUMERAL_BIT2 x) = False &
(NUMERAL_BIT2 x = ALT_ZERO) = False &
(NUMERAL_BIT1 x = NUMERAL_BIT2 xa) = False &
(NUMERAL_BIT2 x = NUMERAL_BIT1 xa) = False &
(NUMERAL_BIT1 x = NUMERAL_BIT1 xa) = (x = xa) &
(NUMERAL_BIT2 x = NUMERAL_BIT2 xa) = (x = xa)"
by (import numeral numeral_eq)
lemma numeral_lt: "ALL (x::nat) xa::nat.
(ALT_ZERO < NUMERAL_BIT1 x) = True &
(ALT_ZERO < NUMERAL_BIT2 x) = True &
(x < ALT_ZERO) = False &
(NUMERAL_BIT1 x < NUMERAL_BIT1 xa) = (x < xa) &
(NUMERAL_BIT2 x < NUMERAL_BIT2 xa) = (x < xa) &
(NUMERAL_BIT1 x < NUMERAL_BIT2 xa) = (~ xa < x) &
(NUMERAL_BIT2 x < NUMERAL_BIT1 xa) = (x < xa)"
by (import numeral numeral_lt)
lemma numeral_lte: "ALL (x::nat) xa::nat.
(ALT_ZERO <= x) = True &
(NUMERAL_BIT1 x <= ALT_ZERO) = False &
(NUMERAL_BIT2 x <= ALT_ZERO) = False &
(NUMERAL_BIT1 x <= NUMERAL_BIT1 xa) = (x <= xa) &
(NUMERAL_BIT1 x <= NUMERAL_BIT2 xa) = (x <= xa) &
(NUMERAL_BIT2 x <= NUMERAL_BIT1 xa) = (~ xa <= x) &
(NUMERAL_BIT2 x <= NUMERAL_BIT2 xa) = (x <= xa)"
by (import numeral numeral_lte)
lemma numeral_pre: "PRE ALT_ZERO = ALT_ZERO &
PRE (NUMERAL_BIT1 ALT_ZERO) = ALT_ZERO &
(ALL x::nat.
PRE (NUMERAL_BIT1 (NUMERAL_BIT1 x)) =
NUMERAL_BIT2 (PRE (NUMERAL_BIT1 x))) &
(ALL x::nat.
PRE (NUMERAL_BIT1 (NUMERAL_BIT2 x)) = NUMERAL_BIT2 (NUMERAL_BIT1 x)) &
(ALL x::nat. PRE (NUMERAL_BIT2 x) = NUMERAL_BIT1 x)"
by (import numeral numeral_pre)
lemma bit_initiality: "ALL (zf::'a::type) (b1f::nat => 'a::type => 'a::type)
b2f::nat => 'a::type => 'a::type.
EX x::nat => 'a::type.
x ALT_ZERO = zf &
(ALL n::nat. x (NUMERAL_BIT1 n) = b1f n (x n)) &
(ALL n::nat. x (NUMERAL_BIT2 n) = b2f n (x n))"
by (import numeral bit_initiality)
consts
iBIT_cases :: "nat => 'a => (nat => 'a) => (nat => 'a) => 'a"
specification (iBIT_cases) iBIT_cases: "(ALL (zf::'a::type) (bf1::nat => 'a::type) bf2::nat => 'a::type.
iBIT_cases ALT_ZERO zf bf1 bf2 = zf) &
(ALL (n::nat) (zf::'a::type) (bf1::nat => 'a::type) bf2::nat => 'a::type.
iBIT_cases (NUMERAL_BIT1 n) zf bf1 bf2 = bf1 n) &
(ALL (n::nat) (zf::'a::type) (bf1::nat => 'a::type) bf2::nat => 'a::type.
iBIT_cases (NUMERAL_BIT2 n) zf bf1 bf2 = bf2 n)"
by (import numeral iBIT_cases)
constdefs
iDUB :: "nat => nat"
"iDUB == %x::nat. x + x"
lemma iDUB: "ALL x::nat. iDUB x = x + x"
by (import numeral iDUB)
consts
iSUB :: "bool => nat => nat => nat"
specification (iSUB) iSUB_DEF: "(ALL (b::bool) x::nat. iSUB b ALT_ZERO x = ALT_ZERO) &
(ALL (b::bool) (n::nat) x::nat.
iSUB b (NUMERAL_BIT1 n) x =
(if b
then iBIT_cases x (NUMERAL_BIT1 n) (%m::nat. iDUB (iSUB True n m))
(%m::nat. NUMERAL_BIT1 (iSUB False n m))
else iBIT_cases x (iDUB n) (%m::nat. NUMERAL_BIT1 (iSUB False n m))
(%m::nat. iDUB (iSUB False n m)))) &
(ALL (b::bool) (n::nat) x::nat.
iSUB b (NUMERAL_BIT2 n) x =
(if b
then iBIT_cases x (NUMERAL_BIT2 n)
(%m::nat. NUMERAL_BIT1 (iSUB True n m))
(%m::nat. iDUB (iSUB True n m))
else iBIT_cases x (NUMERAL_BIT1 n) (%m::nat. iDUB (iSUB True n m))
(%m::nat. NUMERAL_BIT1 (iSUB False n m))))"
by (import numeral iSUB_DEF)
lemma bit_induction: "ALL P::nat => bool.
P ALT_ZERO &
(ALL n::nat. P n --> P (NUMERAL_BIT1 n)) &
(ALL n::nat. P n --> P (NUMERAL_BIT2 n)) -->
All P"
by (import numeral bit_induction)
lemma iSUB_THM: "ALL (xa::bool) (xb::nat) xc::nat.
iSUB xa ALT_ZERO (x::nat) = ALT_ZERO &
iSUB True xb ALT_ZERO = xb &
iSUB False (NUMERAL_BIT1 xb) ALT_ZERO = iDUB xb &
iSUB True (NUMERAL_BIT1 xb) (NUMERAL_BIT1 xc) = iDUB (iSUB True xb xc) &
iSUB False (NUMERAL_BIT1 xb) (NUMERAL_BIT1 xc) =
NUMERAL_BIT1 (iSUB False xb xc) &
iSUB True (NUMERAL_BIT1 xb) (NUMERAL_BIT2 xc) =
NUMERAL_BIT1 (iSUB False xb xc) &
iSUB False (NUMERAL_BIT1 xb) (NUMERAL_BIT2 xc) =
iDUB (iSUB False xb xc) &
iSUB False (NUMERAL_BIT2 xb) ALT_ZERO = NUMERAL_BIT1 xb &
iSUB True (NUMERAL_BIT2 xb) (NUMERAL_BIT1 xc) =
NUMERAL_BIT1 (iSUB True xb xc) &
iSUB False (NUMERAL_BIT2 xb) (NUMERAL_BIT1 xc) = iDUB (iSUB True xb xc) &
iSUB True (NUMERAL_BIT2 xb) (NUMERAL_BIT2 xc) = iDUB (iSUB True xb xc) &
iSUB False (NUMERAL_BIT2 xb) (NUMERAL_BIT2 xc) =
NUMERAL_BIT1 (iSUB False xb xc)"
by (import numeral iSUB_THM)
lemma numeral_sub: "ALL (x::nat) xa::nat.
NUMERAL (x - xa) = (if xa < x then NUMERAL (iSUB True x xa) else 0)"
by (import numeral numeral_sub)
lemma iDUB_removal: "ALL x::nat.
iDUB (NUMERAL_BIT1 x) = NUMERAL_BIT2 (iDUB x) &
iDUB (NUMERAL_BIT2 x) = NUMERAL_BIT2 (NUMERAL_BIT1 x) &
iDUB ALT_ZERO = ALT_ZERO"
by (import numeral iDUB_removal)
lemma numeral_mult: "ALL (x::nat) xa::nat.
ALT_ZERO * x = ALT_ZERO &
x * ALT_ZERO = ALT_ZERO &
NUMERAL_BIT1 x * xa = iZ (iDUB (x * xa) + xa) &
NUMERAL_BIT2 x * xa = iDUB (iZ (x * xa + xa))"
by (import numeral numeral_mult)
constdefs
iSQR :: "nat => nat"
"iSQR == %x::nat. x * x"
lemma iSQR: "ALL x::nat. iSQR x = x * x"
by (import numeral iSQR)
lemma numeral_exp: "(ALL x::nat. x ^ ALT_ZERO = NUMERAL_BIT1 ALT_ZERO) &
(ALL (x::nat) xa::nat. x ^ NUMERAL_BIT1 xa = x * iSQR (x ^ xa)) &
(ALL (x::nat) xa::nat. x ^ NUMERAL_BIT2 xa = iSQR x * iSQR (x ^ xa))"
by (import numeral numeral_exp)
lemma numeral_evenodd: "ALL x::nat.
EVEN ALT_ZERO &
EVEN (NUMERAL_BIT2 x) &
~ EVEN (NUMERAL_BIT1 x) &
~ ODD ALT_ZERO & ~ ODD (NUMERAL_BIT2 x) & ODD (NUMERAL_BIT1 x)"
by (import numeral numeral_evenodd)
lemma numeral_fact: "ALL n::nat. FACT n = (if n = 0 then 1 else n * FACT (PRE n))"
by (import numeral numeral_fact)
lemma numeral_funpow: "ALL n::nat.
((f::'a::type => 'a::type) ^ n) (x::'a::type) =
(if n = 0 then x else (f ^ (n - 1)) (f x))"
by (import numeral numeral_funpow)
;end_setup
;setup_theory ind_type
lemma INJ_INVERSE2: "ALL P::'A::type => 'B::type => 'C::type.
(ALL (x1::'A::type) (y1::'B::type) (x2::'A::type) y2::'B::type.
(P x1 y1 = P x2 y2) = (x1 = x2 & y1 = y2)) -->
(EX (x::'C::type => 'A::type) Y::'C::type => 'B::type.
ALL (xa::'A::type) y::'B::type. x (P xa y) = xa & Y (P xa y) = y)"
by (import ind_type INJ_INVERSE2)
constdefs
NUMPAIR :: "nat => nat => nat"
"NUMPAIR == %(x::nat) y::nat. 2 ^ x * (2 * y + 1)"
lemma NUMPAIR: "ALL (x::nat) y::nat. NUMPAIR x y = 2 ^ x * (2 * y + 1)"
by (import ind_type NUMPAIR)
lemma NUMPAIR_INJ_LEMMA: "ALL (x::nat) (xa::nat) (xb::nat) xc::nat.
NUMPAIR x xa = NUMPAIR xb xc --> x = xb"
by (import ind_type NUMPAIR_INJ_LEMMA)
lemma NUMPAIR_INJ: "ALL (x1::nat) (y1::nat) (x2::nat) y2::nat.
(NUMPAIR x1 y1 = NUMPAIR x2 y2) = (x1 = x2 & y1 = y2)"
by (import ind_type NUMPAIR_INJ)
consts
NUMSND :: "nat => nat"
NUMFST :: "nat => nat"
specification (NUMFST NUMSND) NUMPAIR_DEST: "ALL (x::nat) y::nat. NUMFST (NUMPAIR x y) = x & NUMSND (NUMPAIR x y) = y"
by (import ind_type NUMPAIR_DEST)
constdefs
NUMSUM :: "bool => nat => nat"
"NUMSUM == %(b::bool) x::nat. if b then Suc (2 * x) else 2 * x"
lemma NUMSUM: "ALL (b::bool) x::nat. NUMSUM b x = (if b then Suc (2 * x) else 2 * x)"
by (import ind_type NUMSUM)
lemma NUMSUM_INJ: "ALL (b1::bool) (x1::nat) (b2::bool) x2::nat.
(NUMSUM b1 x1 = NUMSUM b2 x2) = (b1 = b2 & x1 = x2)"
by (import ind_type NUMSUM_INJ)
consts
NUMRIGHT :: "nat => nat"
NUMLEFT :: "nat => bool"
specification (NUMLEFT NUMRIGHT) NUMSUM_DEST: "ALL (x::bool) y::nat. NUMLEFT (NUMSUM x y) = x & NUMRIGHT (NUMSUM x y) = y"
by (import ind_type NUMSUM_DEST)
constdefs
INJN :: "nat => nat => 'a => bool"
"INJN == %(m::nat) (n::nat) a::'a::type. n = m"
lemma INJN: "ALL m::nat. INJN m = (%(n::nat) a::'a::type. n = m)"
by (import ind_type INJN)
lemma INJN_INJ: "ALL (n1::nat) n2::nat. (INJN n1 = INJN n2) = (n1 = n2)"
by (import ind_type INJN_INJ)
constdefs
INJA :: "'a => nat => 'a => bool"
"INJA == %(a::'a::type) (n::nat) b::'a::type. b = a"
lemma INJA: "ALL a::'a::type. INJA a = (%(n::nat) b::'a::type. b = a)"
by (import ind_type INJA)
lemma INJA_INJ: "ALL (a1::'a::type) a2::'a::type. (INJA a1 = INJA a2) = (a1 = a2)"
by (import ind_type INJA_INJ)
constdefs
INJF :: "(nat => nat => 'a => bool) => nat => 'a => bool"
"INJF == %(f::nat => nat => 'a::type => bool) n::nat. f (NUMFST n) (NUMSND n)"
lemma INJF: "ALL f::nat => nat => 'a::type => bool.
INJF f = (%n::nat. f (NUMFST n) (NUMSND n))"
by (import ind_type INJF)
lemma INJF_INJ: "ALL (f1::nat => nat => 'a::type => bool) f2::nat => nat => 'a::type => bool.
(INJF f1 = INJF f2) = (f1 = f2)"
by (import ind_type INJF_INJ)
constdefs
INJP :: "(nat => 'a => bool) => (nat => 'a => bool) => nat => 'a => bool"
"INJP ==
%(f1::nat => 'a::type => bool) (f2::nat => 'a::type => bool) (n::nat)
a::'a::type. if NUMLEFT n then f1 (NUMRIGHT n) a else f2 (NUMRIGHT n) a"
lemma INJP: "ALL (f1::nat => 'a::type => bool) f2::nat => 'a::type => bool.
INJP f1 f2 =
(%(n::nat) a::'a::type.
if NUMLEFT n then f1 (NUMRIGHT n) a else f2 (NUMRIGHT n) a)"
by (import ind_type INJP)
lemma INJP_INJ: "ALL (f1::nat => 'a::type => bool) (f1'::nat => 'a::type => bool)
(f2::nat => 'a::type => bool) f2'::nat => 'a::type => bool.
(INJP f1 f2 = INJP f1' f2') = (f1 = f1' & f2 = f2')"
by (import ind_type INJP_INJ)
constdefs
ZCONSTR :: "nat => 'a => (nat => nat => 'a => bool) => nat => 'a => bool"
"ZCONSTR ==
%(c::nat) (i::'a::type) r::nat => nat => 'a::type => bool.
INJP (INJN (Suc c)) (INJP (INJA i) (INJF r))"
lemma ZCONSTR: "ALL (c::nat) (i::'a::type) r::nat => nat => 'a::type => bool.
ZCONSTR c i r = INJP (INJN (Suc c)) (INJP (INJA i) (INJF r))"
by (import ind_type ZCONSTR)
constdefs
ZBOT :: "nat => 'a => bool"
"ZBOT == INJP (INJN 0) (SOME z::nat => 'a::type => bool. True)"
lemma ZBOT: "ZBOT = INJP (INJN 0) (SOME z::nat => 'a::type => bool. True)"
by (import ind_type ZBOT)
lemma ZCONSTR_ZBOT: "ALL (x::nat) (xa::'a::type) xb::nat => nat => 'a::type => bool.
ZCONSTR x xa xb ~= ZBOT"
by (import ind_type ZCONSTR_ZBOT)
constdefs
ZRECSPACE :: "(nat => 'a => bool) => bool"
"ZRECSPACE ==
%a0::nat => 'a::type => bool.
ALL ZRECSPACE'::(nat => 'a::type => bool) => bool.
(ALL a0::nat => 'a::type => bool.
a0 = ZBOT |
(EX (c::nat) (i::'a::type) r::nat => nat => 'a::type => bool.
a0 = ZCONSTR c i r & (ALL n::nat. ZRECSPACE' (r n))) -->
ZRECSPACE' a0) -->
ZRECSPACE' a0"
lemma ZRECSPACE: "ZRECSPACE =
(%a0::nat => 'a::type => bool.
ALL ZRECSPACE'::(nat => 'a::type => bool) => bool.
(ALL a0::nat => 'a::type => bool.
a0 = ZBOT |
(EX (c::nat) (i::'a::type) r::nat => nat => 'a::type => bool.
a0 = ZCONSTR c i r & (ALL n::nat. ZRECSPACE' (r n))) -->
ZRECSPACE' a0) -->
ZRECSPACE' a0)"
by (import ind_type ZRECSPACE)
lemma ZRECSPACE_rules: "(op &::bool => bool => bool)
((ZRECSPACE::(nat => 'a::type => bool) => bool)
(ZBOT::nat => 'a::type => bool))
((All::(nat => bool) => bool)
(%c::nat.
(All::('a::type => bool) => bool)
(%i::'a::type.
(All::((nat => nat => 'a::type => bool) => bool) => bool)
(%r::nat => nat => 'a::type => bool.
(op -->::bool => bool => bool)
((All::(nat => bool) => bool)
(%n::nat.
(ZRECSPACE::(nat => 'a::type => bool) => bool)
(r n)))
((ZRECSPACE::(nat => 'a::type => bool) => bool)
((ZCONSTR::nat
=> 'a::type
=> (nat => nat => 'a::type => bool)
=> nat => 'a::type => bool)
c i r))))))"
by (import ind_type ZRECSPACE_rules)
lemma ZRECSPACE_ind: "ALL x::(nat => 'a::type => bool) => bool.
x ZBOT &
(ALL (c::nat) (i::'a::type) r::nat => nat => 'a::type => bool.
(ALL n::nat. x (r n)) --> x (ZCONSTR c i r)) -->
(ALL a0::nat => 'a::type => bool. ZRECSPACE a0 --> x a0)"
by (import ind_type ZRECSPACE_ind)
lemma ZRECSPACE_cases: "ALL a0::nat => 'a::type => bool.
ZRECSPACE a0 =
(a0 = ZBOT |
(EX (c::nat) (i::'a::type) r::nat => nat => 'a::type => bool.
a0 = ZCONSTR c i r & (ALL n::nat. ZRECSPACE (r n))))"
by (import ind_type ZRECSPACE_cases)
typedef (open) ('a) recspace = "(Collect::((nat => 'a::type => bool) => bool)
=> (nat => 'a::type => bool) set)
(ZRECSPACE::(nat => 'a::type => bool) => bool)"
by (rule typedef_helper,import ind_type recspace_TY_DEF)
lemmas recspace_TY_DEF = typedef_hol2hol4 [OF type_definition_recspace]
consts
mk_rec :: "(nat => 'a => bool) => 'a recspace"
dest_rec :: "'a recspace => nat => 'a => bool"
specification (dest_rec mk_rec) recspace_repfns: "(ALL a::'a::type recspace. mk_rec (dest_rec a) = a) &
(ALL r::nat => 'a::type => bool. ZRECSPACE r = (dest_rec (mk_rec r) = r))"
by (import ind_type recspace_repfns)
constdefs
BOTTOM :: "'a recspace"
"BOTTOM == mk_rec ZBOT"
lemma BOTTOM: "BOTTOM = mk_rec ZBOT"
by (import ind_type BOTTOM)
constdefs
CONSTR :: "nat => 'a => (nat => 'a recspace) => 'a recspace"
"CONSTR ==
%(c::nat) (i::'a::type) r::nat => 'a::type recspace.
mk_rec (ZCONSTR c i (%n::nat. dest_rec (r n)))"
lemma CONSTR: "ALL (c::nat) (i::'a::type) r::nat => 'a::type recspace.
CONSTR c i r = mk_rec (ZCONSTR c i (%n::nat. dest_rec (r n)))"
by (import ind_type CONSTR)
lemma MK_REC_INJ: "ALL (x::nat => 'a::type => bool) y::nat => 'a::type => bool.
mk_rec x = mk_rec y --> ZRECSPACE x & ZRECSPACE y --> x = y"
by (import ind_type MK_REC_INJ)
lemma DEST_REC_INJ: "ALL (x::'a::type recspace) y::'a::type recspace.
(dest_rec x = dest_rec y) = (x = y)"
by (import ind_type DEST_REC_INJ)
lemma CONSTR_BOT: "ALL (c::nat) (i::'a::type) r::nat => 'a::type recspace.
CONSTR c i r ~= BOTTOM"
by (import ind_type CONSTR_BOT)
lemma CONSTR_INJ: "ALL (c1::nat) (i1::'a::type) (r1::nat => 'a::type recspace) (c2::nat)
(i2::'a::type) r2::nat => 'a::type recspace.
(CONSTR c1 i1 r1 = CONSTR c2 i2 r2) = (c1 = c2 & i1 = i2 & r1 = r2)"
by (import ind_type CONSTR_INJ)
lemma CONSTR_IND: "ALL P::'a::type recspace => bool.
P BOTTOM &
(ALL (c::nat) (i::'a::type) r::nat => 'a::type recspace.
(ALL n::nat. P (r n)) --> P (CONSTR c i r)) -->
All P"
by (import ind_type CONSTR_IND)
lemma CONSTR_REC: "ALL Fn::nat
=> 'a::type
=> (nat => 'a::type recspace) => (nat => 'b::type) => 'b::type.
EX f::'a::type recspace => 'b::type.
ALL (c::nat) (i::'a::type) r::nat => 'a::type recspace.
f (CONSTR c i r) = Fn c i r (%n::nat. f (r n))"
by (import ind_type CONSTR_REC)
consts
FCONS :: "'a => (nat => 'a) => nat => 'a"
specification (FCONS) FCONS: "(ALL (a::'a::type) f::nat => 'a::type. FCONS a f 0 = a) &
(ALL (a::'a::type) (f::nat => 'a::type) n::nat. FCONS a f (Suc n) = f n)"
by (import ind_type FCONS)
constdefs
FNIL :: "nat => 'a"
"FNIL == %n::nat. SOME x::'a::type. True"
lemma FNIL: "ALL n::nat. FNIL n = (SOME x::'a::type. True)"
by (import ind_type FNIL)
constdefs
ISO :: "('a => 'b) => ('b => 'a) => bool"
"ISO ==
%(f::'a::type => 'b::type) g::'b::type => 'a::type.
(ALL x::'b::type. f (g x) = x) & (ALL y::'a::type. g (f y) = y)"
lemma ISO: "ALL (f::'a::type => 'b::type) g::'b::type => 'a::type.
ISO f g =
((ALL x::'b::type. f (g x) = x) & (ALL y::'a::type. g (f y) = y))"
by (import ind_type ISO)
lemma ISO_REFL: "ISO (%x::'a::type. x) (%x::'a::type. x)"
by (import ind_type ISO_REFL)
lemma ISO_FUN: "ISO (f::'a::type => 'c::type) (f'::'c::type => 'a::type) &
ISO (g::'b::type => 'd::type) (g'::'d::type => 'b::type) -->
ISO (%(h::'a::type => 'b::type) a'::'c::type. g (h (f' a')))
(%(h::'c::type => 'd::type) a::'a::type. g' (h (f a)))"
by (import ind_type ISO_FUN)
lemma ISO_USAGE: "ISO (f::'a::type => 'b::type) (g::'b::type => 'a::type) -->
(ALL P::'a::type => bool. All P = (ALL x::'b::type. P (g x))) &
(ALL P::'a::type => bool. Ex P = (EX x::'b::type. P (g x))) &
(ALL (a::'a::type) b::'b::type. (a = g b) = (f a = b))"
by (import ind_type ISO_USAGE)
;end_setup
;setup_theory divides
lemma ONE_DIVIDES_ALL: "(All::(nat => bool) => bool) ((op dvd::nat => nat => bool) (1::nat))"
by (import divides ONE_DIVIDES_ALL)
lemma DIVIDES_ADD_2: "ALL (a::nat) (b::nat) c::nat. a dvd b & a dvd b + c --> a dvd c"
by (import divides DIVIDES_ADD_2)
lemma DIVIDES_FACT: "ALL b>0. b dvd FACT b"
by (import divides DIVIDES_FACT)
lemma DIVIDES_MULT_LEFT: "ALL (x::nat) xa::nat. (x * xa dvd xa) = (xa = 0 | x = 1)"
by (import divides DIVIDES_MULT_LEFT)
;end_setup
;setup_theory prime
consts
prime :: "nat => bool"
defs
prime_primdef: "prime.prime == %a::nat. a ~= 1 & (ALL b::nat. b dvd a --> b = a | b = 1)"
lemma prime_def: "ALL a::nat.
prime.prime a = (a ~= 1 & (ALL b::nat. b dvd a --> b = a | b = 1))"
by (import prime prime_def)
lemma NOT_PRIME_0: "~ prime.prime 0"
by (import prime NOT_PRIME_0)
lemma NOT_PRIME_1: "~ prime.prime 1"
by (import prime NOT_PRIME_1)
;end_setup
;setup_theory list
consts
EL :: "nat => 'a list => 'a"
specification (EL) EL: "(ALL l::'a::type list. EL 0 l = hd l) &
(ALL (l::'a::type list) n::nat. EL (Suc n) l = EL n (tl l))"
by (import list EL)
lemma NULL: "(op &::bool => bool => bool)
((null::'a::type list => bool) ([]::'a::type list))
((All::('a::type => bool) => bool)
(%x::'a::type.
(All::('a::type list => bool) => bool)
(%xa::'a::type list.
(Not::bool => bool)
((null::'a::type list => bool)
((op #::'a::type => 'a::type list => 'a::type list) x xa)))))"
by (import list NULL)
lemma list_case_compute: "ALL l::'a::type list.
list_case (b::'b::type) (f::'a::type => 'a::type list => 'b::type) l =
(if null l then b else f (hd l) (tl l))"
by (import list list_case_compute)
lemma LIST_NOT_EQ: "ALL (l1::'a::type list) l2::'a::type list.
l1 ~= l2 --> (ALL (x::'a::type) xa::'a::type. x # l1 ~= xa # l2)"
by (import list LIST_NOT_EQ)
lemma NOT_EQ_LIST: "ALL (h1::'a::type) h2::'a::type.
h1 ~= h2 -->
(ALL (x::'a::type list) xa::'a::type list. h1 # x ~= h2 # xa)"
by (import list NOT_EQ_LIST)
lemma EQ_LIST: "ALL (h1::'a::type) h2::'a::type.
h1 = h2 -->
(ALL (l1::'a::type list) l2::'a::type list.
l1 = l2 --> h1 # l1 = h2 # l2)"
by (import list EQ_LIST)
lemma CONS: "ALL l::'a::type list. ~ null l --> hd l # tl l = l"
by (import list CONS)
lemma MAP_EQ_NIL: "ALL (l::'a::type list) f::'a::type => 'b::type.
(map f l = []) = (l = []) & ([] = map f l) = (l = [])"
by (import list MAP_EQ_NIL)
lemma EVERY_EL: "(All::('a::type list => bool) => bool)
(%l::'a::type list.
(All::(('a::type => bool) => bool) => bool)
(%P::'a::type => bool.
(op =::bool => bool => bool)
((list_all::('a::type => bool) => 'a::type list => bool) P l)
((All::(nat => bool) => bool)
(%n::nat.
(op -->::bool => bool => bool)
((op <::nat => nat => bool) n
((size::'a::type list => nat) l))
(P ((EL::nat => 'a::type list => 'a::type) n l))))))"
by (import list EVERY_EL)
lemma EVERY_CONJ: "ALL l::'a::type list.
list_all
(%x::'a::type. (P::'a::type => bool) x & (Q::'a::type => bool) x) l =
(list_all P l & list_all Q l)"
by (import list EVERY_CONJ)
lemma EVERY_MEM: "ALL (P::'a::type => bool) l::'a::type list.
list_all P l = (ALL e::'a::type. e mem l --> P e)"
by (import list EVERY_MEM)
lemma EXISTS_MEM: "ALL (P::'a::type => bool) l::'a::type list.
list_exists P l = (EX e::'a::type. e mem l & P e)"
by (import list EXISTS_MEM)
lemma MEM_APPEND: "ALL (e::'a::type) (l1::'a::type list) l2::'a::type list.
e mem l1 @ l2 = (e mem l1 | e mem l2)"
by (import list MEM_APPEND)
lemma EXISTS_APPEND: "ALL (P::'a::type => bool) (l1::'a::type list) l2::'a::type list.
list_exists P (l1 @ l2) = (list_exists P l1 | list_exists P l2)"
by (import list EXISTS_APPEND)
lemma NOT_EVERY: "ALL (P::'a::type => bool) l::'a::type list.
(~ list_all P l) = list_exists (Not o P) l"
by (import list NOT_EVERY)
lemma NOT_EXISTS: "ALL (P::'a::type => bool) l::'a::type list.
(~ list_exists P l) = list_all (Not o P) l"
by (import list NOT_EXISTS)
lemma MEM_MAP: "ALL (l::'a::type list) (f::'a::type => 'b::type) x::'b::type.
x mem map f l = (EX y::'a::type. x = f y & y mem l)"
by (import list MEM_MAP)
lemma LENGTH_CONS: "ALL (l::'a::type list) n::nat.
(length l = Suc n) =
(EX (h::'a::type) l'::'a::type list. length l' = n & l = h # l')"
by (import list LENGTH_CONS)
lemma LENGTH_EQ_CONS: "ALL (P::'a::type list => bool) n::nat.
(ALL l::'a::type list. length l = Suc n --> P l) =
(ALL l::'a::type list. length l = n --> (ALL x::'a::type. P (x # l)))"
by (import list LENGTH_EQ_CONS)
lemma LENGTH_EQ_NIL: "ALL P::'a::type list => bool.
(ALL l::'a::type list. length l = 0 --> P l) = P []"
by (import list LENGTH_EQ_NIL)
lemma CONS_ACYCLIC: "ALL (l::'a::type list) x::'a::type. l ~= x # l & x # l ~= l"
by (import list CONS_ACYCLIC)
lemma APPEND_eq_NIL: "(ALL (l1::'a::type list) l2::'a::type list.
([] = l1 @ l2) = (l1 = [] & l2 = [])) &
(ALL (l1::'a::type list) l2::'a::type list.
(l1 @ l2 = []) = (l1 = [] & l2 = []))"
by (import list APPEND_eq_NIL)
lemma APPEND_11: "(ALL (l1::'a::type list) (l2::'a::type list) l3::'a::type list.
(l1 @ l2 = l1 @ l3) = (l2 = l3)) &
(ALL (l1::'a::type list) (l2::'a::type list) l3::'a::type list.
(l2 @ l1 = l3 @ l1) = (l2 = l3))"
by (import list APPEND_11)
lemma EL_compute: "ALL n::nat.
EL n (l::'a::type list) = (if n = 0 then hd l else EL (PRE n) (tl l))"
by (import list EL_compute)
lemma WF_LIST_PRED: "WF (%(L1::'a::type list) L2::'a::type list. EX h::'a::type. L2 = h # L1)"
by (import list WF_LIST_PRED)
lemma list_size_cong: "ALL (M::'a::type list) (N::'a::type list) (f::'a::type => nat)
f'::'a::type => nat.
M = N & (ALL x::'a::type. x mem N --> f x = f' x) -->
list_size f M = list_size f' N"
by (import list list_size_cong)
lemma FOLDR_CONG: "ALL (l::'a::type list) (l'::'a::type list) (b::'b::type) (b'::'b::type)
(f::'a::type => 'b::type => 'b::type)
f'::'a::type => 'b::type => 'b::type.
l = l' &
b = b' & (ALL (x::'a::type) a::'b::type. x mem l' --> f x a = f' x a) -->
foldr f l b = foldr f' l' b'"
by (import list FOLDR_CONG)
lemma FOLDL_CONG: "ALL (l::'a::type list) (l'::'a::type list) (b::'b::type) (b'::'b::type)
(f::'b::type => 'a::type => 'b::type)
f'::'b::type => 'a::type => 'b::type.
l = l' &
b = b' & (ALL (x::'a::type) a::'b::type. x mem l' --> f a x = f' a x) -->
foldl f b l = foldl f' b' l'"
by (import list FOLDL_CONG)
lemma MAP_CONG: "ALL (l1::'a::type list) (l2::'a::type list) (f::'a::type => 'b::type)
f'::'a::type => 'b::type.
l1 = l2 & (ALL x::'a::type. x mem l2 --> f x = f' x) -->
map f l1 = map f' l2"
by (import list MAP_CONG)
lemma EXISTS_CONG: "ALL (l1::'a::type list) (l2::'a::type list) (P::'a::type => bool)
P'::'a::type => bool.
l1 = l2 & (ALL x::'a::type. x mem l2 --> P x = P' x) -->
list_exists P l1 = list_exists P' l2"
by (import list EXISTS_CONG)
lemma EVERY_CONG: "ALL (l1::'a::type list) (l2::'a::type list) (P::'a::type => bool)
P'::'a::type => bool.
l1 = l2 & (ALL x::'a::type. x mem l2 --> P x = P' x) -->
list_all P l1 = list_all P' l2"
by (import list EVERY_CONG)
lemma EVERY_MONOTONIC: "ALL (P::'a::type => bool) Q::'a::type => bool.
(ALL x::'a::type. P x --> Q x) -->
(ALL l::'a::type list. list_all P l --> list_all Q l)"
by (import list EVERY_MONOTONIC)
lemma LENGTH_ZIP: "ALL (l1::'a::type list) l2::'b::type list.
length l1 = length l2 -->
length (zip l1 l2) = length l1 & length (zip l1 l2) = length l2"
by (import list LENGTH_ZIP)
lemma LENGTH_UNZIP: "ALL pl::('a::type * 'b::type) list.
length (fst (unzip pl)) = length pl & length (snd (unzip pl)) = length pl"
by (import list LENGTH_UNZIP)
lemma ZIP_UNZIP: "ALL l::('a::type * 'b::type) list. ZIP (unzip l) = l"
by (import list ZIP_UNZIP)
lemma UNZIP_ZIP: "ALL (l1::'a::type list) l2::'b::type list.
length l1 = length l2 --> unzip (zip l1 l2) = (l1, l2)"
by (import list UNZIP_ZIP)
lemma ZIP_MAP: "ALL (l1::'a::type list) (l2::'b::type list) (f1::'a::type => 'c::type)
f2::'b::type => 'd::type.
length l1 = length l2 -->
zip (map f1 l1) l2 =
map (%p::'a::type * 'b::type. (f1 (fst p), snd p)) (zip l1 l2) &
zip l1 (map f2 l2) =
map (%p::'a::type * 'b::type. (fst p, f2 (snd p))) (zip l1 l2)"
by (import list ZIP_MAP)
lemma MEM_ZIP: "(All::('a::type list => bool) => bool)
(%l1::'a::type list.
(All::('b::type list => bool) => bool)
(%l2::'b::type list.
(All::('a::type * 'b::type => bool) => bool)
(%p::'a::type * 'b::type.
(op -->::bool => bool => bool)
((op =::nat => nat => bool)
((size::'a::type list => nat) l1)
((size::'b::type list => nat) l2))
((op =::bool => bool => bool)
((op mem::'a::type * 'b::type
=> ('a::type * 'b::type) list => bool)
p ((zip::'a::type list
=> 'b::type list => ('a::type * 'b::type) list)
l1 l2))
((Ex::(nat => bool) => bool)
(%n::nat.
(op &::bool => bool => bool)
((op <::nat => nat => bool) n
((size::'a::type list => nat) l1))
((op =::'a::type * 'b::type
=> 'a::type * 'b::type => bool)
p ((Pair::'a::type
=> 'b::type => 'a::type * 'b::type)
((EL::nat => 'a::type list => 'a::type) n l1)
((EL::nat => 'b::type list => 'b::type) n
l2)))))))))"
by (import list MEM_ZIP)
lemma EL_ZIP: "ALL (l1::'a::type list) (l2::'b::type list) n::nat.
length l1 = length l2 & n < length l1 -->
EL n (zip l1 l2) = (EL n l1, EL n l2)"
by (import list EL_ZIP)
lemma MAP2_ZIP: "(All::('a::type list => bool) => bool)
(%l1::'a::type list.
(All::('b::type list => bool) => bool)
(%l2::'b::type list.
(op -->::bool => bool => bool)
((op =::nat => nat => bool) ((size::'a::type list => nat) l1)
((size::'b::type list => nat) l2))
((All::(('a::type => 'b::type => 'c::type) => bool) => bool)
(%f::'a::type => 'b::type => 'c::type.
(op =::'c::type list => 'c::type list => bool)
((map2::('a::type => 'b::type => 'c::type)
=> 'a::type list
=> 'b::type list => 'c::type list)
f l1 l2)
((map::('a::type * 'b::type => 'c::type)
=> ('a::type * 'b::type) list => 'c::type list)
((split::('a::type => 'b::type => 'c::type)
=> 'a::type * 'b::type => 'c::type)
f)
((zip::'a::type list
=> 'b::type list => ('a::type * 'b::type) list)
l1 l2))))))"
by (import list MAP2_ZIP)
lemma MEM_EL: "(All::('a::type list => bool) => bool)
(%l::'a::type list.
(All::('a::type => bool) => bool)
(%x::'a::type.
(op =::bool => bool => bool)
((op mem::'a::type => 'a::type list => bool) x l)
((Ex::(nat => bool) => bool)
(%n::nat.
(op &::bool => bool => bool)
((op <::nat => nat => bool) n
((size::'a::type list => nat) l))
((op =::'a::type => 'a::type => bool) x
((EL::nat => 'a::type list => 'a::type) n l))))))"
by (import list MEM_EL)
lemma LAST_CONS: "(ALL x::'a::type. last [x] = x) &
(ALL (x::'a::type) (xa::'a::type) xb::'a::type list.
last (x # xa # xb) = last (xa # xb))"
by (import list LAST_CONS)
lemma FRONT_CONS: "(ALL x::'a::type. butlast [x] = []) &
(ALL (x::'a::type) (xa::'a::type) xb::'a::type list.
butlast (x # xa # xb) = x # butlast (xa # xb))"
by (import list FRONT_CONS)
;end_setup
;setup_theory pred_set
lemma EXTENSION: "ALL (s::'a::type => bool) t::'a::type => bool.
(s = t) = (ALL x::'a::type. IN x s = IN x t)"
by (import pred_set EXTENSION)
lemma NOT_EQUAL_SETS: "ALL (x::'a::type => bool) xa::'a::type => bool.
(x ~= xa) = (EX xb::'a::type. IN xb xa = (~ IN xb x))"
by (import pred_set NOT_EQUAL_SETS)
lemma NUM_SET_WOP: "ALL s::nat => bool.
(EX n::nat. IN n s) =
(EX n::nat. IN n s & (ALL m::nat. IN m s --> n <= m))"
by (import pred_set NUM_SET_WOP)
consts
GSPEC :: "('b => 'a * bool) => 'a => bool"
specification (GSPEC) GSPECIFICATION: "ALL (f::'b::type => 'a::type * bool) v::'a::type.
IN v (GSPEC f) = (EX x::'b::type. (v, True) = f x)"
by (import pred_set GSPECIFICATION)
lemma SET_MINIMUM: "ALL (s::'a::type => bool) M::'a::type => nat.
(EX x::'a::type. IN x s) =
(EX x::'a::type. IN x s & (ALL y::'a::type. IN y s --> M x <= M y))"
by (import pred_set SET_MINIMUM)
constdefs
EMPTY :: "'a => bool"
"EMPTY == %x::'a::type. False"
lemma EMPTY_DEF: "EMPTY = (%x::'a::type. False)"
by (import pred_set EMPTY_DEF)
lemma NOT_IN_EMPTY: "ALL x::'a::type. ~ IN x EMPTY"
by (import pred_set NOT_IN_EMPTY)
lemma MEMBER_NOT_EMPTY: "ALL x::'a::type => bool. (EX xa::'a::type. IN xa x) = (x ~= EMPTY)"
by (import pred_set MEMBER_NOT_EMPTY)
consts
UNIV :: "'a => bool"
defs
UNIV_def: "pred_set.UNIV == %x::'a::type. True"
lemma UNIV_DEF: "pred_set.UNIV = (%x::'a::type. True)"
by (import pred_set UNIV_DEF)
lemma IN_UNIV: "ALL x::'a::type. IN x pred_set.UNIV"
by (import pred_set IN_UNIV)
lemma UNIV_NOT_EMPTY: "pred_set.UNIV ~= EMPTY"
by (import pred_set UNIV_NOT_EMPTY)
lemma EMPTY_NOT_UNIV: "EMPTY ~= pred_set.UNIV"
by (import pred_set EMPTY_NOT_UNIV)
lemma EQ_UNIV: "(ALL x::'a::type. IN x (s::'a::type => bool)) = (s = pred_set.UNIV)"
by (import pred_set EQ_UNIV)
constdefs
SUBSET :: "('a => bool) => ('a => bool) => bool"
"SUBSET ==
%(s::'a::type => bool) t::'a::type => bool.
ALL x::'a::type. IN x s --> IN x t"
lemma SUBSET_DEF: "ALL (s::'a::type => bool) t::'a::type => bool.
SUBSET s t = (ALL x::'a::type. IN x s --> IN x t)"
by (import pred_set SUBSET_DEF)
lemma SUBSET_TRANS: "ALL (x::'a::type => bool) (xa::'a::type => bool) xb::'a::type => bool.
SUBSET x xa & SUBSET xa xb --> SUBSET x xb"
by (import pred_set SUBSET_TRANS)
lemma SUBSET_REFL: "ALL x::'a::type => bool. SUBSET x x"
by (import pred_set SUBSET_REFL)
lemma SUBSET_ANTISYM: "ALL (x::'a::type => bool) xa::'a::type => bool.
SUBSET x xa & SUBSET xa x --> x = xa"
by (import pred_set SUBSET_ANTISYM)
lemma EMPTY_SUBSET: "All (SUBSET EMPTY)"
by (import pred_set EMPTY_SUBSET)
lemma SUBSET_EMPTY: "ALL x::'a::type => bool. SUBSET x EMPTY = (x = EMPTY)"
by (import pred_set SUBSET_EMPTY)
lemma SUBSET_UNIV: "ALL x::'a::type => bool. SUBSET x pred_set.UNIV"
by (import pred_set SUBSET_UNIV)
lemma UNIV_SUBSET: "ALL x::'a::type => bool. SUBSET pred_set.UNIV x = (x = pred_set.UNIV)"
by (import pred_set UNIV_SUBSET)
constdefs
PSUBSET :: "('a => bool) => ('a => bool) => bool"
"PSUBSET == %(s::'a::type => bool) t::'a::type => bool. SUBSET s t & s ~= t"
lemma PSUBSET_DEF: "ALL (s::'a::type => bool) t::'a::type => bool.
PSUBSET s t = (SUBSET s t & s ~= t)"
by (import pred_set PSUBSET_DEF)
lemma PSUBSET_TRANS: "ALL (x::'a::type => bool) (xa::'a::type => bool) xb::'a::type => bool.
PSUBSET x xa & PSUBSET xa xb --> PSUBSET x xb"
by (import pred_set PSUBSET_TRANS)
lemma PSUBSET_IRREFL: "ALL x::'a::type => bool. ~ PSUBSET x x"
by (import pred_set PSUBSET_IRREFL)
lemma NOT_PSUBSET_EMPTY: "ALL x::'a::type => bool. ~ PSUBSET x EMPTY"
by (import pred_set NOT_PSUBSET_EMPTY)
lemma NOT_UNIV_PSUBSET: "ALL x::'a::type => bool. ~ PSUBSET pred_set.UNIV x"
by (import pred_set NOT_UNIV_PSUBSET)
lemma PSUBSET_UNIV: "ALL x::'a::type => bool.
PSUBSET x pred_set.UNIV = (EX xa::'a::type. ~ IN xa x)"
by (import pred_set PSUBSET_UNIV)
consts
UNION :: "('a => bool) => ('a => bool) => 'a => bool"
defs
UNION_def: "pred_set.UNION ==
%(s::'a::type => bool) t::'a::type => bool.
GSPEC (%x::'a::type. (x, IN x s | IN x t))"
lemma UNION_DEF: "ALL (s::'a::type => bool) t::'a::type => bool.
pred_set.UNION s t = GSPEC (%x::'a::type. (x, IN x s | IN x t))"
by (import pred_set UNION_DEF)
lemma IN_UNION: "ALL (x::'a::type => bool) (xa::'a::type => bool) xb::'a::type.
IN xb (pred_set.UNION x xa) = (IN xb x | IN xb xa)"
by (import pred_set IN_UNION)
lemma UNION_ASSOC: "ALL (x::'a::type => bool) (xa::'a::type => bool) xb::'a::type => bool.
pred_set.UNION x (pred_set.UNION xa xb) =
pred_set.UNION (pred_set.UNION x xa) xb"
by (import pred_set UNION_ASSOC)
lemma UNION_IDEMPOT: "ALL x::'a::type => bool. pred_set.UNION x x = x"
by (import pred_set UNION_IDEMPOT)
lemma UNION_COMM: "ALL (x::'a::type => bool) xa::'a::type => bool.
pred_set.UNION x xa = pred_set.UNION xa x"
by (import pred_set UNION_COMM)
lemma SUBSET_UNION: "(ALL (x::'a::type => bool) xa::'a::type => bool.
SUBSET x (pred_set.UNION x xa)) &
(ALL (x::'a::type => bool) xa::'a::type => bool.
SUBSET x (pred_set.UNION xa x))"
by (import pred_set SUBSET_UNION)
lemma UNION_SUBSET: "ALL (s::'a::type => bool) (t::'a::type => bool) u::'a::type => bool.
SUBSET (pred_set.UNION s t) u = (SUBSET s u & SUBSET t u)"
by (import pred_set UNION_SUBSET)
lemma SUBSET_UNION_ABSORPTION: "ALL (x::'a::type => bool) xa::'a::type => bool.
SUBSET x xa = (pred_set.UNION x xa = xa)"
by (import pred_set SUBSET_UNION_ABSORPTION)
lemma UNION_EMPTY: "(ALL x::'a::type => bool. pred_set.UNION EMPTY x = x) &
(ALL x::'a::type => bool. pred_set.UNION x EMPTY = x)"
by (import pred_set UNION_EMPTY)
lemma UNION_UNIV: "(ALL x::'a::type => bool. pred_set.UNION pred_set.UNIV x = pred_set.UNIV) &
(ALL x::'a::type => bool. pred_set.UNION x pred_set.UNIV = pred_set.UNIV)"
by (import pred_set UNION_UNIV)
lemma EMPTY_UNION: "ALL (x::'a::type => bool) xa::'a::type => bool.
(pred_set.UNION x xa = EMPTY) = (x = EMPTY & xa = EMPTY)"
by (import pred_set EMPTY_UNION)
consts
INTER :: "('a => bool) => ('a => bool) => 'a => bool"
defs
INTER_def: "pred_set.INTER ==
%(s::'a::type => bool) t::'a::type => bool.
GSPEC (%x::'a::type. (x, IN x s & IN x t))"
lemma INTER_DEF: "ALL (s::'a::type => bool) t::'a::type => bool.
pred_set.INTER s t = GSPEC (%x::'a::type. (x, IN x s & IN x t))"
by (import pred_set INTER_DEF)
lemma IN_INTER: "ALL (x::'a::type => bool) (xa::'a::type => bool) xb::'a::type.
IN xb (pred_set.INTER x xa) = (IN xb x & IN xb xa)"
by (import pred_set IN_INTER)
lemma INTER_ASSOC: "ALL (x::'a::type => bool) (xa::'a::type => bool) xb::'a::type => bool.
pred_set.INTER x (pred_set.INTER xa xb) =
pred_set.INTER (pred_set.INTER x xa) xb"
by (import pred_set INTER_ASSOC)
lemma INTER_IDEMPOT: "ALL x::'a::type => bool. pred_set.INTER x x = x"
by (import pred_set INTER_IDEMPOT)
lemma INTER_COMM: "ALL (x::'a::type => bool) xa::'a::type => bool.
pred_set.INTER x xa = pred_set.INTER xa x"
by (import pred_set INTER_COMM)
lemma INTER_SUBSET: "(ALL (x::'a::type => bool) xa::'a::type => bool.
SUBSET (pred_set.INTER x xa) x) &
(ALL (x::'a::type => bool) xa::'a::type => bool.
SUBSET (pred_set.INTER xa x) x)"
by (import pred_set INTER_SUBSET)
lemma SUBSET_INTER: "ALL (s::'a::type => bool) (t::'a::type => bool) u::'a::type => bool.
SUBSET s (pred_set.INTER t u) = (SUBSET s t & SUBSET s u)"
by (import pred_set SUBSET_INTER)
lemma SUBSET_INTER_ABSORPTION: "ALL (x::'a::type => bool) xa::'a::type => bool.
SUBSET x xa = (pred_set.INTER x xa = x)"
by (import pred_set SUBSET_INTER_ABSORPTION)
lemma INTER_EMPTY: "(ALL x::'a::type => bool. pred_set.INTER EMPTY x = EMPTY) &
(ALL x::'a::type => bool. pred_set.INTER x EMPTY = EMPTY)"
by (import pred_set INTER_EMPTY)
lemma INTER_UNIV: "(ALL x::'a::type => bool. pred_set.INTER pred_set.UNIV x = x) &
(ALL x::'a::type => bool. pred_set.INTER x pred_set.UNIV = x)"
by (import pred_set INTER_UNIV)
lemma UNION_OVER_INTER: "ALL (x::'a::type => bool) (xa::'a::type => bool) xb::'a::type => bool.
pred_set.INTER x (pred_set.UNION xa xb) =
pred_set.UNION (pred_set.INTER x xa) (pred_set.INTER x xb)"
by (import pred_set UNION_OVER_INTER)
lemma INTER_OVER_UNION: "ALL (x::'a::type => bool) (xa::'a::type => bool) xb::'a::type => bool.
pred_set.UNION x (pred_set.INTER xa xb) =
pred_set.INTER (pred_set.UNION x xa) (pred_set.UNION x xb)"
by (import pred_set INTER_OVER_UNION)
constdefs
DISJOINT :: "('a => bool) => ('a => bool) => bool"
"DISJOINT ==
%(s::'a::type => bool) t::'a::type => bool. pred_set.INTER s t = EMPTY"
lemma DISJOINT_DEF: "ALL (s::'a::type => bool) t::'a::type => bool.
DISJOINT s t = (pred_set.INTER s t = EMPTY)"
by (import pred_set DISJOINT_DEF)
lemma IN_DISJOINT: "ALL (x::'a::type => bool) xa::'a::type => bool.
DISJOINT x xa = (~ (EX xb::'a::type. IN xb x & IN xb xa))"
by (import pred_set IN_DISJOINT)
lemma DISJOINT_SYM: "ALL (x::'a::type => bool) xa::'a::type => bool.
DISJOINT x xa = DISJOINT xa x"
by (import pred_set DISJOINT_SYM)
lemma DISJOINT_EMPTY: "ALL x::'a::type => bool. DISJOINT EMPTY x & DISJOINT x EMPTY"
by (import pred_set DISJOINT_EMPTY)
lemma DISJOINT_EMPTY_REFL: "ALL x::'a::type => bool. (x = EMPTY) = DISJOINT x x"
by (import pred_set DISJOINT_EMPTY_REFL)
lemma DISJOINT_UNION: "ALL (x::'a::type => bool) (xa::'a::type => bool) xb::'a::type => bool.
DISJOINT (pred_set.UNION x xa) xb = (DISJOINT x xb & DISJOINT xa xb)"
by (import pred_set DISJOINT_UNION)
lemma DISJOINT_UNION_BOTH: "ALL (s::'a::type => bool) (t::'a::type => bool) u::'a::type => bool.
DISJOINT (pred_set.UNION s t) u = (DISJOINT s u & DISJOINT t u) &
DISJOINT u (pred_set.UNION s t) = (DISJOINT s u & DISJOINT t u)"
by (import pred_set DISJOINT_UNION_BOTH)
constdefs
DIFF :: "('a => bool) => ('a => bool) => 'a => bool"
"DIFF ==
%(s::'a::type => bool) t::'a::type => bool.
GSPEC (%x::'a::type. (x, IN x s & ~ IN x t))"
lemma DIFF_DEF: "ALL (s::'a::type => bool) t::'a::type => bool.
DIFF s t = GSPEC (%x::'a::type. (x, IN x s & ~ IN x t))"
by (import pred_set DIFF_DEF)
lemma IN_DIFF: "ALL (s::'a::type => bool) (t::'a::type => bool) x::'a::type.
IN x (DIFF s t) = (IN x s & ~ IN x t)"
by (import pred_set IN_DIFF)
lemma DIFF_EMPTY: "ALL s::'a::type => bool. DIFF s EMPTY = s"
by (import pred_set DIFF_EMPTY)
lemma EMPTY_DIFF: "ALL s::'a::type => bool. DIFF EMPTY s = EMPTY"
by (import pred_set EMPTY_DIFF)
lemma DIFF_UNIV: "ALL s::'a::type => bool. DIFF s pred_set.UNIV = EMPTY"
by (import pred_set DIFF_UNIV)
lemma DIFF_DIFF: "ALL (x::'a::type => bool) xa::'a::type => bool.
DIFF (DIFF x xa) xa = DIFF x xa"
by (import pred_set DIFF_DIFF)
lemma DIFF_EQ_EMPTY: "ALL x::'a::type => bool. DIFF x x = EMPTY"
by (import pred_set DIFF_EQ_EMPTY)
constdefs
INSERT :: "'a => ('a => bool) => 'a => bool"
"INSERT ==
%(x::'a::type) s::'a::type => bool.
GSPEC (%y::'a::type. (y, y = x | IN y s))"
lemma INSERT_DEF: "ALL (x::'a::type) s::'a::type => bool.
INSERT x s = GSPEC (%y::'a::type. (y, y = x | IN y s))"
by (import pred_set INSERT_DEF)
lemma IN_INSERT: "ALL (x::'a::type) (xa::'a::type) xb::'a::type => bool.
IN x (INSERT xa xb) = (x = xa | IN x xb)"
by (import pred_set IN_INSERT)
lemma COMPONENT: "ALL (x::'a::type) xa::'a::type => bool. IN x (INSERT x xa)"
by (import pred_set COMPONENT)
lemma SET_CASES: "ALL x::'a::type => bool.
x = EMPTY |
(EX (xa::'a::type) xb::'a::type => bool. x = INSERT xa xb & ~ IN xa xb)"
by (import pred_set SET_CASES)
lemma DECOMPOSITION: "ALL (s::'a::type => bool) x::'a::type.
IN x s = (EX t::'a::type => bool. s = INSERT x t & ~ IN x t)"
by (import pred_set DECOMPOSITION)
lemma ABSORPTION: "ALL (x::'a::type) xa::'a::type => bool. IN x xa = (INSERT x xa = xa)"
by (import pred_set ABSORPTION)
lemma INSERT_INSERT: "ALL (x::'a::type) xa::'a::type => bool. INSERT x (INSERT x xa) = INSERT x xa"
by (import pred_set INSERT_INSERT)
lemma INSERT_COMM: "ALL (x::'a::type) (xa::'a::type) xb::'a::type => bool.
INSERT x (INSERT xa xb) = INSERT xa (INSERT x xb)"
by (import pred_set INSERT_COMM)
lemma INSERT_UNIV: "ALL x::'a::type. INSERT x pred_set.UNIV = pred_set.UNIV"
by (import pred_set INSERT_UNIV)
lemma NOT_INSERT_EMPTY: "ALL (x::'a::type) xa::'a::type => bool. INSERT x xa ~= EMPTY"
by (import pred_set NOT_INSERT_EMPTY)
lemma NOT_EMPTY_INSERT: "ALL (x::'a::type) xa::'a::type => bool. EMPTY ~= INSERT x xa"
by (import pred_set NOT_EMPTY_INSERT)
lemma INSERT_UNION: "ALL (x::'a::type) (s::'a::type => bool) t::'a::type => bool.
pred_set.UNION (INSERT x s) t =
(if IN x t then pred_set.UNION s t else INSERT x (pred_set.UNION s t))"
by (import pred_set INSERT_UNION)
lemma INSERT_UNION_EQ: "ALL (x::'a::type) (s::'a::type => bool) t::'a::type => bool.
pred_set.UNION (INSERT x s) t = INSERT x (pred_set.UNION s t)"
by (import pred_set INSERT_UNION_EQ)
lemma INSERT_INTER: "ALL (x::'a::type) (s::'a::type => bool) t::'a::type => bool.
pred_set.INTER (INSERT x s) t =
(if IN x t then INSERT x (pred_set.INTER s t) else pred_set.INTER s t)"
by (import pred_set INSERT_INTER)
lemma DISJOINT_INSERT: "ALL (x::'a::type) (xa::'a::type => bool) xb::'a::type => bool.
DISJOINT (INSERT x xa) xb = (DISJOINT xa xb & ~ IN x xb)"
by (import pred_set DISJOINT_INSERT)
lemma INSERT_SUBSET: "ALL (x::'a::type) (xa::'a::type => bool) xb::'a::type => bool.
SUBSET (INSERT x xa) xb = (IN x xb & SUBSET xa xb)"
by (import pred_set INSERT_SUBSET)
lemma SUBSET_INSERT: "ALL (x::'a::type) xa::'a::type => bool.
~ IN x xa -->
(ALL xb::'a::type => bool. SUBSET xa (INSERT x xb) = SUBSET xa xb)"
by (import pred_set SUBSET_INSERT)
lemma INSERT_DIFF: "ALL (s::'a::type => bool) (t::'a::type => bool) x::'a::type.
DIFF (INSERT x s) t = (if IN x t then DIFF s t else INSERT x (DIFF s t))"
by (import pred_set INSERT_DIFF)
constdefs
DELETE :: "('a => bool) => 'a => 'a => bool"
"DELETE == %(s::'a::type => bool) x::'a::type. DIFF s (INSERT x EMPTY)"
lemma DELETE_DEF: "ALL (s::'a::type => bool) x::'a::type. DELETE s x = DIFF s (INSERT x EMPTY)"
by (import pred_set DELETE_DEF)
lemma IN_DELETE: "ALL (x::'a::type => bool) (xa::'a::type) xb::'a::type.
IN xa (DELETE x xb) = (IN xa x & xa ~= xb)"
by (import pred_set IN_DELETE)
lemma DELETE_NON_ELEMENT: "ALL (x::'a::type) xa::'a::type => bool. (~ IN x xa) = (DELETE xa x = xa)"
by (import pred_set DELETE_NON_ELEMENT)
lemma IN_DELETE_EQ: "ALL (s::'a::type => bool) (x::'a::type) x'::'a::type.
(IN x s = IN x' s) = (IN x (DELETE s x') = IN x' (DELETE s x))"
by (import pred_set IN_DELETE_EQ)
lemma EMPTY_DELETE: "ALL x::'a::type. DELETE EMPTY x = EMPTY"
by (import pred_set EMPTY_DELETE)
lemma DELETE_DELETE: "ALL (x::'a::type) xa::'a::type => bool. DELETE (DELETE xa x) x = DELETE xa x"
by (import pred_set DELETE_DELETE)
lemma DELETE_COMM: "ALL (x::'a::type) (xa::'a::type) xb::'a::type => bool.
DELETE (DELETE xb x) xa = DELETE (DELETE xb xa) x"
by (import pred_set DELETE_COMM)
lemma DELETE_SUBSET: "ALL (x::'a::type) xa::'a::type => bool. SUBSET (DELETE xa x) xa"
by (import pred_set DELETE_SUBSET)
lemma SUBSET_DELETE: "ALL (x::'a::type) (xa::'a::type => bool) xb::'a::type => bool.
SUBSET xa (DELETE xb x) = (~ IN x xa & SUBSET xa xb)"
by (import pred_set SUBSET_DELETE)
lemma SUBSET_INSERT_DELETE: "ALL (x::'a::type) (s::'a::type => bool) t::'a::type => bool.
SUBSET s (INSERT x t) = SUBSET (DELETE s x) t"
by (import pred_set SUBSET_INSERT_DELETE)
lemma DIFF_INSERT: "ALL (x::'a::type => bool) (xa::'a::type => bool) xb::'a::type.
DIFF x (INSERT xb xa) = DIFF (DELETE x xb) xa"
by (import pred_set DIFF_INSERT)
lemma PSUBSET_INSERT_SUBSET: "ALL (x::'a::type => bool) xa::'a::type => bool.
PSUBSET x xa = (EX xb::'a::type. ~ IN xb x & SUBSET (INSERT xb x) xa)"
by (import pred_set PSUBSET_INSERT_SUBSET)
lemma PSUBSET_MEMBER: "ALL (s::'a::type => bool) t::'a::type => bool.
PSUBSET s t = (SUBSET s t & (EX y::'a::type. IN y t & ~ IN y s))"
by (import pred_set PSUBSET_MEMBER)
lemma DELETE_INSERT: "ALL (x::'a::type) (xa::'a::type) xb::'a::type => bool.
DELETE (INSERT x xb) xa =
(if x = xa then DELETE xb xa else INSERT x (DELETE xb xa))"
by (import pred_set DELETE_INSERT)
lemma INSERT_DELETE: "ALL (x::'a::type) xa::'a::type => bool.
IN x xa --> INSERT x (DELETE xa x) = xa"
by (import pred_set INSERT_DELETE)
lemma DELETE_INTER: "ALL (x::'a::type => bool) (xa::'a::type => bool) xb::'a::type.
pred_set.INTER (DELETE x xb) xa = DELETE (pred_set.INTER x xa) xb"
by (import pred_set DELETE_INTER)
lemma DISJOINT_DELETE_SYM: "ALL (x::'a::type => bool) (xa::'a::type => bool) xb::'a::type.
DISJOINT (DELETE x xb) xa = DISJOINT (DELETE xa xb) x"
by (import pred_set DISJOINT_DELETE_SYM)
consts
CHOICE :: "('a => bool) => 'a"
specification (CHOICE) CHOICE_DEF: "ALL x::'a::type => bool. x ~= EMPTY --> IN (CHOICE x) x"
by (import pred_set CHOICE_DEF)
constdefs
REST :: "('a => bool) => 'a => bool"
"REST == %s::'a::type => bool. DELETE s (CHOICE s)"
lemma REST_DEF: "ALL s::'a::type => bool. REST s = DELETE s (CHOICE s)"
by (import pred_set REST_DEF)
lemma CHOICE_NOT_IN_REST: "ALL x::'a::type => bool. ~ IN (CHOICE x) (REST x)"
by (import pred_set CHOICE_NOT_IN_REST)
lemma CHOICE_INSERT_REST: "ALL s::'a::type => bool. s ~= EMPTY --> INSERT (CHOICE s) (REST s) = s"
by (import pred_set CHOICE_INSERT_REST)
lemma REST_SUBSET: "ALL x::'a::type => bool. SUBSET (REST x) x"
by (import pred_set REST_SUBSET)
lemma REST_PSUBSET: "ALL x::'a::type => bool. x ~= EMPTY --> PSUBSET (REST x) x"
by (import pred_set REST_PSUBSET)
constdefs
SING :: "('a => bool) => bool"
"SING == %s::'a::type => bool. EX x::'a::type. s = INSERT x EMPTY"
lemma SING_DEF: "ALL s::'a::type => bool. SING s = (EX x::'a::type. s = INSERT x EMPTY)"
by (import pred_set SING_DEF)
lemma SING: "ALL x::'a::type. SING (INSERT x EMPTY)"
by (import pred_set SING)
lemma IN_SING: "ALL (x::'a::type) xa::'a::type. IN x (INSERT xa EMPTY) = (x = xa)"
by (import pred_set IN_SING)
lemma NOT_SING_EMPTY: "ALL x::'a::type. INSERT x EMPTY ~= EMPTY"
by (import pred_set NOT_SING_EMPTY)
lemma NOT_EMPTY_SING: "ALL x::'a::type. EMPTY ~= INSERT x EMPTY"
by (import pred_set NOT_EMPTY_SING)
lemma EQUAL_SING: "ALL (x::'a::type) xa::'a::type.
(INSERT x EMPTY = INSERT xa EMPTY) = (x = xa)"
by (import pred_set EQUAL_SING)
lemma DISJOINT_SING_EMPTY: "ALL x::'a::type. DISJOINT (INSERT x EMPTY) EMPTY"
by (import pred_set DISJOINT_SING_EMPTY)
lemma INSERT_SING_UNION: "ALL (x::'a::type => bool) xa::'a::type.
INSERT xa x = pred_set.UNION (INSERT xa EMPTY) x"
by (import pred_set INSERT_SING_UNION)
lemma SING_DELETE: "ALL x::'a::type. DELETE (INSERT x EMPTY) x = EMPTY"
by (import pred_set SING_DELETE)
lemma DELETE_EQ_SING: "ALL (x::'a::type => bool) xa::'a::type.
IN xa x --> (DELETE x xa = EMPTY) = (x = INSERT xa EMPTY)"
by (import pred_set DELETE_EQ_SING)
lemma CHOICE_SING: "ALL x::'a::type. CHOICE (INSERT x EMPTY) = x"
by (import pred_set CHOICE_SING)
lemma REST_SING: "ALL x::'a::type. REST (INSERT x EMPTY) = EMPTY"
by (import pred_set REST_SING)
lemma SING_IFF_EMPTY_REST: "ALL x::'a::type => bool. SING x = (x ~= EMPTY & REST x = EMPTY)"
by (import pred_set SING_IFF_EMPTY_REST)
constdefs
IMAGE :: "('a => 'b) => ('a => bool) => 'b => bool"
"IMAGE ==
%(f::'a::type => 'b::type) s::'a::type => bool.
GSPEC (%x::'a::type. (f x, IN x s))"
lemma IMAGE_DEF: "ALL (f::'a::type => 'b::type) s::'a::type => bool.
IMAGE f s = GSPEC (%x::'a::type. (f x, IN x s))"
by (import pred_set IMAGE_DEF)
lemma IN_IMAGE: "ALL (x::'b::type) (xa::'a::type => bool) xb::'a::type => 'b::type.
IN x (IMAGE xb xa) = (EX xc::'a::type. x = xb xc & IN xc xa)"
by (import pred_set IN_IMAGE)
lemma IMAGE_IN: "ALL (x::'a::type) xa::'a::type => bool.
IN x xa --> (ALL xb::'a::type => 'b::type. IN (xb x) (IMAGE xb xa))"
by (import pred_set IMAGE_IN)
lemma IMAGE_EMPTY: "ALL x::'a::type => 'b::type. IMAGE x EMPTY = EMPTY"
by (import pred_set IMAGE_EMPTY)
lemma IMAGE_ID: "ALL x::'a::type => bool. IMAGE (%x::'a::type. x) x = x"
by (import pred_set IMAGE_ID)
lemma IMAGE_COMPOSE: "ALL (x::'b::type => 'c::type) (xa::'a::type => 'b::type)
xb::'a::type => bool. IMAGE (x o xa) xb = IMAGE x (IMAGE xa xb)"
by (import pred_set IMAGE_COMPOSE)
lemma IMAGE_INSERT: "ALL (x::'a::type => 'b::type) (xa::'a::type) xb::'a::type => bool.
IMAGE x (INSERT xa xb) = INSERT (x xa) (IMAGE x xb)"
by (import pred_set IMAGE_INSERT)
lemma IMAGE_EQ_EMPTY: "ALL (s::'a::type => bool) x::'a::type => 'b::type.
(IMAGE x s = EMPTY) = (s = EMPTY)"
by (import pred_set IMAGE_EQ_EMPTY)
lemma IMAGE_DELETE: "ALL (f::'a::type => 'b::type) (x::'a::type) s::'a::type => bool.
~ IN x s --> IMAGE f (DELETE s x) = IMAGE f s"
by (import pred_set IMAGE_DELETE)
lemma IMAGE_UNION: "ALL (x::'a::type => 'b::type) (xa::'a::type => bool) xb::'a::type => bool.
IMAGE x (pred_set.UNION xa xb) = pred_set.UNION (IMAGE x xa) (IMAGE x xb)"
by (import pred_set IMAGE_UNION)
lemma IMAGE_SUBSET: "ALL (x::'a::type => bool) xa::'a::type => bool.
SUBSET x xa -->
(ALL xb::'a::type => 'b::type. SUBSET (IMAGE xb x) (IMAGE xb xa))"
by (import pred_set IMAGE_SUBSET)
lemma IMAGE_INTER: "ALL (f::'a::type => 'b::type) (s::'a::type => bool) t::'a::type => bool.
SUBSET (IMAGE f (pred_set.INTER s t))
(pred_set.INTER (IMAGE f s) (IMAGE f t))"
by (import pred_set IMAGE_INTER)
constdefs
INJ :: "('a => 'b) => ('a => bool) => ('b => bool) => bool"
"INJ ==
%(f::'a::type => 'b::type) (s::'a::type => bool) t::'b::type => bool.
(ALL x::'a::type. IN x s --> IN (f x) t) &
(ALL (x::'a::type) y::'a::type. IN x s & IN y s --> f x = f y --> x = y)"
lemma INJ_DEF: "ALL (f::'a::type => 'b::type) (s::'a::type => bool) t::'b::type => bool.
INJ f s t =
((ALL x::'a::type. IN x s --> IN (f x) t) &
(ALL (x::'a::type) y::'a::type.
IN x s & IN y s --> f x = f y --> x = y))"
by (import pred_set INJ_DEF)
lemma INJ_ID: "ALL x::'a::type => bool. INJ (%x::'a::type. x) x x"
by (import pred_set INJ_ID)
lemma INJ_COMPOSE: "ALL (x::'a::type => 'b::type) (xa::'b::type => 'c::type)
(xb::'a::type => bool) (xc::'b::type => bool) xd::'c::type => bool.
INJ x xb xc & INJ xa xc xd --> INJ (xa o x) xb xd"
by (import pred_set INJ_COMPOSE)
lemma INJ_EMPTY: "ALL x::'a::type => 'b::type.
All (INJ x EMPTY) &
(ALL xa::'a::type => bool. INJ x xa EMPTY = (xa = EMPTY))"
by (import pred_set INJ_EMPTY)
constdefs
SURJ :: "('a => 'b) => ('a => bool) => ('b => bool) => bool"
"SURJ ==
%(f::'a::type => 'b::type) (s::'a::type => bool) t::'b::type => bool.
(ALL x::'a::type. IN x s --> IN (f x) t) &
(ALL x::'b::type. IN x t --> (EX y::'a::type. IN y s & f y = x))"
lemma SURJ_DEF: "ALL (f::'a::type => 'b::type) (s::'a::type => bool) t::'b::type => bool.
SURJ f s t =
((ALL x::'a::type. IN x s --> IN (f x) t) &
(ALL x::'b::type. IN x t --> (EX y::'a::type. IN y s & f y = x)))"
by (import pred_set SURJ_DEF)
lemma SURJ_ID: "ALL x::'a::type => bool. SURJ (%x::'a::type. x) x x"
by (import pred_set SURJ_ID)
lemma SURJ_COMPOSE: "ALL (x::'a::type => 'b::type) (xa::'b::type => 'c::type)
(xb::'a::type => bool) (xc::'b::type => bool) xd::'c::type => bool.
SURJ x xb xc & SURJ xa xc xd --> SURJ (xa o x) xb xd"
by (import pred_set SURJ_COMPOSE)
lemma SURJ_EMPTY: "ALL x::'a::type => 'b::type.
(ALL xa::'b::type => bool. SURJ x EMPTY xa = (xa = EMPTY)) &
(ALL xa::'a::type => bool. SURJ x xa EMPTY = (xa = EMPTY))"
by (import pred_set SURJ_EMPTY)
lemma IMAGE_SURJ: "ALL (x::'a::type => 'b::type) (xa::'a::type => bool) xb::'b::type => bool.
SURJ x xa xb = (IMAGE x xa = xb)"
by (import pred_set IMAGE_SURJ)
constdefs
BIJ :: "('a => 'b) => ('a => bool) => ('b => bool) => bool"
"BIJ ==
%(f::'a::type => 'b::type) (s::'a::type => bool) t::'b::type => bool.
INJ f s t & SURJ f s t"
lemma BIJ_DEF: "ALL (f::'a::type => 'b::type) (s::'a::type => bool) t::'b::type => bool.
BIJ f s t = (INJ f s t & SURJ f s t)"
by (import pred_set BIJ_DEF)
lemma BIJ_ID: "ALL x::'a::type => bool. BIJ (%x::'a::type. x) x x"
by (import pred_set BIJ_ID)
lemma BIJ_EMPTY: "ALL x::'a::type => 'b::type.
(ALL xa::'b::type => bool. BIJ x EMPTY xa = (xa = EMPTY)) &
(ALL xa::'a::type => bool. BIJ x xa EMPTY = (xa = EMPTY))"
by (import pred_set BIJ_EMPTY)
lemma BIJ_COMPOSE: "ALL (x::'a::type => 'b::type) (xa::'b::type => 'c::type)
(xb::'a::type => bool) (xc::'b::type => bool) xd::'c::type => bool.
BIJ x xb xc & BIJ xa xc xd --> BIJ (xa o x) xb xd"
by (import pred_set BIJ_COMPOSE)
consts
LINV :: "('a => 'b) => ('a => bool) => 'b => 'a"
specification (LINV) LINV_DEF: "ALL (f::'a::type => 'b::type) (s::'a::type => bool) t::'b::type => bool.
INJ f s t --> (ALL x::'a::type. IN x s --> LINV f s (f x) = x)"
by (import pred_set LINV_DEF)
consts
RINV :: "('a => 'b) => ('a => bool) => 'b => 'a"
specification (RINV) RINV_DEF: "ALL (f::'a::type => 'b::type) (s::'a::type => bool) t::'b::type => bool.
SURJ f s t --> (ALL x::'b::type. IN x t --> f (RINV f s x) = x)"
by (import pred_set RINV_DEF)
constdefs
FINITE :: "('a => bool) => bool"
"FINITE ==
%s::'a::type => bool.
ALL P::('a::type => bool) => bool.
P EMPTY &
(ALL s::'a::type => bool.
P s --> (ALL e::'a::type. P (INSERT e s))) -->
P s"
lemma FINITE_DEF: "ALL s::'a::type => bool.
FINITE s =
(ALL P::('a::type => bool) => bool.
P EMPTY &
(ALL s::'a::type => bool.
P s --> (ALL e::'a::type. P (INSERT e s))) -->
P s)"
by (import pred_set FINITE_DEF)
lemma FINITE_EMPTY: "FINITE EMPTY"
by (import pred_set FINITE_EMPTY)
lemma FINITE_INDUCT: "ALL P::('a::type => bool) => bool.
P EMPTY &
(ALL s::'a::type => bool.
FINITE s & P s -->
(ALL e::'a::type. ~ IN e s --> P (INSERT e s))) -->
(ALL s::'a::type => bool. FINITE s --> P s)"
by (import pred_set FINITE_INDUCT)
lemma FINITE_INSERT: "ALL (x::'a::type) s::'a::type => bool. FINITE (INSERT x s) = FINITE s"
by (import pred_set FINITE_INSERT)
lemma FINITE_DELETE: "ALL (x::'a::type) s::'a::type => bool. FINITE (DELETE s x) = FINITE s"
by (import pred_set FINITE_DELETE)
lemma FINITE_UNION: "ALL (s::'a::type => bool) t::'a::type => bool.
FINITE (pred_set.UNION s t) = (FINITE s & FINITE t)"
by (import pred_set FINITE_UNION)
lemma INTER_FINITE: "ALL s::'a::type => bool.
FINITE s --> (ALL t::'a::type => bool. FINITE (pred_set.INTER s t))"
by (import pred_set INTER_FINITE)
lemma SUBSET_FINITE: "ALL s::'a::type => bool.
FINITE s --> (ALL t::'a::type => bool. SUBSET t s --> FINITE t)"
by (import pred_set SUBSET_FINITE)
lemma PSUBSET_FINITE: "ALL x::'a::type => bool.
FINITE x --> (ALL xa::'a::type => bool. PSUBSET xa x --> FINITE xa)"
by (import pred_set PSUBSET_FINITE)
lemma FINITE_DIFF: "ALL s::'a::type => bool.
FINITE s --> (ALL t::'a::type => bool. FINITE (DIFF s t))"
by (import pred_set FINITE_DIFF)
lemma FINITE_SING: "ALL x::'a::type. FINITE (INSERT x EMPTY)"
by (import pred_set FINITE_SING)
lemma SING_FINITE: "ALL x::'a::type => bool. SING x --> FINITE x"
by (import pred_set SING_FINITE)
lemma IMAGE_FINITE: "ALL s::'a::type => bool.
FINITE s --> (ALL f::'a::type => 'b::type. FINITE (IMAGE f s))"
by (import pred_set IMAGE_FINITE)
consts
CARD :: "('a => bool) => nat"
specification (CARD) CARD_DEF: "(op &::bool => bool => bool)
((op =::nat => nat => bool)
((CARD::('a::type => bool) => nat) (EMPTY::'a::type => bool)) (0::nat))
((All::(('a::type => bool) => bool) => bool)
(%s::'a::type => bool.
(op -->::bool => bool => bool)
((FINITE::('a::type => bool) => bool) s)
((All::('a::type => bool) => bool)
(%x::'a::type.
(op =::nat => nat => bool)
((CARD::('a::type => bool) => nat)
((INSERT::'a::type
=> ('a::type => bool) => 'a::type => bool)
x s))
((If::bool => nat => nat => nat)
((IN::'a::type => ('a::type => bool) => bool) x s)
((CARD::('a::type => bool) => nat) s)
((Suc::nat => nat)
((CARD::('a::type => bool) => nat) s)))))))"
by (import pred_set CARD_DEF)
lemma CARD_EMPTY: "CARD EMPTY = 0"
by (import pred_set CARD_EMPTY)
lemma CARD_INSERT: "ALL s::'a::type => bool.
FINITE s -->
(ALL x::'a::type.
CARD (INSERT x s) = (if IN x s then CARD s else Suc (CARD s)))"
by (import pred_set CARD_INSERT)
lemma CARD_EQ_0: "ALL s::'a::type => bool. FINITE s --> (CARD s = 0) = (s = EMPTY)"
by (import pred_set CARD_EQ_0)
lemma CARD_DELETE: "ALL s::'a::type => bool.
FINITE s -->
(ALL x::'a::type.
CARD (DELETE s x) = (if IN x s then CARD s - 1 else CARD s))"
by (import pred_set CARD_DELETE)
lemma CARD_INTER_LESS_EQ: "ALL s::'a::type => bool.
FINITE s -->
(ALL t::'a::type => bool. CARD (pred_set.INTER s t) <= CARD s)"
by (import pred_set CARD_INTER_LESS_EQ)
lemma CARD_UNION: "ALL s::'a::type => bool.
FINITE s -->
(ALL t::'a::type => bool.
FINITE t -->
CARD (pred_set.UNION s t) + CARD (pred_set.INTER s t) =
CARD s + CARD t)"
by (import pred_set CARD_UNION)
lemma CARD_SUBSET: "ALL s::'a::type => bool.
FINITE s --> (ALL t::'a::type => bool. SUBSET t s --> CARD t <= CARD s)"
by (import pred_set CARD_SUBSET)
lemma CARD_PSUBSET: "ALL s::'a::type => bool.
FINITE s --> (ALL t::'a::type => bool. PSUBSET t s --> CARD t < CARD s)"
by (import pred_set CARD_PSUBSET)
lemma CARD_SING: "ALL x::'a::type. CARD (INSERT x EMPTY) = 1"
by (import pred_set CARD_SING)
lemma SING_IFF_CARD1: "ALL x::'a::type => bool. SING x = (CARD x = 1 & FINITE x)"
by (import pred_set SING_IFF_CARD1)
lemma CARD_DIFF: "ALL t::'a::type => bool.
FINITE t -->
(ALL s::'a::type => bool.
FINITE s --> CARD (DIFF s t) = CARD s - CARD (pred_set.INTER s t))"
by (import pred_set CARD_DIFF)
lemma LESS_CARD_DIFF: "ALL t::'a::type => bool.
FINITE t -->
(ALL s::'a::type => bool.
FINITE s --> CARD t < CARD s --> 0 < CARD (DIFF s t))"
by (import pred_set LESS_CARD_DIFF)
lemma FINITE_COMPLETE_INDUCTION: "ALL P::('a::type => bool) => bool.
(ALL x::'a::type => bool.
(ALL y::'a::type => bool. PSUBSET y x --> P y) -->
FINITE x --> P x) -->
(ALL x::'a::type => bool. FINITE x --> P x)"
by (import pred_set FINITE_COMPLETE_INDUCTION)
constdefs
INFINITE :: "('a => bool) => bool"
"INFINITE == %s::'a::type => bool. ~ FINITE s"
lemma INFINITE_DEF: "ALL s::'a::type => bool. INFINITE s = (~ FINITE s)"
by (import pred_set INFINITE_DEF)
lemma NOT_IN_FINITE: "(op =::bool => bool => bool)
((INFINITE::('a::type => bool) => bool) (pred_set.UNIV::'a::type => bool))
((All::(('a::type => bool) => bool) => bool)
(%s::'a::type => bool.
(op -->::bool => bool => bool)
((FINITE::('a::type => bool) => bool) s)
((Ex::('a::type => bool) => bool)
(%x::'a::type.
(Not::bool => bool)
((IN::'a::type => ('a::type => bool) => bool) x s)))))"
by (import pred_set NOT_IN_FINITE)
lemma INFINITE_INHAB: "ALL x::'a::type => bool. INFINITE x --> (EX xa::'a::type. IN xa x)"
by (import pred_set INFINITE_INHAB)
lemma IMAGE_11_INFINITE: "ALL f::'a::type => 'b::type.
(ALL (x::'a::type) y::'a::type. f x = f y --> x = y) -->
(ALL s::'a::type => bool. INFINITE s --> INFINITE (IMAGE f s))"
by (import pred_set IMAGE_11_INFINITE)
lemma INFINITE_SUBSET: "ALL x::'a::type => bool.
INFINITE x --> (ALL xa::'a::type => bool. SUBSET x xa --> INFINITE xa)"
by (import pred_set INFINITE_SUBSET)
lemma IN_INFINITE_NOT_FINITE: "ALL (x::'a::type => bool) xa::'a::type => bool.
INFINITE x & FINITE xa --> (EX xb::'a::type. IN xb x & ~ IN xb xa)"
by (import pred_set IN_INFINITE_NOT_FINITE)
lemma INFINITE_UNIV: "(op =::bool => bool => bool)
((INFINITE::('a::type => bool) => bool) (pred_set.UNIV::'a::type => bool))
((Ex::(('a::type => 'a::type) => bool) => bool)
(%f::'a::type => 'a::type.
(op &::bool => bool => bool)
((All::('a::type => bool) => bool)
(%x::'a::type.
(All::('a::type => bool) => bool)
(%y::'a::type.
(op -->::bool => bool => bool)
((op =::'a::type => 'a::type => bool) (f x) (f y))
((op =::'a::type => 'a::type => bool) x y))))
((Ex::('a::type => bool) => bool)
(%y::'a::type.
(All::('a::type => bool) => bool)
(%x::'a::type.
(Not::bool => bool)
((op =::'a::type => 'a::type => bool) (f x) y))))))"
by (import pred_set INFINITE_UNIV)
lemma FINITE_PSUBSET_INFINITE: "ALL x::'a::type => bool.
INFINITE x =
(ALL xa::'a::type => bool. FINITE xa --> SUBSET xa x --> PSUBSET xa x)"
by (import pred_set FINITE_PSUBSET_INFINITE)
lemma FINITE_PSUBSET_UNIV: "(op =::bool => bool => bool)
((INFINITE::('a::type => bool) => bool) (pred_set.UNIV::'a::type => bool))
((All::(('a::type => bool) => bool) => bool)
(%s::'a::type => bool.
(op -->::bool => bool => bool)
((FINITE::('a::type => bool) => bool) s)
((PSUBSET::('a::type => bool) => ('a::type => bool) => bool) s
(pred_set.UNIV::'a::type => bool))))"
by (import pred_set FINITE_PSUBSET_UNIV)
lemma INFINITE_DIFF_FINITE: "ALL (s::'a::type => bool) t::'a::type => bool.
INFINITE s & FINITE t --> DIFF s t ~= EMPTY"
by (import pred_set INFINITE_DIFF_FINITE)
lemma FINITE_ISO_NUM: "ALL s::'a::type => bool.
FINITE s -->
(EX f::nat => 'a::type.
(ALL (n::nat) m::nat.
n < CARD s & m < CARD s --> f n = f m --> n = m) &
s = GSPEC (%n::nat. (f n, n < CARD s)))"
by (import pred_set FINITE_ISO_NUM)
lemma FINITE_WEAK_ENUMERATE: "(All::(('a::type => bool) => bool) => bool)
(%x::'a::type => bool.
(op =::bool => bool => bool) ((FINITE::('a::type => bool) => bool) x)
((Ex::((nat => 'a::type) => bool) => bool)
(%f::nat => 'a::type.
(Ex::(nat => bool) => bool)
(%b::nat.
(All::('a::type => bool) => bool)
(%e::'a::type.
(op =::bool => bool => bool)
((IN::'a::type => ('a::type => bool) => bool) e x)
((Ex::(nat => bool) => bool)
(%n::nat.
(op &::bool => bool => bool)
((op <::nat => nat => bool) n b)
((op =::'a::type => 'a::type => bool) e
(f n)))))))))"
by (import pred_set FINITE_WEAK_ENUMERATE)
constdefs
BIGUNION :: "(('a => bool) => bool) => 'a => bool"
"BIGUNION ==
%P::('a::type => bool) => bool.
GSPEC (%x::'a::type. (x, EX p::'a::type => bool. IN p P & IN x p))"
lemma BIGUNION: "ALL P::('a::type => bool) => bool.
BIGUNION P =
GSPEC (%x::'a::type. (x, EX p::'a::type => bool. IN p P & IN x p))"
by (import pred_set BIGUNION)
lemma IN_BIGUNION: "ALL (x::'a::type) xa::('a::type => bool) => bool.
IN x (BIGUNION xa) = (EX s::'a::type => bool. IN x s & IN s xa)"
by (import pred_set IN_BIGUNION)
lemma BIGUNION_EMPTY: "BIGUNION EMPTY = EMPTY"
by (import pred_set BIGUNION_EMPTY)
lemma BIGUNION_SING: "ALL x::'a::type => bool. BIGUNION (INSERT x EMPTY) = x"
by (import pred_set BIGUNION_SING)
lemma BIGUNION_UNION: "ALL (x::('a::type => bool) => bool) xa::('a::type => bool) => bool.
BIGUNION (pred_set.UNION x xa) =
pred_set.UNION (BIGUNION x) (BIGUNION xa)"
by (import pred_set BIGUNION_UNION)
lemma DISJOINT_BIGUNION: "(ALL (s::('a::type => bool) => bool) t::'a::type => bool.
DISJOINT (BIGUNION s) t =
(ALL s'::'a::type => bool. IN s' s --> DISJOINT s' t)) &
(ALL (x::('a::type => bool) => bool) xa::'a::type => bool.
DISJOINT xa (BIGUNION x) =
(ALL xb::'a::type => bool. IN xb x --> DISJOINT xa xb))"
by (import pred_set DISJOINT_BIGUNION)
lemma BIGUNION_INSERT: "ALL (x::'a::type => bool) xa::('a::type => bool) => bool.
BIGUNION (INSERT x xa) = pred_set.UNION x (BIGUNION xa)"
by (import pred_set BIGUNION_INSERT)
lemma BIGUNION_SUBSET: "ALL (X::'a::type => bool) P::('a::type => bool) => bool.
SUBSET (BIGUNION P) X = (ALL Y::'a::type => bool. IN Y P --> SUBSET Y X)"
by (import pred_set BIGUNION_SUBSET)
lemma FINITE_BIGUNION: "ALL x::('a::type => bool) => bool.
FINITE x & (ALL s::'a::type => bool. IN s x --> FINITE s) -->
FINITE (BIGUNION x)"
by (import pred_set FINITE_BIGUNION)
constdefs
BIGINTER :: "(('a => bool) => bool) => 'a => bool"
"BIGINTER ==
%B::('a::type => bool) => bool.
GSPEC (%x::'a::type. (x, ALL P::'a::type => bool. IN P B --> IN x P))"
lemma BIGINTER: "ALL B::('a::type => bool) => bool.
BIGINTER B =
GSPEC (%x::'a::type. (x, ALL P::'a::type => bool. IN P B --> IN x P))"
by (import pred_set BIGINTER)
lemma IN_BIGINTER: "IN (x::'a::type) (BIGINTER (B::('a::type => bool) => bool)) =
(ALL P::'a::type => bool. IN P B --> IN x P)"
by (import pred_set IN_BIGINTER)
lemma BIGINTER_INSERT: "ALL (P::'a::type => bool) B::('a::type => bool) => bool.
BIGINTER (INSERT P B) = pred_set.INTER P (BIGINTER B)"
by (import pred_set BIGINTER_INSERT)
lemma BIGINTER_EMPTY: "BIGINTER EMPTY = pred_set.UNIV"
by (import pred_set BIGINTER_EMPTY)
lemma BIGINTER_INTER: "ALL (x::'a::type => bool) xa::'a::type => bool.
BIGINTER (INSERT x (INSERT xa EMPTY)) = pred_set.INTER x xa"
by (import pred_set BIGINTER_INTER)
lemma BIGINTER_SING: "ALL x::'a::type => bool. BIGINTER (INSERT x EMPTY) = x"
by (import pred_set BIGINTER_SING)
lemma SUBSET_BIGINTER: "ALL (X::'a::type => bool) P::('a::type => bool) => bool.
SUBSET X (BIGINTER P) = (ALL x::'a::type => bool. IN x P --> SUBSET X x)"
by (import pred_set SUBSET_BIGINTER)
lemma DISJOINT_BIGINTER: "ALL (x::'a::type => bool) (xa::'a::type => bool)
xb::('a::type => bool) => bool.
IN xa xb & DISJOINT xa x -->
DISJOINT x (BIGINTER xb) & DISJOINT (BIGINTER xb) x"
by (import pred_set DISJOINT_BIGINTER)
constdefs
CROSS :: "('a => bool) => ('b => bool) => 'a * 'b => bool"
"CROSS ==
%(P::'a::type => bool) Q::'b::type => bool.
GSPEC (%p::'a::type * 'b::type. (p, IN (fst p) P & IN (snd p) Q))"
lemma CROSS_DEF: "ALL (P::'a::type => bool) Q::'b::type => bool.
CROSS P Q =
GSPEC (%p::'a::type * 'b::type. (p, IN (fst p) P & IN (snd p) Q))"
by (import pred_set CROSS_DEF)
lemma IN_CROSS: "ALL (x::'a::type => bool) (xa::'b::type => bool) xb::'a::type * 'b::type.
IN xb (CROSS x xa) = (IN (fst xb) x & IN (snd xb) xa)"
by (import pred_set IN_CROSS)
lemma CROSS_EMPTY: "ALL x::'a::type => bool. CROSS x EMPTY = EMPTY & CROSS EMPTY x = EMPTY"
by (import pred_set CROSS_EMPTY)
lemma CROSS_INSERT_LEFT: "ALL (x::'a::type => bool) (xa::'b::type => bool) xb::'a::type.
CROSS (INSERT xb x) xa =
pred_set.UNION (CROSS (INSERT xb EMPTY) xa) (CROSS x xa)"
by (import pred_set CROSS_INSERT_LEFT)
lemma CROSS_INSERT_RIGHT: "ALL (x::'a::type => bool) (xa::'b::type => bool) xb::'b::type.
CROSS x (INSERT xb xa) =
pred_set.UNION (CROSS x (INSERT xb EMPTY)) (CROSS x xa)"
by (import pred_set CROSS_INSERT_RIGHT)
lemma FINITE_CROSS: "ALL (x::'a::type => bool) xa::'b::type => bool.
FINITE x & FINITE xa --> FINITE (CROSS x xa)"
by (import pred_set FINITE_CROSS)
lemma CROSS_SINGS: "ALL (x::'a::type) xa::'b::type.
CROSS (INSERT x EMPTY) (INSERT xa EMPTY) = INSERT (x, xa) EMPTY"
by (import pred_set CROSS_SINGS)
lemma CARD_SING_CROSS: "ALL (x::'a::type) s::'b::type => bool.
FINITE s --> CARD (CROSS (INSERT x EMPTY) s) = CARD s"
by (import pred_set CARD_SING_CROSS)
lemma CARD_CROSS: "ALL (x::'a::type => bool) xa::'b::type => bool.
FINITE x & FINITE xa --> CARD (CROSS x xa) = CARD x * CARD xa"
by (import pred_set CARD_CROSS)
lemma CROSS_SUBSET: "ALL (x::'a::type => bool) (xa::'b::type => bool) (xb::'a::type => bool)
xc::'b::type => bool.
SUBSET (CROSS xb xc) (CROSS x xa) =
(xb = EMPTY | xc = EMPTY | SUBSET xb x & SUBSET xc xa)"
by (import pred_set CROSS_SUBSET)
lemma FINITE_CROSS_EQ: "ALL (P::'a::type => bool) Q::'b::type => bool.
FINITE (CROSS P Q) = (P = EMPTY | Q = EMPTY | FINITE P & FINITE Q)"
by (import pred_set FINITE_CROSS_EQ)
constdefs
COMPL :: "('a => bool) => 'a => bool"
"COMPL == DIFF pred_set.UNIV"
lemma COMPL_DEF: "ALL P::'a::type => bool. COMPL P = DIFF pred_set.UNIV P"
by (import pred_set COMPL_DEF)
lemma IN_COMPL: "ALL (x::'a::type) xa::'a::type => bool. IN x (COMPL xa) = (~ IN x xa)"
by (import pred_set IN_COMPL)
lemma COMPL_COMPL: "ALL x::'a::type => bool. COMPL (COMPL x) = x"
by (import pred_set COMPL_COMPL)
lemma COMPL_CLAUSES: "ALL x::'a::type => bool.
pred_set.INTER (COMPL x) x = EMPTY &
pred_set.UNION (COMPL x) x = pred_set.UNIV"
by (import pred_set COMPL_CLAUSES)
lemma COMPL_SPLITS: "ALL (x::'a::type => bool) xa::'a::type => bool.
pred_set.UNION (pred_set.INTER x xa) (pred_set.INTER (COMPL x) xa) = xa"
by (import pred_set COMPL_SPLITS)
lemma INTER_UNION_COMPL: "ALL (x::'a::type => bool) xa::'a::type => bool.
pred_set.INTER x xa = COMPL (pred_set.UNION (COMPL x) (COMPL xa))"
by (import pred_set INTER_UNION_COMPL)
lemma COMPL_EMPTY: "COMPL EMPTY = pred_set.UNIV"
by (import pred_set COMPL_EMPTY)
consts
count :: "nat => nat => bool"
defs
count_primdef: "count == %n::nat. GSPEC (%m::nat. (m, m < n))"
lemma count_def: "ALL n::nat. count n = GSPEC (%m::nat. (m, m < n))"
by (import pred_set count_def)
lemma IN_COUNT: "ALL (m::nat) n::nat. IN m (count n) = (m < n)"
by (import pred_set IN_COUNT)
lemma COUNT_ZERO: "count 0 = EMPTY"
by (import pred_set COUNT_ZERO)
lemma COUNT_SUC: "ALL n::nat. count (Suc n) = INSERT n (count n)"
by (import pred_set COUNT_SUC)
lemma FINITE_COUNT: "ALL n::nat. FINITE (count n)"
by (import pred_set FINITE_COUNT)
lemma CARD_COUNT: "ALL n::nat. CARD (count n) = n"
by (import pred_set CARD_COUNT)
constdefs
ITSET_tupled :: "('a => 'b => 'b) => ('a => bool) * 'b => 'b"
"ITSET_tupled ==
%f::'a::type => 'b::type => 'b::type.
WFREC
(SOME R::('a::type => bool) * 'b::type
=> ('a::type => bool) * 'b::type => bool.
WF R &
(ALL (b::'b::type) s::'a::type => bool.
FINITE s & s ~= EMPTY --> R (REST s, f (CHOICE s) b) (s, b)))
(%(ITSET_tupled::('a::type => bool) * 'b::type => 'b::type)
(v::'a::type => bool, v1::'b::type).
if FINITE v
then if v = EMPTY then v1
else ITSET_tupled (REST v, f (CHOICE v) v1)
else ARB)"
lemma ITSET_tupled_primitive_def: "ALL f::'a::type => 'b::type => 'b::type.
ITSET_tupled f =
WFREC
(SOME R::('a::type => bool) * 'b::type
=> ('a::type => bool) * 'b::type => bool.
WF R &
(ALL (b::'b::type) s::'a::type => bool.
FINITE s & s ~= EMPTY --> R (REST s, f (CHOICE s) b) (s, b)))
(%(ITSET_tupled::('a::type => bool) * 'b::type => 'b::type)
(v::'a::type => bool, v1::'b::type).
if FINITE v
then if v = EMPTY then v1
else ITSET_tupled (REST v, f (CHOICE v) v1)
else ARB)"
by (import pred_set ITSET_tupled_primitive_def)
constdefs
ITSET :: "('a => 'b => 'b) => ('a => bool) => 'b => 'b"
"ITSET ==
%(f::'a::type => 'b::type => 'b::type) (x::'a::type => bool) x1::'b::type.
ITSET_tupled f (x, x1)"
lemma ITSET_curried_def: "ALL (f::'a::type => 'b::type => 'b::type) (x::'a::type => bool)
x1::'b::type. ITSET f x x1 = ITSET_tupled f (x, x1)"
by (import pred_set ITSET_curried_def)
lemma ITSET_IND: "ALL P::('a::type => bool) => 'b::type => bool.
(ALL (s::'a::type => bool) b::'b::type.
(FINITE s & s ~= EMPTY -->
P (REST s) ((f::'a::type => 'b::type => 'b::type) (CHOICE s) b)) -->
P s b) -->
(ALL v::'a::type => bool. All (P v))"
by (import pred_set ITSET_IND)
lemma ITSET_THM: "ALL (s::'a::type => bool) (f::'a::type => 'b::type => 'b::type) b::'b::type.
FINITE s -->
ITSET f s b =
(if s = EMPTY then b else ITSET f (REST s) (f (CHOICE s) b))"
by (import pred_set ITSET_THM)
lemma ITSET_EMPTY: "ALL (x::'a::type => 'b::type => 'b::type) xa::'b::type.
ITSET x EMPTY xa = xa"
by (import pred_set ITSET_EMPTY)
;end_setup
;setup_theory operator
constdefs
ASSOC :: "('a => 'a => 'a) => bool"
"ASSOC ==
%f::'a::type => 'a::type => 'a::type.
ALL (x::'a::type) (y::'a::type) z::'a::type. f x (f y z) = f (f x y) z"
lemma ASSOC_DEF: "ALL f::'a::type => 'a::type => 'a::type.
ASSOC f =
(ALL (x::'a::type) (y::'a::type) z::'a::type. f x (f y z) = f (f x y) z)"
by (import operator ASSOC_DEF)
constdefs
COMM :: "('a => 'a => 'b) => bool"
"COMM ==
%f::'a::type => 'a::type => 'b::type.
ALL (x::'a::type) y::'a::type. f x y = f y x"
lemma COMM_DEF: "ALL f::'a::type => 'a::type => 'b::type.
COMM f = (ALL (x::'a::type) y::'a::type. f x y = f y x)"
by (import operator COMM_DEF)
constdefs
FCOMM :: "('a => 'b => 'a) => ('c => 'a => 'a) => bool"
"FCOMM ==
%(f::'a::type => 'b::type => 'a::type) g::'c::type => 'a::type => 'a::type.
ALL (x::'c::type) (y::'a::type) z::'b::type. g x (f y z) = f (g x y) z"
lemma FCOMM_DEF: "ALL (f::'a::type => 'b::type => 'a::type)
g::'c::type => 'a::type => 'a::type.
FCOMM f g =
(ALL (x::'c::type) (y::'a::type) z::'b::type. g x (f y z) = f (g x y) z)"
by (import operator FCOMM_DEF)
constdefs
RIGHT_ID :: "('a => 'b => 'a) => 'b => bool"
"RIGHT_ID ==
%(f::'a::type => 'b::type => 'a::type) e::'b::type.
ALL x::'a::type. f x e = x"
lemma RIGHT_ID_DEF: "ALL (f::'a::type => 'b::type => 'a::type) e::'b::type.
RIGHT_ID f e = (ALL x::'a::type. f x e = x)"
by (import operator RIGHT_ID_DEF)
constdefs
LEFT_ID :: "('a => 'b => 'b) => 'a => bool"
"LEFT_ID ==
%(f::'a::type => 'b::type => 'b::type) e::'a::type.
ALL x::'b::type. f e x = x"
lemma LEFT_ID_DEF: "ALL (f::'a::type => 'b::type => 'b::type) e::'a::type.
LEFT_ID f e = (ALL x::'b::type. f e x = x)"
by (import operator LEFT_ID_DEF)
constdefs
MONOID :: "('a => 'a => 'a) => 'a => bool"
"MONOID ==
%(f::'a::type => 'a::type => 'a::type) e::'a::type.
ASSOC f & RIGHT_ID f e & LEFT_ID f e"
lemma MONOID_DEF: "ALL (f::'a::type => 'a::type => 'a::type) e::'a::type.
MONOID f e = (ASSOC f & RIGHT_ID f e & LEFT_ID f e)"
by (import operator MONOID_DEF)
lemma ASSOC_CONJ: "ASSOC op &"
by (import operator ASSOC_CONJ)
lemma ASSOC_DISJ: "ASSOC op |"
by (import operator ASSOC_DISJ)
lemma FCOMM_ASSOC: "ALL x::'a::type => 'a::type => 'a::type. FCOMM x x = ASSOC x"
by (import operator FCOMM_ASSOC)
lemma MONOID_CONJ_T: "MONOID op & True"
by (import operator MONOID_CONJ_T)
lemma MONOID_DISJ_F: "MONOID op | False"
by (import operator MONOID_DISJ_F)
;end_setup
;setup_theory rich_list
consts
SNOC :: "'a => 'a list => 'a list"
specification (SNOC) SNOC: "(ALL x::'a::type. SNOC x [] = [x]) &
(ALL (x::'a::type) (x'::'a::type) l::'a::type list.
SNOC x (x' # l) = x' # SNOC x l)"
by (import rich_list SNOC)
consts
SCANL :: "('b => 'a => 'b) => 'b => 'a list => 'b list"
specification (SCANL) SCANL: "(ALL (f::'b::type => 'a::type => 'b::type) e::'b::type.
SCANL f e [] = [e]) &
(ALL (f::'b::type => 'a::type => 'b::type) (e::'b::type) (x::'a::type)
l::'a::type list. SCANL f e (x # l) = e # SCANL f (f e x) l)"
by (import rich_list SCANL)
consts
SCANR :: "('a => 'b => 'b) => 'b => 'a list => 'b list"
specification (SCANR) SCANR: "(ALL (f::'a::type => 'b::type => 'b::type) e::'b::type.
SCANR f e [] = [e]) &
(ALL (f::'a::type => 'b::type => 'b::type) (e::'b::type) (x::'a::type)
l::'a::type list.
SCANR f e (x # l) = f x (hd (SCANR f e l)) # SCANR f e l)"
by (import rich_list SCANR)
lemma IS_EL_DEF: "ALL (x::'a::type) l::'a::type list. x mem l = list_exists (op = x) l"
by (import rich_list IS_EL_DEF)
constdefs
AND_EL :: "bool list => bool"
"AND_EL == list_all I"
lemma AND_EL_DEF: "AND_EL = list_all I"
by (import rich_list AND_EL_DEF)
constdefs
OR_EL :: "bool list => bool"
"OR_EL == list_exists I"
lemma OR_EL_DEF: "OR_EL = list_exists I"
by (import rich_list OR_EL_DEF)
consts
FIRSTN :: "nat => 'a list => 'a list"
specification (FIRSTN) FIRSTN: "(ALL l::'a::type list. FIRSTN 0 l = []) &
(ALL (n::nat) (x::'a::type) l::'a::type list.
FIRSTN (Suc n) (x # l) = x # FIRSTN n l)"
by (import rich_list FIRSTN)
consts
BUTFIRSTN :: "nat => 'a list => 'a list"
specification (BUTFIRSTN) BUTFIRSTN: "(ALL l::'a::type list. BUTFIRSTN 0 l = l) &
(ALL (n::nat) (x::'a::type) l::'a::type list.
BUTFIRSTN (Suc n) (x # l) = BUTFIRSTN n l)"
by (import rich_list BUTFIRSTN)
consts
SEG :: "nat => nat => 'a list => 'a list"
specification (SEG) SEG: "(ALL (k::nat) l::'a::type list. SEG 0 k l = []) &
(ALL (m::nat) (x::'a::type) l::'a::type list.
SEG (Suc m) 0 (x # l) = x # SEG m 0 l) &
(ALL (m::nat) (k::nat) (x::'a::type) l::'a::type list.
SEG (Suc m) (Suc k) (x # l) = SEG (Suc m) k l)"
by (import rich_list SEG)
lemma LAST: "ALL (x::'a::type) l::'a::type list. last (SNOC x l) = x"
by (import rich_list LAST)
lemma BUTLAST: "ALL (x::'a::type) l::'a::type list. butlast (SNOC x l) = l"
by (import rich_list BUTLAST)
consts
LASTN :: "nat => 'a list => 'a list"
specification (LASTN) LASTN: "(ALL l::'a::type list. LASTN 0 l = []) &
(ALL (n::nat) (x::'a::type) l::'a::type list.
LASTN (Suc n) (SNOC x l) = SNOC x (LASTN n l))"
by (import rich_list LASTN)
consts
BUTLASTN :: "nat => 'a list => 'a list"
specification (BUTLASTN) BUTLASTN: "(ALL l::'a::type list. BUTLASTN 0 l = l) &
(ALL (n::nat) (x::'a::type) l::'a::type list.
BUTLASTN (Suc n) (SNOC x l) = BUTLASTN n l)"
by (import rich_list BUTLASTN)
lemma EL: "(ALL x::'a::type list. EL 0 x = hd x) &
(ALL (x::nat) xa::'a::type list. EL (Suc x) xa = EL x (tl xa))"
by (import rich_list EL)
consts
ELL :: "nat => 'a list => 'a"
specification (ELL) ELL: "(ALL l::'a::type list. ELL 0 l = last l) &
(ALL (n::nat) l::'a::type list. ELL (Suc n) l = ELL n (butlast l))"
by (import rich_list ELL)
consts
IS_PREFIX :: "'a list => 'a list => bool"
specification (IS_PREFIX) IS_PREFIX: "(ALL l::'a::type list. IS_PREFIX l [] = True) &
(ALL (x::'a::type) l::'a::type list. IS_PREFIX [] (x # l) = False) &
(ALL (x1::'a::type) (l1::'a::type list) (x2::'a::type) l2::'a::type list.
IS_PREFIX (x1 # l1) (x2 # l2) = (x1 = x2 & IS_PREFIX l1 l2))"
by (import rich_list IS_PREFIX)
lemma SNOC_APPEND: "ALL (x::'a::type) l::'a::type list. SNOC x l = l @ [x]"
by (import rich_list SNOC_APPEND)
lemma REVERSE: "rev [] = [] &
(ALL (x::'a::type) xa::'a::type list. rev (x # xa) = SNOC x (rev xa))"
by (import rich_list REVERSE)
lemma REVERSE_SNOC: "ALL (x::'a::type) l::'a::type list. rev (SNOC x l) = x # rev l"
by (import rich_list REVERSE_SNOC)
lemma SNOC_Axiom: "ALL (e::'b::type) f::'a::type => 'a::type list => 'b::type => 'b::type.
EX x::'a::type list => 'b::type.
x [] = e &
(ALL (xa::'a::type) l::'a::type list. x (SNOC xa l) = f xa l (x l))"
by (import rich_list SNOC_Axiom)
consts
IS_SUFFIX :: "'a list => 'a list => bool"
specification (IS_SUFFIX) IS_SUFFIX: "(ALL l::'a::type list. IS_SUFFIX l [] = True) &
(ALL (x::'a::type) l::'a::type list. IS_SUFFIX [] (SNOC x l) = False) &
(ALL (x1::'a::type) (l1::'a::type list) (x2::'a::type) l2::'a::type list.
IS_SUFFIX (SNOC x1 l1) (SNOC x2 l2) = (x1 = x2 & IS_SUFFIX l1 l2))"
by (import rich_list IS_SUFFIX)
consts
IS_SUBLIST :: "'a list => 'a list => bool"
specification (IS_SUBLIST) IS_SUBLIST: "(ALL l::'a::type list. IS_SUBLIST l [] = True) &
(ALL (x::'a::type) l::'a::type list. IS_SUBLIST [] (x # l) = False) &
(ALL (x1::'a::type) (l1::'a::type list) (x2::'a::type) l2::'a::type list.
IS_SUBLIST (x1 # l1) (x2 # l2) =
(x1 = x2 & IS_PREFIX l1 l2 | IS_SUBLIST l1 (x2 # l2)))"
by (import rich_list IS_SUBLIST)
consts
SPLITP :: "('a => bool) => 'a list => 'a list * 'a list"
specification (SPLITP) SPLITP: "(ALL P::'a::type => bool. SPLITP P [] = ([], [])) &
(ALL (P::'a::type => bool) (x::'a::type) l::'a::type list.
SPLITP P (x # l) =
(if P x then ([], x # l) else (x # fst (SPLITP P l), snd (SPLITP P l))))"
by (import rich_list SPLITP)
constdefs
PREFIX :: "('a => bool) => 'a list => 'a list"
"PREFIX == %(P::'a::type => bool) l::'a::type list. fst (SPLITP (Not o P) l)"
lemma PREFIX_DEF: "ALL (P::'a::type => bool) l::'a::type list.
PREFIX P l = fst (SPLITP (Not o P) l)"
by (import rich_list PREFIX_DEF)
constdefs
SUFFIX :: "('a => bool) => 'a list => 'a list"
"SUFFIX ==
%P::'a::type => bool.
foldl (%(l'::'a::type list) x::'a::type. if P x then SNOC x l' else [])
[]"
lemma SUFFIX_DEF: "ALL (P::'a::type => bool) l::'a::type list.
SUFFIX P l =
foldl (%(l'::'a::type list) x::'a::type. if P x then SNOC x l' else [])
[] l"
by (import rich_list SUFFIX_DEF)
constdefs
UNZIP_FST :: "('a * 'b) list => 'a list"
"UNZIP_FST == %l::('a::type * 'b::type) list. fst (unzip l)"
lemma UNZIP_FST_DEF: "ALL l::('a::type * 'b::type) list. UNZIP_FST l = fst (unzip l)"
by (import rich_list UNZIP_FST_DEF)
constdefs
UNZIP_SND :: "('a * 'b) list => 'b list"
"UNZIP_SND == %l::('a::type * 'b::type) list. snd (unzip l)"
lemma UNZIP_SND_DEF: "ALL l::('a::type * 'b::type) list. UNZIP_SND l = snd (unzip l)"
by (import rich_list UNZIP_SND_DEF)
consts
GENLIST :: "(nat => 'a) => nat => 'a list"
specification (GENLIST) GENLIST: "(ALL f::nat => 'a::type. GENLIST f 0 = []) &
(ALL (f::nat => 'a::type) n::nat.
GENLIST f (Suc n) = SNOC (f n) (GENLIST f n))"
by (import rich_list GENLIST)
consts
REPLICATE :: "nat => 'a => 'a list"
specification (REPLICATE) REPLICATE: "(ALL x::'a::type. REPLICATE 0 x = []) &
(ALL (n::nat) x::'a::type. REPLICATE (Suc n) x = x # REPLICATE n x)"
by (import rich_list REPLICATE)
lemma LENGTH_MAP2: "ALL (l1::'a::type list) l2::'b::type list.
length l1 = length l2 -->
(ALL f::'a::type => 'b::type => 'c::type.
length (map2 f l1 l2) = length l1 &
length (map2 f l1 l2) = length l2)"
by (import rich_list LENGTH_MAP2)
lemma NULL_EQ_NIL: "ALL l::'a::type list. null l = (l = [])"
by (import rich_list NULL_EQ_NIL)
lemma LENGTH_EQ: "ALL (x::'a::type list) y::'a::type list. x = y --> length x = length y"
by (import rich_list LENGTH_EQ)
lemma LENGTH_NOT_NULL: "ALL l::'a::type list. (0 < length l) = (~ null l)"
by (import rich_list LENGTH_NOT_NULL)
lemma SNOC_INDUCT: "ALL P::'a::type list => bool.
P [] &
(ALL l::'a::type list. P l --> (ALL x::'a::type. P (SNOC x l))) -->
All P"
by (import rich_list SNOC_INDUCT)
lemma SNOC_CASES: "ALL x'::'a::type list.
x' = [] | (EX (x::'a::type) l::'a::type list. x' = SNOC x l)"
by (import rich_list SNOC_CASES)
lemma LENGTH_SNOC: "ALL (x::'a::type) l::'a::type list. length (SNOC x l) = Suc (length l)"
by (import rich_list LENGTH_SNOC)
lemma NOT_NIL_SNOC: "ALL (x::'a::type) xa::'a::type list. [] ~= SNOC x xa"
by (import rich_list NOT_NIL_SNOC)
lemma NOT_SNOC_NIL: "ALL (x::'a::type) xa::'a::type list. SNOC x xa ~= []"
by (import rich_list NOT_SNOC_NIL)
lemma SNOC_11: "ALL (x::'a::type) (l::'a::type list) (x'::'a::type) l'::'a::type list.
(SNOC x l = SNOC x' l') = (x = x' & l = l')"
by (import rich_list SNOC_11)
lemma SNOC_EQ_LENGTH_EQ: "ALL (x1::'a::type) (l1::'a::type list) (x2::'a::type) l2::'a::type list.
SNOC x1 l1 = SNOC x2 l2 --> length l1 = length l2"
by (import rich_list SNOC_EQ_LENGTH_EQ)
lemma SNOC_REVERSE_CONS: "ALL (x::'a::type) xa::'a::type list. SNOC x xa = rev (x # rev xa)"
by (import rich_list SNOC_REVERSE_CONS)
lemma MAP_SNOC: "ALL (x::'a::type => 'b::type) (xa::'a::type) xb::'a::type list.
map x (SNOC xa xb) = SNOC (x xa) (map x xb)"
by (import rich_list MAP_SNOC)
lemma FOLDR_SNOC: "ALL (f::'a::type => 'b::type => 'b::type) (e::'b::type) (x::'a::type)
l::'a::type list. foldr f (SNOC x l) e = foldr f l (f x e)"
by (import rich_list FOLDR_SNOC)
lemma FOLDL_SNOC: "ALL (f::'b::type => 'a::type => 'b::type) (e::'b::type) (x::'a::type)
l::'a::type list. foldl f e (SNOC x l) = f (foldl f e l) x"
by (import rich_list FOLDL_SNOC)
lemma FOLDR_FOLDL: "ALL (f::'a::type => 'a::type => 'a::type) e::'a::type.
MONOID f e --> (ALL l::'a::type list. foldr f l e = foldl f e l)"
by (import rich_list FOLDR_FOLDL)
lemma LENGTH_FOLDR: "ALL l::'a::type list. length l = foldr (%x::'a::type. Suc) l 0"
by (import rich_list LENGTH_FOLDR)
lemma LENGTH_FOLDL: "ALL l::'a::type list. length l = foldl (%(l'::nat) x::'a::type. Suc l') 0 l"
by (import rich_list LENGTH_FOLDL)
lemma MAP_FOLDR: "ALL (f::'a::type => 'b::type) l::'a::type list.
map f l = foldr (%x::'a::type. op # (f x)) l []"
by (import rich_list MAP_FOLDR)
lemma MAP_FOLDL: "ALL (f::'a::type => 'b::type) l::'a::type list.
map f l = foldl (%(l'::'b::type list) x::'a::type. SNOC (f x) l') [] l"
by (import rich_list MAP_FOLDL)
lemma MAP_o: "ALL (f::'b::type => 'c::type) g::'a::type => 'b::type.
map (f o g) = map f o map g"
by (import rich_list MAP_o)
lemma FILTER_FOLDR: "ALL (P::'a::type => bool) l::'a::type list.
filter P l =
foldr (%(x::'a::type) l'::'a::type list. if P x then x # l' else l') l []"
by (import rich_list FILTER_FOLDR)
lemma FILTER_SNOC: "ALL (P::'a::type => bool) (x::'a::type) l::'a::type list.
filter P (SNOC x l) = (if P x then SNOC x (filter P l) else filter P l)"
by (import rich_list FILTER_SNOC)
lemma FILTER_FOLDL: "ALL (P::'a::type => bool) l::'a::type list.
filter P l =
foldl (%(l'::'a::type list) x::'a::type. if P x then SNOC x l' else l')
[] l"
by (import rich_list FILTER_FOLDL)
lemma FILTER_COMM: "ALL (f1::'a::type => bool) (f2::'a::type => bool) l::'a::type list.
filter f1 (filter f2 l) = filter f2 (filter f1 l)"
by (import rich_list FILTER_COMM)
lemma FILTER_IDEM: "ALL (f::'a::type => bool) l::'a::type list.
filter f (filter f l) = filter f l"
by (import rich_list FILTER_IDEM)
lemma LENGTH_SEG: "ALL (n::nat) (k::nat) l::'a::type list.
n + k <= length l --> length (SEG n k l) = n"
by (import rich_list LENGTH_SEG)
lemma APPEND_NIL: "(ALL l::'a::type list. l @ [] = l) & (ALL x::'a::type list. [] @ x = x)"
by (import rich_list APPEND_NIL)
lemma APPEND_SNOC: "ALL (l1::'a::type list) (x::'a::type) l2::'a::type list.
l1 @ SNOC x l2 = SNOC x (l1 @ l2)"
by (import rich_list APPEND_SNOC)
lemma APPEND_FOLDR: "ALL (l1::'a::type list) l2::'a::type list. l1 @ l2 = foldr op # l1 l2"
by (import rich_list APPEND_FOLDR)
lemma APPEND_FOLDL: "ALL (l1::'a::type list) l2::'a::type list.
l1 @ l2 = foldl (%(l'::'a::type list) x::'a::type. SNOC x l') l1 l2"
by (import rich_list APPEND_FOLDL)
lemma CONS_APPEND: "ALL (x::'a::type) l::'a::type list. x # l = [x] @ l"
by (import rich_list CONS_APPEND)
lemma ASSOC_APPEND: "ASSOC op @"
by (import rich_list ASSOC_APPEND)
lemma MONOID_APPEND_NIL: "MONOID op @ []"
by (import rich_list MONOID_APPEND_NIL)
lemma APPEND_LENGTH_EQ: "ALL (l1::'a::type list) l1'::'a::type list.
length l1 = length l1' -->
(ALL (l2::'a::type list) l2'::'a::type list.
length l2 = length l2' -->
(l1 @ l2 = l1' @ l2') = (l1 = l1' & l2 = l2'))"
by (import rich_list APPEND_LENGTH_EQ)
lemma FLAT_SNOC: "ALL (x::'a::type list) l::'a::type list list.
concat (SNOC x l) = concat l @ x"
by (import rich_list FLAT_SNOC)
lemma FLAT_FOLDR: "ALL l::'a::type list list. concat l = foldr op @ l []"
by (import rich_list FLAT_FOLDR)
lemma FLAT_FOLDL: "ALL l::'a::type list list. concat l = foldl op @ [] l"
by (import rich_list FLAT_FOLDL)
lemma LENGTH_FLAT: "ALL l::'a::type list list. length (concat l) = sum (map size l)"
by (import rich_list LENGTH_FLAT)
lemma REVERSE_FOLDR: "ALL l::'a::type list. rev l = foldr SNOC l []"
by (import rich_list REVERSE_FOLDR)
lemma REVERSE_FOLDL: "ALL l::'a::type list.
rev l = foldl (%(l'::'a::type list) x::'a::type. x # l') [] l"
by (import rich_list REVERSE_FOLDL)
lemma ALL_EL_SNOC: "ALL (P::'a::type => bool) (x::'a::type) l::'a::type list.
list_all P (SNOC x l) = (list_all P l & P x)"
by (import rich_list ALL_EL_SNOC)
lemma ALL_EL_MAP: "ALL (P::'b::type => bool) (f::'a::type => 'b::type) l::'a::type list.
list_all P (map f l) = list_all (P o f) l"
by (import rich_list ALL_EL_MAP)
lemma SOME_EL_SNOC: "ALL (P::'a::type => bool) (x::'a::type) l::'a::type list.
list_exists P (SNOC x l) = (P x | list_exists P l)"
by (import rich_list SOME_EL_SNOC)
lemma IS_EL_SNOC: "ALL (y::'a::type) (x::'a::type) l::'a::type list.
y mem SNOC x l = (y = x | y mem l)"
by (import rich_list IS_EL_SNOC)
lemma SUM_SNOC: "ALL (x::nat) l::nat list. sum (SNOC x l) = sum l + x"
by (import rich_list SUM_SNOC)
lemma SUM_FOLDL: "ALL l::nat list. sum l = foldl op + 0 l"
by (import rich_list SUM_FOLDL)
lemma IS_PREFIX_APPEND: "ALL (l1::'a::type list) l2::'a::type list.
IS_PREFIX l1 l2 = (EX l::'a::type list. l1 = l2 @ l)"
by (import rich_list IS_PREFIX_APPEND)
lemma IS_SUFFIX_APPEND: "ALL (l1::'a::type list) l2::'a::type list.
IS_SUFFIX l1 l2 = (EX l::'a::type list. l1 = l @ l2)"
by (import rich_list IS_SUFFIX_APPEND)
lemma IS_SUBLIST_APPEND: "ALL (l1::'a::type list) l2::'a::type list.
IS_SUBLIST l1 l2 =
(EX (l::'a::type list) l'::'a::type list. l1 = l @ l2 @ l')"
by (import rich_list IS_SUBLIST_APPEND)
lemma IS_PREFIX_IS_SUBLIST: "ALL (l1::'a::type list) l2::'a::type list.
IS_PREFIX l1 l2 --> IS_SUBLIST l1 l2"
by (import rich_list IS_PREFIX_IS_SUBLIST)
lemma IS_SUFFIX_IS_SUBLIST: "ALL (l1::'a::type list) l2::'a::type list.
IS_SUFFIX l1 l2 --> IS_SUBLIST l1 l2"
by (import rich_list IS_SUFFIX_IS_SUBLIST)
lemma IS_PREFIX_REVERSE: "ALL (l1::'a::type list) l2::'a::type list.
IS_PREFIX (rev l1) (rev l2) = IS_SUFFIX l1 l2"
by (import rich_list IS_PREFIX_REVERSE)
lemma IS_SUFFIX_REVERSE: "ALL (l2::'a::type list) l1::'a::type list.
IS_SUFFIX (rev l1) (rev l2) = IS_PREFIX l1 l2"
by (import rich_list IS_SUFFIX_REVERSE)
lemma IS_SUBLIST_REVERSE: "ALL (l1::'a::type list) l2::'a::type list.
IS_SUBLIST (rev l1) (rev l2) = IS_SUBLIST l1 l2"
by (import rich_list IS_SUBLIST_REVERSE)
lemma PREFIX_FOLDR: "ALL (P::'a::type => bool) x::'a::type list.
PREFIX P x =
foldr (%(x::'a::type) l'::'a::type list. if P x then x # l' else []) x []"
by (import rich_list PREFIX_FOLDR)
lemma PREFIX: "(ALL x::'a::type => bool. PREFIX x [] = []) &
(ALL (x::'a::type => bool) (xa::'a::type) xb::'a::type list.
PREFIX x (xa # xb) = (if x xa then xa # PREFIX x xb else []))"
by (import rich_list PREFIX)
lemma IS_PREFIX_PREFIX: "ALL (P::'a::type => bool) l::'a::type list. IS_PREFIX l (PREFIX P l)"
by (import rich_list IS_PREFIX_PREFIX)
lemma LENGTH_SCANL: "ALL (f::'b::type => 'a::type => 'b::type) (e::'b::type) l::'a::type list.
length (SCANL f e l) = Suc (length l)"
by (import rich_list LENGTH_SCANL)
lemma LENGTH_SCANR: "ALL (f::'a::type => 'b::type => 'b::type) (e::'b::type) l::'a::type list.
length (SCANR f e l) = Suc (length l)"
by (import rich_list LENGTH_SCANR)
lemma COMM_MONOID_FOLDL: "ALL x::'a::type => 'a::type => 'a::type.
COMM x -->
(ALL xa::'a::type.
MONOID x xa -->
(ALL (e::'a::type) l::'a::type list.
foldl x e l = x e (foldl x xa l)))"
by (import rich_list COMM_MONOID_FOLDL)
lemma COMM_MONOID_FOLDR: "ALL x::'a::type => 'a::type => 'a::type.
COMM x -->
(ALL xa::'a::type.
MONOID x xa -->
(ALL (e::'a::type) l::'a::type list.
foldr x l e = x e (foldr x l xa)))"
by (import rich_list COMM_MONOID_FOLDR)
lemma FCOMM_FOLDR_APPEND: "ALL (x::'a::type => 'a::type => 'a::type)
xa::'b::type => 'a::type => 'a::type.
FCOMM x xa -->
(ALL xb::'a::type.
LEFT_ID x xb -->
(ALL (l1::'b::type list) l2::'b::type list.
foldr xa (l1 @ l2) xb = x (foldr xa l1 xb) (foldr xa l2 xb)))"
by (import rich_list FCOMM_FOLDR_APPEND)
lemma FCOMM_FOLDL_APPEND: "ALL (x::'a::type => 'b::type => 'a::type)
xa::'a::type => 'a::type => 'a::type.
FCOMM x xa -->
(ALL xb::'a::type.
RIGHT_ID xa xb -->
(ALL (l1::'b::type list) l2::'b::type list.
foldl x xb (l1 @ l2) = xa (foldl x xb l1) (foldl x xb l2)))"
by (import rich_list FCOMM_FOLDL_APPEND)
lemma FOLDL_SINGLE: "ALL (x::'a::type => 'b::type => 'a::type) (xa::'a::type) xb::'b::type.
foldl x xa [xb] = x xa xb"
by (import rich_list FOLDL_SINGLE)
lemma FOLDR_SINGLE: "ALL (x::'a::type => 'b::type => 'b::type) (xa::'b::type) xb::'a::type.
foldr x [xb] xa = x xb xa"
by (import rich_list FOLDR_SINGLE)
lemma FOLDR_CONS_NIL: "ALL l::'a::type list. foldr op # l [] = l"
by (import rich_list FOLDR_CONS_NIL)
lemma FOLDL_SNOC_NIL: "ALL l::'a::type list.
foldl (%(xs::'a::type list) x::'a::type. SNOC x xs) [] l = l"
by (import rich_list FOLDL_SNOC_NIL)
lemma FOLDR_REVERSE: "ALL (x::'a::type => 'b::type => 'b::type) (xa::'b::type) xb::'a::type list.
foldr x (rev xb) xa = foldl (%(xa::'b::type) y::'a::type. x y xa) xa xb"
by (import rich_list FOLDR_REVERSE)
lemma FOLDL_REVERSE: "ALL (x::'a::type => 'b::type => 'a::type) (xa::'a::type) xb::'b::type list.
foldl x xa (rev xb) = foldr (%(xa::'b::type) y::'a::type. x y xa) xb xa"
by (import rich_list FOLDL_REVERSE)
lemma FOLDR_MAP: "ALL (f::'a::type => 'a::type => 'a::type) (e::'a::type)
(g::'b::type => 'a::type) l::'b::type list.
foldr f (map g l) e = foldr (%x::'b::type. f (g x)) l e"
by (import rich_list FOLDR_MAP)
lemma FOLDL_MAP: "ALL (f::'a::type => 'a::type => 'a::type) (e::'a::type)
(g::'b::type => 'a::type) l::'b::type list.
foldl f e (map g l) = foldl (%(x::'a::type) y::'b::type. f x (g y)) e l"
by (import rich_list FOLDL_MAP)
lemma ALL_EL_FOLDR: "ALL (P::'a::type => bool) l::'a::type list.
list_all P l = foldr (%x::'a::type. op & (P x)) l True"
by (import rich_list ALL_EL_FOLDR)
lemma ALL_EL_FOLDL: "ALL (P::'a::type => bool) l::'a::type list.
list_all P l = foldl (%(l'::bool) x::'a::type. l' & P x) True l"
by (import rich_list ALL_EL_FOLDL)
lemma SOME_EL_FOLDR: "ALL (P::'a::type => bool) l::'a::type list.
list_exists P l = foldr (%x::'a::type. op | (P x)) l False"
by (import rich_list SOME_EL_FOLDR)
lemma SOME_EL_FOLDL: "ALL (P::'a::type => bool) l::'a::type list.
list_exists P l = foldl (%(l'::bool) x::'a::type. l' | P x) False l"
by (import rich_list SOME_EL_FOLDL)
lemma ALL_EL_FOLDR_MAP: "ALL (x::'a::type => bool) xa::'a::type list.
list_all x xa = foldr op & (map x xa) True"
by (import rich_list ALL_EL_FOLDR_MAP)
lemma ALL_EL_FOLDL_MAP: "ALL (x::'a::type => bool) xa::'a::type list.
list_all x xa = foldl op & True (map x xa)"
by (import rich_list ALL_EL_FOLDL_MAP)
lemma SOME_EL_FOLDR_MAP: "ALL (x::'a::type => bool) xa::'a::type list.
list_exists x xa = foldr op | (map x xa) False"
by (import rich_list SOME_EL_FOLDR_MAP)
lemma SOME_EL_FOLDL_MAP: "ALL (x::'a::type => bool) xa::'a::type list.
list_exists x xa = foldl op | False (map x xa)"
by (import rich_list SOME_EL_FOLDL_MAP)
lemma FOLDR_FILTER: "ALL (f::'a::type => 'a::type => 'a::type) (e::'a::type)
(P::'a::type => bool) l::'a::type list.
foldr f (filter P l) e =
foldr (%(x::'a::type) y::'a::type. if P x then f x y else y) l e"
by (import rich_list FOLDR_FILTER)
lemma FOLDL_FILTER: "ALL (f::'a::type => 'a::type => 'a::type) (e::'a::type)
(P::'a::type => bool) l::'a::type list.
foldl f e (filter P l) =
foldl (%(x::'a::type) y::'a::type. if P y then f x y else x) e l"
by (import rich_list FOLDL_FILTER)
lemma ASSOC_FOLDR_FLAT: "ALL f::'a::type => 'a::type => 'a::type.
ASSOC f -->
(ALL e::'a::type.
LEFT_ID f e -->
(ALL l::'a::type list list.
foldr f (concat l) e = foldr f (map (FOLDR f e) l) e))"
by (import rich_list ASSOC_FOLDR_FLAT)
lemma ASSOC_FOLDL_FLAT: "ALL f::'a::type => 'a::type => 'a::type.
ASSOC f -->
(ALL e::'a::type.
RIGHT_ID f e -->
(ALL l::'a::type list list.
foldl f e (concat l) = foldl f e (map (foldl f e) l)))"
by (import rich_list ASSOC_FOLDL_FLAT)
lemma SOME_EL_MAP: "ALL (P::'b::type => bool) (f::'a::type => 'b::type) l::'a::type list.
list_exists P (map f l) = list_exists (P o f) l"
by (import rich_list SOME_EL_MAP)
lemma SOME_EL_DISJ: "ALL (P::'a::type => bool) (Q::'a::type => bool) l::'a::type list.
list_exists (%x::'a::type. P x | Q x) l =
(list_exists P l | list_exists Q l)"
by (import rich_list SOME_EL_DISJ)
lemma IS_EL_FOLDR: "ALL (x::'a::type) xa::'a::type list.
x mem xa = foldr (%xa::'a::type. op | (x = xa)) xa False"
by (import rich_list IS_EL_FOLDR)
lemma IS_EL_FOLDL: "ALL (x::'a::type) xa::'a::type list.
x mem xa = foldl (%(l'::bool) xa::'a::type. l' | x = xa) False xa"
by (import rich_list IS_EL_FOLDL)
lemma NULL_FOLDR: "ALL l::'a::type list. null l = foldr (%(x::'a::type) l'::bool. False) l True"
by (import rich_list NULL_FOLDR)
lemma NULL_FOLDL: "ALL l::'a::type list. null l = foldl (%(x::bool) l'::'a::type. False) True l"
by (import rich_list NULL_FOLDL)
lemma SEG_LENGTH_ID: "ALL l::'a::type list. SEG (length l) 0 l = l"
by (import rich_list SEG_LENGTH_ID)
lemma SEG_SUC_CONS: "ALL (m::nat) (n::nat) (l::'a::type list) x::'a::type.
SEG m (Suc n) (x # l) = SEG m n l"
by (import rich_list SEG_SUC_CONS)
lemma SEG_0_SNOC: "ALL (m::nat) (l::'a::type list) x::'a::type.
m <= length l --> SEG m 0 (SNOC x l) = SEG m 0 l"
by (import rich_list SEG_0_SNOC)
lemma BUTLASTN_SEG: "ALL (n::nat) l::'a::type list.
n <= length l --> BUTLASTN n l = SEG (length l - n) 0 l"
by (import rich_list BUTLASTN_SEG)
lemma LASTN_CONS: "ALL (n::nat) l::'a::type list.
n <= length l --> (ALL x::'a::type. LASTN n (x # l) = LASTN n l)"
by (import rich_list LASTN_CONS)
lemma LENGTH_LASTN: "ALL (n::nat) l::'a::type list. n <= length l --> length (LASTN n l) = n"
by (import rich_list LENGTH_LASTN)
lemma LASTN_LENGTH_ID: "ALL l::'a::type list. LASTN (length l) l = l"
by (import rich_list LASTN_LENGTH_ID)
lemma LASTN_LASTN: "ALL (l::'a::type list) (n::nat) m::nat.
m <= length l --> n <= m --> LASTN n (LASTN m l) = LASTN n l"
by (import rich_list LASTN_LASTN)
lemma FIRSTN_LENGTH_ID: "ALL l::'a::type list. FIRSTN (length l) l = l"
by (import rich_list FIRSTN_LENGTH_ID)
lemma FIRSTN_SNOC: "ALL (n::nat) l::'a::type list.
n <= length l --> (ALL x::'a::type. FIRSTN n (SNOC x l) = FIRSTN n l)"
by (import rich_list FIRSTN_SNOC)
lemma BUTLASTN_LENGTH_NIL: "ALL l::'a::type list. BUTLASTN (length l) l = []"
by (import rich_list BUTLASTN_LENGTH_NIL)
lemma BUTLASTN_SUC_BUTLAST: "ALL (n::nat) l::'a::type list.
n < length l --> BUTLASTN (Suc n) l = BUTLASTN n (butlast l)"
by (import rich_list BUTLASTN_SUC_BUTLAST)
lemma BUTLASTN_BUTLAST: "ALL (n::nat) l::'a::type list.
n < length l --> BUTLASTN n (butlast l) = butlast (BUTLASTN n l)"
by (import rich_list BUTLASTN_BUTLAST)
lemma LENGTH_BUTLASTN: "ALL (n::nat) l::'a::type list.
n <= length l --> length (BUTLASTN n l) = length l - n"
by (import rich_list LENGTH_BUTLASTN)
lemma BUTLASTN_BUTLASTN: "ALL (m::nat) (n::nat) l::'a::type list.
n + m <= length l --> BUTLASTN n (BUTLASTN m l) = BUTLASTN (n + m) l"
by (import rich_list BUTLASTN_BUTLASTN)
lemma APPEND_BUTLASTN_LASTN: "ALL (n::nat) l::'a::type list.
n <= length l --> BUTLASTN n l @ LASTN n l = l"
by (import rich_list APPEND_BUTLASTN_LASTN)
lemma APPEND_FIRSTN_LASTN: "ALL (m::nat) (n::nat) l::'a::type list.
m + n = length l --> FIRSTN n l @ LASTN m l = l"
by (import rich_list APPEND_FIRSTN_LASTN)
lemma BUTLASTN_APPEND2: "ALL (n::nat) (l1::'a::type list) l2::'a::type list.
n <= length l2 --> BUTLASTN n (l1 @ l2) = l1 @ BUTLASTN n l2"
by (import rich_list BUTLASTN_APPEND2)
lemma BUTLASTN_LENGTH_APPEND: "ALL (l2::'a::type list) l1::'a::type list.
BUTLASTN (length l2) (l1 @ l2) = l1"
by (import rich_list BUTLASTN_LENGTH_APPEND)
lemma LASTN_LENGTH_APPEND: "ALL (l2::'a::type list) l1::'a::type list. LASTN (length l2) (l1 @ l2) = l2"
by (import rich_list LASTN_LENGTH_APPEND)
lemma BUTLASTN_CONS: "ALL (n::nat) l::'a::type list.
n <= length l -->
(ALL x::'a::type. BUTLASTN n (x # l) = x # BUTLASTN n l)"
by (import rich_list BUTLASTN_CONS)
lemma BUTLASTN_LENGTH_CONS: "ALL (l::'a::type list) x::'a::type. BUTLASTN (length l) (x # l) = [x]"
by (import rich_list BUTLASTN_LENGTH_CONS)
lemma LAST_LASTN_LAST: "ALL (n::nat) l::'a::type list.
n <= length l --> 0 < n --> last (LASTN n l) = last l"
by (import rich_list LAST_LASTN_LAST)
lemma BUTLASTN_LASTN_NIL: "ALL (n::nat) l::'a::type list. n <= length l --> BUTLASTN n (LASTN n l) = []"
by (import rich_list BUTLASTN_LASTN_NIL)
lemma LASTN_BUTLASTN: "ALL (n::nat) (m::nat) l::'a::type list.
n + m <= length l -->
LASTN n (BUTLASTN m l) = BUTLASTN m (LASTN (n + m) l)"
by (import rich_list LASTN_BUTLASTN)
lemma BUTLASTN_LASTN: "ALL (m::nat) (n::nat) l::'a::type list.
m <= n & n <= length l -->
BUTLASTN m (LASTN n l) = LASTN (n - m) (BUTLASTN m l)"
by (import rich_list BUTLASTN_LASTN)
lemma LASTN_1: "ALL l::'a::type list. l ~= [] --> LASTN 1 l = [last l]"
by (import rich_list LASTN_1)
lemma BUTLASTN_1: "ALL l::'a::type list. l ~= [] --> BUTLASTN 1 l = butlast l"
by (import rich_list BUTLASTN_1)
lemma BUTLASTN_APPEND1: "ALL (l2::'a::type list) n::nat.
length l2 <= n -->
(ALL l1::'a::type list.
BUTLASTN n (l1 @ l2) = BUTLASTN (n - length l2) l1)"
by (import rich_list BUTLASTN_APPEND1)
lemma LASTN_APPEND2: "ALL (n::nat) l2::'a::type list.
n <= length l2 -->
(ALL l1::'a::type list. LASTN n (l1 @ l2) = LASTN n l2)"
by (import rich_list LASTN_APPEND2)
lemma LASTN_APPEND1: "ALL (l2::'a::type list) n::nat.
length l2 <= n -->
(ALL l1::'a::type list.
LASTN n (l1 @ l2) = LASTN (n - length l2) l1 @ l2)"
by (import rich_list LASTN_APPEND1)
lemma LASTN_MAP: "ALL (n::nat) l::'a::type list.
n <= length l -->
(ALL f::'a::type => 'b::type. LASTN n (map f l) = map f (LASTN n l))"
by (import rich_list LASTN_MAP)
lemma BUTLASTN_MAP: "ALL (n::nat) l::'a::type list.
n <= length l -->
(ALL f::'a::type => 'b::type.
BUTLASTN n (map f l) = map f (BUTLASTN n l))"
by (import rich_list BUTLASTN_MAP)
lemma ALL_EL_LASTN: "(All::(('a::type => bool) => bool) => bool)
(%P::'a::type => bool.
(All::('a::type list => bool) => bool)
(%l::'a::type list.
(op -->::bool => bool => bool)
((list_all::('a::type => bool) => 'a::type list => bool) P l)
((All::(nat => bool) => bool)
(%m::nat.
(op -->::bool => bool => bool)
((op <=::nat => nat => bool) m
((size::'a::type list => nat) l))
((list_all::('a::type => bool) => 'a::type list => bool) P
((LASTN::nat => 'a::type list => 'a::type list) m
l))))))"
by (import rich_list ALL_EL_LASTN)
lemma ALL_EL_BUTLASTN: "(All::(('a::type => bool) => bool) => bool)
(%P::'a::type => bool.
(All::('a::type list => bool) => bool)
(%l::'a::type list.
(op -->::bool => bool => bool)
((list_all::('a::type => bool) => 'a::type list => bool) P l)
((All::(nat => bool) => bool)
(%m::nat.
(op -->::bool => bool => bool)
((op <=::nat => nat => bool) m
((size::'a::type list => nat) l))
((list_all::('a::type => bool) => 'a::type list => bool) P
((BUTLASTN::nat => 'a::type list => 'a::type list) m
l))))))"
by (import rich_list ALL_EL_BUTLASTN)
lemma LENGTH_FIRSTN: "ALL (n::nat) l::'a::type list. n <= length l --> length (FIRSTN n l) = n"
by (import rich_list LENGTH_FIRSTN)
lemma FIRSTN_FIRSTN: "(All::(nat => bool) => bool)
(%m::nat.
(All::('a::type list => bool) => bool)
(%l::'a::type list.
(op -->::bool => bool => bool)
((op <=::nat => nat => bool) m ((size::'a::type list => nat) l))
((All::(nat => bool) => bool)
(%n::nat.
(op -->::bool => bool => bool)
((op <=::nat => nat => bool) n m)
((op =::'a::type list => 'a::type list => bool)
((FIRSTN::nat => 'a::type list => 'a::type list) n
((FIRSTN::nat => 'a::type list => 'a::type list) m l))
((FIRSTN::nat => 'a::type list => 'a::type list) n
l))))))"
by (import rich_list FIRSTN_FIRSTN)
lemma LENGTH_BUTFIRSTN: "ALL (n::nat) l::'a::type list.
n <= length l --> length (BUTFIRSTN n l) = length l - n"
by (import rich_list LENGTH_BUTFIRSTN)
lemma BUTFIRSTN_LENGTH_NIL: "ALL l::'a::type list. BUTFIRSTN (length l) l = []"
by (import rich_list BUTFIRSTN_LENGTH_NIL)
lemma BUTFIRSTN_APPEND1: "ALL (n::nat) l1::'a::type list.
n <= length l1 -->
(ALL l2::'a::type list. BUTFIRSTN n (l1 @ l2) = BUTFIRSTN n l1 @ l2)"
by (import rich_list BUTFIRSTN_APPEND1)
lemma BUTFIRSTN_APPEND2: "ALL (l1::'a::type list) n::nat.
length l1 <= n -->
(ALL l2::'a::type list.
BUTFIRSTN n (l1 @ l2) = BUTFIRSTN (n - length l1) l2)"
by (import rich_list BUTFIRSTN_APPEND2)
lemma BUTFIRSTN_BUTFIRSTN: "ALL (n::nat) (m::nat) l::'a::type list.
n + m <= length l --> BUTFIRSTN n (BUTFIRSTN m l) = BUTFIRSTN (n + m) l"
by (import rich_list BUTFIRSTN_BUTFIRSTN)
lemma APPEND_FIRSTN_BUTFIRSTN: "ALL (n::nat) l::'a::type list.
n <= length l --> FIRSTN n l @ BUTFIRSTN n l = l"
by (import rich_list APPEND_FIRSTN_BUTFIRSTN)
lemma LASTN_SEG: "ALL (n::nat) l::'a::type list.
n <= length l --> LASTN n l = SEG n (length l - n) l"
by (import rich_list LASTN_SEG)
lemma FIRSTN_SEG: "ALL (n::nat) l::'a::type list. n <= length l --> FIRSTN n l = SEG n 0 l"
by (import rich_list FIRSTN_SEG)
lemma BUTFIRSTN_SEG: "ALL (n::nat) l::'a::type list.
n <= length l --> BUTFIRSTN n l = SEG (length l - n) n l"
by (import rich_list BUTFIRSTN_SEG)
lemma BUTFIRSTN_SNOC: "ALL (n::nat) l::'a::type list.
n <= length l -->
(ALL x::'a::type. BUTFIRSTN n (SNOC x l) = SNOC x (BUTFIRSTN n l))"
by (import rich_list BUTFIRSTN_SNOC)
lemma APPEND_BUTLASTN_BUTFIRSTN: "ALL (m::nat) (n::nat) l::'a::type list.
m + n = length l --> BUTLASTN m l @ BUTFIRSTN n l = l"
by (import rich_list APPEND_BUTLASTN_BUTFIRSTN)
lemma SEG_SEG: "ALL (n1::nat) (m1::nat) (n2::nat) (m2::nat) l::'a::type list.
n1 + m1 <= length l & n2 + m2 <= n1 -->
SEG n2 m2 (SEG n1 m1 l) = SEG n2 (m1 + m2) l"
by (import rich_list SEG_SEG)
lemma SEG_APPEND1: "ALL (n::nat) (m::nat) l1::'a::type list.
n + m <= length l1 -->
(ALL l2::'a::type list. SEG n m (l1 @ l2) = SEG n m l1)"
by (import rich_list SEG_APPEND1)
lemma SEG_APPEND2: "ALL (l1::'a::type list) (m::nat) (n::nat) l2::'a::type list.
length l1 <= m & n <= length l2 -->
SEG n m (l1 @ l2) = SEG n (m - length l1) l2"
by (import rich_list SEG_APPEND2)
lemma SEG_FIRSTN_BUTFISTN: "ALL (n::nat) (m::nat) l::'a::type list.
n + m <= length l --> SEG n m l = FIRSTN n (BUTFIRSTN m l)"
by (import rich_list SEG_FIRSTN_BUTFISTN)
lemma SEG_APPEND: "ALL (m::nat) (l1::'a::type list) (n::nat) l2::'a::type list.
m < length l1 & length l1 <= n + m & n + m <= length l1 + length l2 -->
SEG n m (l1 @ l2) =
SEG (length l1 - m) m l1 @ SEG (n + m - length l1) 0 l2"
by (import rich_list SEG_APPEND)
lemma SEG_LENGTH_SNOC: "ALL (x::'a::type list) xa::'a::type. SEG 1 (length x) (SNOC xa x) = [xa]"
by (import rich_list SEG_LENGTH_SNOC)
lemma SEG_SNOC: "ALL (n::nat) (m::nat) l::'a::type list.
n + m <= length l --> (ALL x::'a::type. SEG n m (SNOC x l) = SEG n m l)"
by (import rich_list SEG_SNOC)
lemma ELL_SEG: "ALL (n::nat) l::'a::type list.
n < length l --> ELL n l = hd (SEG 1 (PRE (length l - n)) l)"
by (import rich_list ELL_SEG)
lemma SNOC_FOLDR: "ALL (x::'a::type) l::'a::type list. SNOC x l = foldr op # l [x]"
by (import rich_list SNOC_FOLDR)
lemma IS_EL_FOLDR_MAP: "ALL (x::'a::type) xa::'a::type list.
x mem xa = foldr op | (map (op = x) xa) False"
by (import rich_list IS_EL_FOLDR_MAP)
lemma IS_EL_FOLDL_MAP: "ALL (x::'a::type) xa::'a::type list.
x mem xa = foldl op | False (map (op = x) xa)"
by (import rich_list IS_EL_FOLDL_MAP)
lemma FILTER_FILTER: "ALL (P::'a::type => bool) (Q::'a::type => bool) l::'a::type list.
filter P (filter Q l) = [x::'a::type:l. P x & Q x]"
by (import rich_list FILTER_FILTER)
lemma FCOMM_FOLDR_FLAT: "ALL (g::'a::type => 'a::type => 'a::type)
f::'b::type => 'a::type => 'a::type.
FCOMM g f -->
(ALL e::'a::type.
LEFT_ID g e -->
(ALL l::'b::type list list.
foldr f (concat l) e = foldr g (map (FOLDR f e) l) e))"
by (import rich_list FCOMM_FOLDR_FLAT)
lemma FCOMM_FOLDL_FLAT: "ALL (f::'a::type => 'b::type => 'a::type)
g::'a::type => 'a::type => 'a::type.
FCOMM f g -->
(ALL e::'a::type.
RIGHT_ID g e -->
(ALL l::'b::type list list.
foldl f e (concat l) = foldl g e (map (foldl f e) l)))"
by (import rich_list FCOMM_FOLDL_FLAT)
lemma FOLDR_MAP_REVERSE: "ALL f::'a::type => 'a::type => 'a::type.
(ALL (a::'a::type) (b::'a::type) c::'a::type.
f a (f b c) = f b (f a c)) -->
(ALL (e::'a::type) (g::'b::type => 'a::type) l::'b::type list.
foldr f (map g (rev l)) e = foldr f (map g l) e)"
by (import rich_list FOLDR_MAP_REVERSE)
lemma FOLDR_FILTER_REVERSE: "ALL f::'a::type => 'a::type => 'a::type.
(ALL (a::'a::type) (b::'a::type) c::'a::type.
f a (f b c) = f b (f a c)) -->
(ALL (e::'a::type) (P::'a::type => bool) l::'a::type list.
foldr f (filter P (rev l)) e = foldr f (filter P l) e)"
by (import rich_list FOLDR_FILTER_REVERSE)
lemma COMM_ASSOC_FOLDR_REVERSE: "ALL f::'a::type => 'a::type => 'a::type.
COMM f -->
ASSOC f -->
(ALL (e::'a::type) l::'a::type list. foldr f (rev l) e = foldr f l e)"
by (import rich_list COMM_ASSOC_FOLDR_REVERSE)
lemma COMM_ASSOC_FOLDL_REVERSE: "ALL f::'a::type => 'a::type => 'a::type.
COMM f -->
ASSOC f -->
(ALL (e::'a::type) l::'a::type list. foldl f e (rev l) = foldl f e l)"
by (import rich_list COMM_ASSOC_FOLDL_REVERSE)
lemma ELL_LAST: "ALL l::'a::type list. ~ null l --> ELL 0 l = last l"
by (import rich_list ELL_LAST)
lemma ELL_0_SNOC: "ALL (l::'a::type list) x::'a::type. ELL 0 (SNOC x l) = x"
by (import rich_list ELL_0_SNOC)
lemma ELL_SNOC: "ALL n>0.
ALL (x::'a::type) l::'a::type list. ELL n (SNOC x l) = ELL (PRE n) l"
by (import rich_list ELL_SNOC)
lemma ELL_SUC_SNOC: "ALL (n::nat) (x::'a::type) xa::'a::type list.
ELL (Suc n) (SNOC x xa) = ELL n xa"
by (import rich_list ELL_SUC_SNOC)
lemma ELL_CONS: "ALL (n::nat) l::'a::type list.
n < length l --> (ALL x::'a::type. ELL n (x # l) = ELL n l)"
by (import rich_list ELL_CONS)
lemma ELL_LENGTH_CONS: "ALL (l::'a::type list) x::'a::type. ELL (length l) (x # l) = x"
by (import rich_list ELL_LENGTH_CONS)
lemma ELL_LENGTH_SNOC: "ALL (l::'a::type list) x::'a::type.
ELL (length l) (SNOC x l) = (if null l then x else hd l)"
by (import rich_list ELL_LENGTH_SNOC)
lemma ELL_APPEND2: "ALL (n::nat) l2::'a::type list.
n < length l2 --> (ALL l1::'a::type list. ELL n (l1 @ l2) = ELL n l2)"
by (import rich_list ELL_APPEND2)
lemma ELL_APPEND1: "ALL (l2::'a::type list) n::nat.
length l2 <= n -->
(ALL l1::'a::type list. ELL n (l1 @ l2) = ELL (n - length l2) l1)"
by (import rich_list ELL_APPEND1)
lemma ELL_PRE_LENGTH: "ALL l::'a::type list. l ~= [] --> ELL (PRE (length l)) l = hd l"
by (import rich_list ELL_PRE_LENGTH)
lemma EL_LENGTH_SNOC: "ALL (l::'a::type list) x::'a::type. EL (length l) (SNOC x l) = x"
by (import rich_list EL_LENGTH_SNOC)
lemma EL_PRE_LENGTH: "ALL l::'a::type list. l ~= [] --> EL (PRE (length l)) l = last l"
by (import rich_list EL_PRE_LENGTH)
lemma EL_SNOC: "ALL (n::nat) l::'a::type list.
n < length l --> (ALL x::'a::type. EL n (SNOC x l) = EL n l)"
by (import rich_list EL_SNOC)
lemma EL_ELL: "ALL (n::nat) l::'a::type list.
n < length l --> EL n l = ELL (PRE (length l - n)) l"
by (import rich_list EL_ELL)
lemma EL_LENGTH_APPEND: "ALL (l2::'a::type list) l1::'a::type list.
~ null l2 --> EL (length l1) (l1 @ l2) = hd l2"
by (import rich_list EL_LENGTH_APPEND)
lemma ELL_EL: "ALL (n::nat) l::'a::type list.
n < length l --> ELL n l = EL (PRE (length l - n)) l"
by (import rich_list ELL_EL)
lemma ELL_MAP: "ALL (n::nat) (l::'a::type list) f::'a::type => 'b::type.
n < length l --> ELL n (map f l) = f (ELL n l)"
by (import rich_list ELL_MAP)
lemma LENGTH_BUTLAST: "ALL l::'a::type list. l ~= [] --> length (butlast l) = PRE (length l)"
by (import rich_list LENGTH_BUTLAST)
lemma BUTFIRSTN_LENGTH_APPEND: "ALL (l1::'a::type list) l2::'a::type list.
BUTFIRSTN (length l1) (l1 @ l2) = l2"
by (import rich_list BUTFIRSTN_LENGTH_APPEND)
lemma FIRSTN_APPEND1: "ALL (n::nat) l1::'a::type list.
n <= length l1 -->
(ALL l2::'a::type list. FIRSTN n (l1 @ l2) = FIRSTN n l1)"
by (import rich_list FIRSTN_APPEND1)
lemma FIRSTN_APPEND2: "ALL (l1::'a::type list) n::nat.
length l1 <= n -->
(ALL l2::'a::type list.
FIRSTN n (l1 @ l2) = l1 @ FIRSTN (n - length l1) l2)"
by (import rich_list FIRSTN_APPEND2)
lemma FIRSTN_LENGTH_APPEND: "ALL (l1::'a::type list) l2::'a::type list. FIRSTN (length l1) (l1 @ l2) = l1"
by (import rich_list FIRSTN_LENGTH_APPEND)
lemma REVERSE_FLAT: "ALL l::'a::type list list. rev (concat l) = concat (rev (map rev l))"
by (import rich_list REVERSE_FLAT)
lemma MAP_FILTER: "ALL (f::'a::type => 'a::type) (P::'a::type => bool) l::'a::type list.
(ALL x::'a::type. P (f x) = P x) -->
map f (filter P l) = filter P (map f l)"
by (import rich_list MAP_FILTER)
lemma FLAT_REVERSE: "ALL l::'a::type list list. concat (rev l) = rev (concat (map rev l))"
by (import rich_list FLAT_REVERSE)
lemma FLAT_FLAT: "ALL l::'a::type list list list. concat (concat l) = concat (map concat l)"
by (import rich_list FLAT_FLAT)
lemma SOME_EL_REVERSE: "ALL (P::'a::type => bool) l::'a::type list.
list_exists P (rev l) = list_exists P l"
by (import rich_list SOME_EL_REVERSE)
lemma ALL_EL_SEG: "ALL (P::'a::type => bool) l::'a::type list.
list_all P l -->
(ALL (m::nat) k::nat. m + k <= length l --> list_all P (SEG m k l))"
by (import rich_list ALL_EL_SEG)
lemma ALL_EL_FIRSTN: "(All::(('a::type => bool) => bool) => bool)
(%P::'a::type => bool.
(All::('a::type list => bool) => bool)
(%l::'a::type list.
(op -->::bool => bool => bool)
((list_all::('a::type => bool) => 'a::type list => bool) P l)
((All::(nat => bool) => bool)
(%m::nat.
(op -->::bool => bool => bool)
((op <=::nat => nat => bool) m
((size::'a::type list => nat) l))
((list_all::('a::type => bool) => 'a::type list => bool) P
((FIRSTN::nat => 'a::type list => 'a::type list) m
l))))))"
by (import rich_list ALL_EL_FIRSTN)
lemma ALL_EL_BUTFIRSTN: "(All::(('a::type => bool) => bool) => bool)
(%P::'a::type => bool.
(All::('a::type list => bool) => bool)
(%l::'a::type list.
(op -->::bool => bool => bool)
((list_all::('a::type => bool) => 'a::type list => bool) P l)
((All::(nat => bool) => bool)
(%m::nat.
(op -->::bool => bool => bool)
((op <=::nat => nat => bool) m
((size::'a::type list => nat) l))
((list_all::('a::type => bool) => 'a::type list => bool) P
((BUTFIRSTN::nat => 'a::type list => 'a::type list) m
l))))))"
by (import rich_list ALL_EL_BUTFIRSTN)
lemma SOME_EL_SEG: "ALL (m::nat) (k::nat) l::'a::type list.
m + k <= length l -->
(ALL P::'a::type => bool. list_exists P (SEG m k l) --> list_exists P l)"
by (import rich_list SOME_EL_SEG)
lemma SOME_EL_FIRSTN: "ALL (m::nat) l::'a::type list.
m <= length l -->
(ALL P::'a::type => bool. list_exists P (FIRSTN m l) --> list_exists P l)"
by (import rich_list SOME_EL_FIRSTN)
lemma SOME_EL_BUTFIRSTN: "ALL (m::nat) l::'a::type list.
m <= length l -->
(ALL P::'a::type => bool.
list_exists P (BUTFIRSTN m l) --> list_exists P l)"
by (import rich_list SOME_EL_BUTFIRSTN)
lemma SOME_EL_LASTN: "ALL (m::nat) l::'a::type list.
m <= length l -->
(ALL P::'a::type => bool. list_exists P (LASTN m l) --> list_exists P l)"
by (import rich_list SOME_EL_LASTN)
lemma SOME_EL_BUTLASTN: "ALL (m::nat) l::'a::type list.
m <= length l -->
(ALL P::'a::type => bool.
list_exists P (BUTLASTN m l) --> list_exists P l)"
by (import rich_list SOME_EL_BUTLASTN)
lemma IS_EL_REVERSE: "ALL (x::'a::type) l::'a::type list. x mem rev l = x mem l"
by (import rich_list IS_EL_REVERSE)
lemma IS_EL_FILTER: "ALL (P::'a::type => bool) x::'a::type.
P x --> (ALL l::'a::type list. x mem filter P l = x mem l)"
by (import rich_list IS_EL_FILTER)
lemma IS_EL_SEG: "ALL (n::nat) (m::nat) l::'a::type list.
n + m <= length l --> (ALL x::'a::type. x mem SEG n m l --> x mem l)"
by (import rich_list IS_EL_SEG)
lemma IS_EL_SOME_EL: "ALL (x::'a::type) l::'a::type list. x mem l = list_exists (op = x) l"
by (import rich_list IS_EL_SOME_EL)
lemma IS_EL_FIRSTN: "ALL (x::nat) xa::'a::type list.
x <= length xa --> (ALL xb::'a::type. xb mem FIRSTN x xa --> xb mem xa)"
by (import rich_list IS_EL_FIRSTN)
lemma IS_EL_BUTFIRSTN: "ALL (x::nat) xa::'a::type list.
x <= length xa -->
(ALL xb::'a::type. xb mem BUTFIRSTN x xa --> xb mem xa)"
by (import rich_list IS_EL_BUTFIRSTN)
lemma IS_EL_BUTLASTN: "ALL (x::nat) xa::'a::type list.
x <= length xa --> (ALL xb::'a::type. xb mem BUTLASTN x xa --> xb mem xa)"
by (import rich_list IS_EL_BUTLASTN)
lemma IS_EL_LASTN: "ALL (x::nat) xa::'a::type list.
x <= length xa --> (ALL xb::'a::type. xb mem LASTN x xa --> xb mem xa)"
by (import rich_list IS_EL_LASTN)
lemma ZIP_SNOC: "ALL (l1::'a::type list) l2::'b::type list.
length l1 = length l2 -->
(ALL (x1::'a::type) x2::'b::type.
zip (SNOC x1 l1) (SNOC x2 l2) = SNOC (x1, x2) (zip l1 l2))"
by (import rich_list ZIP_SNOC)
lemma UNZIP_SNOC: "ALL (x::'a::type * 'b::type) l::('a::type * 'b::type) list.
unzip (SNOC x l) =
(SNOC (fst x) (fst (unzip l)), SNOC (snd x) (snd (unzip l)))"
by (import rich_list UNZIP_SNOC)
lemma LENGTH_UNZIP_FST: "ALL x::('a::type * 'b::type) list. length (UNZIP_FST x) = length x"
by (import rich_list LENGTH_UNZIP_FST)
lemma LENGTH_UNZIP_SND: "ALL x::('a::type * 'b::type) list. length (UNZIP_SND x) = length x"
by (import rich_list LENGTH_UNZIP_SND)
lemma SUM_APPEND: "ALL (l1::nat list) l2::nat list. sum (l1 @ l2) = sum l1 + sum l2"
by (import rich_list SUM_APPEND)
lemma SUM_REVERSE: "ALL l::nat list. sum (rev l) = sum l"
by (import rich_list SUM_REVERSE)
lemma SUM_FLAT: "ALL l::nat list list. sum (concat l) = sum (map sum l)"
by (import rich_list SUM_FLAT)
lemma EL_APPEND1: "ALL (n::nat) (l1::'a::type list) l2::'a::type list.
n < length l1 --> EL n (l1 @ l2) = EL n l1"
by (import rich_list EL_APPEND1)
lemma EL_APPEND2: "ALL (l1::'a::type list) n::nat.
length l1 <= n -->
(ALL l2::'a::type list. EL n (l1 @ l2) = EL (n - length l1) l2)"
by (import rich_list EL_APPEND2)
lemma EL_MAP: "ALL (n::nat) l::'a::type list.
n < length l -->
(ALL f::'a::type => 'b::type. EL n (map f l) = f (EL n l))"
by (import rich_list EL_MAP)
lemma EL_CONS: "ALL n>0. ALL (x::'a::type) l::'a::type list. EL n (x # l) = EL (PRE n) l"
by (import rich_list EL_CONS)
lemma EL_SEG: "ALL (n::nat) l::'a::type list. n < length l --> EL n l = hd (SEG 1 n l)"
by (import rich_list EL_SEG)
lemma EL_IS_EL: "ALL (n::nat) l::'a::type list. n < length l --> EL n l mem l"
by (import rich_list EL_IS_EL)
lemma TL_SNOC: "ALL (x::'a::type) l::'a::type list.
tl (SNOC x l) = (if null l then [] else SNOC x (tl l))"
by (import rich_list TL_SNOC)
lemma EL_REVERSE: "ALL (n::nat) l::'a::type list.
n < length l --> EL n (rev l) = EL (PRE (length l - n)) l"
by (import rich_list EL_REVERSE)
lemma EL_REVERSE_ELL: "ALL (n::nat) l::'a::type list. n < length l --> EL n (rev l) = ELL n l"
by (import rich_list EL_REVERSE_ELL)
lemma ELL_LENGTH_APPEND: "ALL (l1::'a::type list) l2::'a::type list.
~ null l1 --> ELL (length l2) (l1 @ l2) = last l1"
by (import rich_list ELL_LENGTH_APPEND)
lemma ELL_IS_EL: "ALL (n::nat) l::'a::type list. n < length l --> ELL n l mem l"
by (import rich_list ELL_IS_EL)
lemma ELL_REVERSE: "ALL (n::nat) l::'a::type list.
n < length l --> ELL n (rev l) = ELL (PRE (length l - n)) l"
by (import rich_list ELL_REVERSE)
lemma ELL_REVERSE_EL: "ALL (n::nat) l::'a::type list. n < length l --> ELL n (rev l) = EL n l"
by (import rich_list ELL_REVERSE_EL)
lemma FIRSTN_BUTLASTN: "ALL (n::nat) l::'a::type list.
n <= length l --> FIRSTN n l = BUTLASTN (length l - n) l"
by (import rich_list FIRSTN_BUTLASTN)
lemma BUTLASTN_FIRSTN: "ALL (n::nat) l::'a::type list.
n <= length l --> BUTLASTN n l = FIRSTN (length l - n) l"
by (import rich_list BUTLASTN_FIRSTN)
lemma LASTN_BUTFIRSTN: "ALL (n::nat) l::'a::type list.
n <= length l --> LASTN n l = BUTFIRSTN (length l - n) l"
by (import rich_list LASTN_BUTFIRSTN)
lemma BUTFIRSTN_LASTN: "ALL (n::nat) l::'a::type list.
n <= length l --> BUTFIRSTN n l = LASTN (length l - n) l"
by (import rich_list BUTFIRSTN_LASTN)
lemma SEG_LASTN_BUTLASTN: "ALL (n::nat) (m::nat) l::'a::type list.
n + m <= length l -->
SEG n m l = LASTN n (BUTLASTN (length l - (n + m)) l)"
by (import rich_list SEG_LASTN_BUTLASTN)
lemma BUTFIRSTN_REVERSE: "ALL (n::nat) l::'a::type list.
n <= length l --> BUTFIRSTN n (rev l) = rev (BUTLASTN n l)"
by (import rich_list BUTFIRSTN_REVERSE)
lemma BUTLASTN_REVERSE: "ALL (n::nat) l::'a::type list.
n <= length l --> BUTLASTN n (rev l) = rev (BUTFIRSTN n l)"
by (import rich_list BUTLASTN_REVERSE)
lemma LASTN_REVERSE: "ALL (n::nat) l::'a::type list.
n <= length l --> LASTN n (rev l) = rev (FIRSTN n l)"
by (import rich_list LASTN_REVERSE)
lemma FIRSTN_REVERSE: "ALL (n::nat) l::'a::type list.
n <= length l --> FIRSTN n (rev l) = rev (LASTN n l)"
by (import rich_list FIRSTN_REVERSE)
lemma SEG_REVERSE: "ALL (n::nat) (m::nat) l::'a::type list.
n + m <= length l -->
SEG n m (rev l) = rev (SEG n (length l - (n + m)) l)"
by (import rich_list SEG_REVERSE)
lemma LENGTH_GENLIST: "ALL (f::nat => 'a::type) n::nat. length (GENLIST f n) = n"
by (import rich_list LENGTH_GENLIST)
lemma LENGTH_REPLICATE: "ALL (n::nat) x::'a::type. length (REPLICATE n x) = n"
by (import rich_list LENGTH_REPLICATE)
lemma IS_EL_REPLICATE: "ALL n>0. ALL x::'a::type. x mem REPLICATE n x"
by (import rich_list IS_EL_REPLICATE)
lemma ALL_EL_REPLICATE: "ALL (x::'a::type) n::nat. list_all (op = x) (REPLICATE n x)"
by (import rich_list ALL_EL_REPLICATE)
lemma AND_EL_FOLDL: "ALL l::bool list. AND_EL l = foldl op & True l"
by (import rich_list AND_EL_FOLDL)
lemma AND_EL_FOLDR: "ALL l::bool list. AND_EL l = foldr op & l True"
by (import rich_list AND_EL_FOLDR)
lemma OR_EL_FOLDL: "ALL l::bool list. OR_EL l = foldl op | False l"
by (import rich_list OR_EL_FOLDL)
lemma OR_EL_FOLDR: "ALL l::bool list. OR_EL l = foldr op | l False"
by (import rich_list OR_EL_FOLDR)
;end_setup
;setup_theory state_transformer
constdefs
UNIT :: "'b => 'a => 'b * 'a"
"(op ==::('b::type => 'a::type => 'b::type * 'a::type)
=> ('b::type => 'a::type => 'b::type * 'a::type) => prop)
(UNIT::'b::type => 'a::type => 'b::type * 'a::type)
(Pair::'b::type => 'a::type => 'b::type * 'a::type)"
lemma UNIT_DEF: "ALL x::'b::type. UNIT x = Pair x"
by (import state_transformer UNIT_DEF)
constdefs
BIND :: "('a => 'b * 'a) => ('b => 'a => 'c * 'a) => 'a => 'c * 'a"
"(op ==::(('a::type => 'b::type * 'a::type)
=> ('b::type => 'a::type => 'c::type * 'a::type)
=> 'a::type => 'c::type * 'a::type)
=> (('a::type => 'b::type * 'a::type)
=> ('b::type => 'a::type => 'c::type * 'a::type)
=> 'a::type => 'c::type * 'a::type)
=> prop)
(BIND::('a::type => 'b::type * 'a::type)
=> ('b::type => 'a::type => 'c::type * 'a::type)
=> 'a::type => 'c::type * 'a::type)
(%(g::'a::type => 'b::type * 'a::type)
f::'b::type => 'a::type => 'c::type * 'a::type.
(op o::('b::type * 'a::type => 'c::type * 'a::type)
=> ('a::type => 'b::type * 'a::type)
=> 'a::type => 'c::type * 'a::type)
((split::('b::type => 'a::type => 'c::type * 'a::type)
=> 'b::type * 'a::type => 'c::type * 'a::type)
f)
g)"
lemma BIND_DEF: "(All::(('a::type => 'b::type * 'a::type) => bool) => bool)
(%g::'a::type => 'b::type * 'a::type.
(All::(('b::type => 'a::type => 'c::type * 'a::type) => bool) => bool)
(%f::'b::type => 'a::type => 'c::type * 'a::type.
(op =::('a::type => 'c::type * 'a::type)
=> ('a::type => 'c::type * 'a::type) => bool)
((BIND::('a::type => 'b::type * 'a::type)
=> ('b::type => 'a::type => 'c::type * 'a::type)
=> 'a::type => 'c::type * 'a::type)
g f)
((op o::('b::type * 'a::type => 'c::type * 'a::type)
=> ('a::type => 'b::type * 'a::type)
=> 'a::type => 'c::type * 'a::type)
((split::('b::type => 'a::type => 'c::type * 'a::type)
=> 'b::type * 'a::type => 'c::type * 'a::type)
f)
g)))"
by (import state_transformer BIND_DEF)
constdefs
MMAP :: "('c => 'b) => ('a => 'c * 'a) => 'a => 'b * 'a"
"MMAP ==
%(f::'c::type => 'b::type) m::'a::type => 'c::type * 'a::type.
BIND m (UNIT o f)"
lemma MMAP_DEF: "ALL (f::'c::type => 'b::type) m::'a::type => 'c::type * 'a::type.
MMAP f m = BIND m (UNIT o f)"
by (import state_transformer MMAP_DEF)
constdefs
JOIN :: "('a => ('a => 'b * 'a) * 'a) => 'a => 'b * 'a"
"JOIN ==
%z::'a::type => ('a::type => 'b::type * 'a::type) * 'a::type. BIND z I"
lemma JOIN_DEF: "ALL z::'a::type => ('a::type => 'b::type * 'a::type) * 'a::type.
JOIN z = BIND z I"
by (import state_transformer JOIN_DEF)
lemma BIND_LEFT_UNIT: "ALL (k::'a::type => 'b::type => 'c::type * 'b::type) x::'a::type.
BIND (UNIT x) k = k x"
by (import state_transformer BIND_LEFT_UNIT)
lemma UNIT_UNCURRY: "ALL x::'a::type * 'b::type. split UNIT x = x"
by (import state_transformer UNIT_UNCURRY)
lemma BIND_RIGHT_UNIT: "ALL k::'a::type => 'b::type * 'a::type. BIND k UNIT = k"
by (import state_transformer BIND_RIGHT_UNIT)
lemma BIND_ASSOC: "ALL (x::'a::type => 'b::type * 'a::type)
(xa::'b::type => 'a::type => 'c::type * 'a::type)
xb::'c::type => 'a::type => 'd::type * 'a::type.
BIND x (%a::'b::type. BIND (xa a) xb) = BIND (BIND x xa) xb"
by (import state_transformer BIND_ASSOC)
lemma MMAP_ID: "MMAP I = I"
by (import state_transformer MMAP_ID)
lemma MMAP_COMP: "ALL (f::'c::type => 'd::type) g::'b::type => 'c::type.
MMAP (f o g) = MMAP f o MMAP g"
by (import state_transformer MMAP_COMP)
lemma MMAP_UNIT: "ALL f::'b::type => 'c::type. MMAP f o UNIT = UNIT o f"
by (import state_transformer MMAP_UNIT)
lemma MMAP_JOIN: "ALL f::'b::type => 'c::type. MMAP f o JOIN = JOIN o MMAP (MMAP f)"
by (import state_transformer MMAP_JOIN)
lemma JOIN_UNIT: "JOIN o UNIT = I"
by (import state_transformer JOIN_UNIT)
lemma JOIN_MMAP_UNIT: "JOIN o MMAP UNIT = I"
by (import state_transformer JOIN_MMAP_UNIT)
lemma JOIN_MAP_JOIN: "JOIN o MMAP JOIN = JOIN o JOIN"
by (import state_transformer JOIN_MAP_JOIN)
lemma JOIN_MAP: "ALL (x::'a::type => 'b::type * 'a::type)
xa::'b::type => 'a::type => 'c::type * 'a::type.
BIND x xa = JOIN (MMAP xa x)"
by (import state_transformer JOIN_MAP)
lemma FST_o_UNIT: "ALL x::'a::type. fst o UNIT x = K x"
by (import state_transformer FST_o_UNIT)
lemma SND_o_UNIT: "ALL x::'a::type. snd o UNIT x = I"
by (import state_transformer SND_o_UNIT)
lemma FST_o_MMAP: "ALL (x::'a::type => 'b::type) xa::'c::type => 'a::type * 'c::type.
fst o MMAP x xa = x o (fst o xa)"
by (import state_transformer FST_o_MMAP)
;end_setup
end
lemma ARB_DEF:
ARB = (SOME x. True)
lemma IN_DEF:
IN = (%x f. f x)
lemma RES_FORALL_DEF:
RES_FORALL = (%p m. ∀x. IN x p --> m x)
lemma RES_EXISTS_DEF:
RES_EXISTS = (%p m. ∃x. IN x p ∧ m x)
lemma RES_EXISTS_UNIQUE_DEF:
RES_EXISTS_UNIQUE = (%p m. RES_EXISTS p m ∧ RES_FORALL p (%x. RES_FORALL p (%y. m x ∧ m y --> x = y)))
lemma RES_SELECT_DEF:
RES_SELECT = (%p m. SOME x. IN x p ∧ m x)
lemma EXCLUDED_MIDDLE:
∀t. t ∨ ¬ t
lemma FORALL_THM:
All f = All f
lemma EXISTS_THM:
Ex f = Ex f
lemma F_IMP:
∀t. ¬ t --> t --> False
lemma NOT_AND:
¬ (t ∧ ¬ t)
lemma AND_CLAUSES:
∀t. (True ∧ t) = t ∧ (t ∧ True) = t ∧ (False ∧ t) = False ∧ (t ∧ False) = False ∧ (t ∧ t) = t
lemma OR_CLAUSES:
∀t. (True ∨ t) = True ∧ (t ∨ True) = True ∧ (False ∨ t) = t ∧ (t ∨ False) = t ∧ (t ∨ t) = t
lemma IMP_CLAUSES:
∀t. (True --> t) = t ∧ (t --> True) = True ∧ (False --> t) = True ∧ (t --> t) = True ∧ (t --> False) = (¬ t)
lemma NOT_CLAUSES:
(∀t. (¬ ¬ t) = t) ∧ (¬ True) = False ∧ (¬ False) = True
lemma BOOL_EQ_DISTINCT:
True ≠ False ∧ False ≠ True
lemma EQ_CLAUSES:
∀t. (True = t) = t ∧ (t = True) = t ∧ (False = t) = (¬ t) ∧ (t = False) = (¬ t)
lemma COND_CLAUSES:
∀t1 t2. (if True then t1 else t2) = t1 ∧ (if False then t1 else t2) = t2
lemma SELECT_UNIQUE:
∀P x. (∀y. P y = (y = x)) --> Eps P = x
lemma BOTH_EXISTS_AND_THM:
∀P Q. (∃x. P ∧ Q) = ((∃x. P) ∧ (∃x. Q))
lemma BOTH_FORALL_OR_THM:
∀P Q. (∀x. P ∨ Q) = ((∀x. P) ∨ (∀x. Q))
lemma BOTH_FORALL_IMP_THM:
∀P Q. (∀x. P --> Q) = ((∃x. P) --> (∀x. Q))
lemma BOTH_EXISTS_IMP_THM:
∀P Q. (∃x. P --> Q) = ((∀x. P) --> (∃x. Q))
lemma OR_IMP_THM:
∀A B. (A = (B ∨ A)) = (B --> A)
lemma DE_MORGAN_THM:
∀A B. (¬ (A ∧ B)) = (¬ A ∨ ¬ B) ∧ (¬ (A ∨ B)) = (¬ A ∧ ¬ B)
lemma IMP_F_EQ_F:
∀t. (t --> False) = (t = False)
lemma EQ_EXPAND:
∀t1 t2. (t1 = t2) = (t1 ∧ t2 ∨ ¬ t1 ∧ ¬ t2)
lemma COND_RATOR:
∀b f g x. (if b then f else g) x = (if b then f x else g x)
lemma COND_ABS:
∀b f g. (%x. if b then f x else g x) = (if b then f else g)
lemma COND_EXPAND:
∀b t1 t2. (if b then t1 else t2) = ((¬ b ∨ t1) ∧ (b ∨ t2))
lemma ONE_ONE_THM:
∀f. inj f = (∀x1 x2. f x1 = f x2 --> x1 = x2)
lemma ABS_REP_THM:
∀P. Ex (TYPE_DEFINITION P) --> (∃x abs. (∀a. abs (x a) = a) ∧ (∀r. P r = (x (abs r) = r)))
lemma LET_RAND:
P (Let M N) = (let x = M in P (N x))
lemma LET_RATOR:
Let M N b = (let x = M in N x b)
lemma SWAP_FORALL_THM:
∀P. (∀x. All (P x)) = (∀y x. P x y)
lemma SWAP_EXISTS_THM:
∀P. (∃x. Ex (P x)) = (∃y x. P x y)
lemma AND_CONG:
∀P P' Q Q'. (Q --> P = P') ∧ (P' --> Q = Q') --> (P ∧ Q) = (P' ∧ Q')
lemma OR_CONG:
∀P P' Q Q'. (¬ Q --> P = P') ∧ (¬ P' --> Q = Q') --> (P ∨ Q) = (P' ∨ Q')
lemma COND_CONG:
∀P Q x x' y y'. P = Q ∧ (Q --> x = x') ∧ (¬ Q --> y = y') --> (if P then x else y) = (if Q then x' else y')
lemma MONO_COND:
(x --> y) --> (z --> w) --> (if b then x else z) --> (if b then y else w)
lemma SKOLEM_THM:
∀P. (∀x. Ex (P x)) = (∃f. ∀x. P x (f x))
lemma bool_case_thm:
(∀e0 e1. (case True of True => e0 | False => e1) = e0) ∧ (∀e0 e1. (case False of True => e0 | False => e1) = e1)
lemma bool_case_ID:
∀x b. (case b of True => x | _ => x) = x
lemma boolAxiom:
∀e0 e1. ∃x. x True = e0 ∧ x False = e1
lemma UEXISTS_OR_THM:
∀P Q. (∃!x. P x ∨ Q x) --> Ex1 P ∨ Ex1 Q
lemma UEXISTS_SIMP:
(∃!x. t) = (t ∧ (∀x. All (op = x)))
lemma BOOL_FUN_CASES_THM:
∀f. f = (%b. True) ∨ f = (%b. False) ∨ f = (%b. b) ∨ f = Not
lemma BOOL_FUN_INDUCT:
∀P. P (%b. True) ∧ P (%b. False) ∧ P (%b. b) ∧ P Not --> All P
lemma K_DEF:
K = (%x y. x)
lemma S_DEF:
S = (%f g x. f x (g x))
lemma I_DEF:
I = S K K
lemma C_DEF:
C = (%f x y. f y x)
lemma W_DEF:
W = (%f x. f x x)
lemma I_THM:
∀x. I x = x
lemma I_o_ID:
∀f. I o f = f ∧ f o I = f
lemma ISL_OR_ISR:
∀x. ISL x ∨ ISR x
lemma INL:
∀x. ISL x --> Inl (OUTL x) = x
lemma INR:
∀x. ISR x --> Inr (OUTR x) = x
lemma sum_case_cong:
∀M M' f g. M = M' ∧ (∀x. M' = Inl x --> f x = f' x) ∧ (∀y. M' = Inr y --> g y = g' y) --> sum_case f g M = sum_case f' g' M'
lemma option_CLAUSES:
(∀x y. (Some x = Some y) = (x = y)) ∧ (∀x. the (Some x) = x) ∧ (∀x. None ≠ Some x) ∧ (∀x. Some x ≠ None) ∧ (∀x. IS_SOME (Some x) = True) ∧ IS_SOME None = False ∧ (∀x. IS_NONE x = (x = None)) ∧ (∀x. (¬ IS_SOME x) = (x = None)) ∧ (∀x. IS_SOME x --> Some (the x) = x) ∧ (∀x. option_case None Some x = x) ∧ (∀x. option_case x Some x = x) ∧ (∀x. IS_NONE x --> option_case e f x = e) ∧ (∀x. IS_SOME x --> option_case e f x = f (the x)) ∧ (∀x. IS_SOME x --> option_case ea Some x = x) ∧ (∀u f. option_case u f None = u) ∧ (∀u f x. option_case u f (Some x) = f x) ∧ (∀f x. option_map f (Some x) = Some (f x)) ∧ (∀f. option_map f None = None) ∧ OPTION_JOIN None = None ∧ (∀x. OPTION_JOIN (Some x) = x)
lemma option_case_compute:
option_case e f x = (if IS_SOME x then f (the x) else e)
lemma OPTION_MAP_EQ_SOME:
∀f x y. (option_map f x = Some y) = (∃z. x = Some z ∧ y = f z)
lemma OPTION_JOIN_EQ_SOME:
∀x xa. (OPTION_JOIN x = Some xa) = (x = Some (Some xa))
lemma option_case_cong:
∀M M' u f. M = M' ∧ (M' = None --> u = u') ∧ (∀x. M' = Some x --> f x = f' x) --> option_case u f M = option_case u' f' M'
lemma stmarker_def:
∀x. stmarker x = x
lemma move_left_conj:
∀x xa xb. (x ∧ stmarker xb) = (stmarker xb ∧ x) ∧ ((stmarker xb ∧ x) ∧ xa) = (stmarker xb ∧ x ∧ xa) ∧ (x ∧ stmarker xb ∧ xa) = (stmarker xb ∧ x ∧ xa)
lemma move_right_conj:
∀x xa xb. (stmarker xb ∧ x) = (x ∧ stmarker xb) ∧ (x ∧ xa ∧ stmarker xb) = ((x ∧ xa) ∧ stmarker xb) ∧ ((x ∧ stmarker xb) ∧ xa) = ((x ∧ xa) ∧ stmarker xb)
lemma move_left_disj:
∀x xa xb. (x ∨ stmarker xb) = (stmarker xb ∨ x) ∧ ((stmarker xb ∨ x) ∨ xa) = (stmarker xb ∨ x ∨ xa) ∧ (x ∨ stmarker xb ∨ xa) = (stmarker xb ∨ x ∨ xa)
lemma move_right_disj:
∀x xa xb. (stmarker xb ∨ x) = (x ∨ stmarker xb) ∧ (x ∨ xa ∨ stmarker xb) = ((x ∨ xa) ∨ stmarker xb) ∧ ((x ∨ stmarker xb) ∨ xa) = ((x ∨ xa) ∨ stmarker xb)
lemma TC_DEF:
∀R a b. TC R a b = (∀P. (∀x y. R x y --> P x y) ∧ (∀x y z. P x y ∧ P y z --> P x z) --> P a b)
lemma RTC_DEF:
∀R a b. RTC R a b = (∀P. (∀x. P x x) ∧ (∀x y z. R x y ∧ P y z --> P x z) --> P a b)
lemma RC_def:
∀R x y. RC R x y = (x = y ∨ R x y)
lemma transitive_def:
∀R. transitive R = (∀x y z. R x y ∧ R y z --> R x z)
lemma reflexive_def:
∀R. pred_reflexive R = (∀x. R x x)
lemma TC_TRANSITIVE:
∀x. transitive (TC x)
lemma RTC_INDUCT:
∀x xa. (∀x. xa x x) ∧ (∀xb y z. x xb y ∧ xa y z --> xa xb z) --> (∀xb xc. RTC x xb xc --> xa xb xc)
lemma TC_RULES:
∀x. (∀xa xb. x xa xb --> TC x xa xb) ∧ (∀xa xb xc. TC x xa xb ∧ TC x xb xc --> TC x xa xc)
lemma RTC_RULES:
∀x. (∀xa. RTC x xa xa) ∧ (∀xa xb xc. x xa xb ∧ RTC x xb xc --> RTC x xa xc)
lemma RTC_STRONG_INDUCT:
∀R P. (∀x. P x x) ∧ (∀x y z. R x y ∧ RTC R y z ∧ P y z --> P x z) --> (∀x y. RTC R x y --> P x y)
lemma RTC_RTC:
∀R x y. RTC R x y --> (∀z. RTC R y z --> RTC R x z)
lemma RTC_TRANSITIVE:
∀x. transitive (RTC x)
lemma RTC_REFLEXIVE:
∀R. pred_reflexive (RTC R)
lemma RC_REFLEXIVE:
∀R. pred_reflexive (RC R)
lemma TC_SUBSET:
∀x xa xb. x xa xb --> TC x xa xb
lemma RTC_SUBSET:
∀R x y. R x y --> RTC R x y
lemma RC_SUBSET:
∀R x y. R x y --> RC R x y
lemma RC_RTC:
∀R x y. RC R x y --> RTC R x y
lemma TC_INDUCT:
∀x xa. (∀xb y. x xb y --> xa xb y) ∧ (∀x y z. xa x y ∧ xa y z --> xa x z) --> (∀xb xc. TC x xb xc --> xa xb xc)
lemma TC_INDUCT_LEFT1:
∀x xa. (∀xb y. x xb y --> xa xb y) ∧ (∀xb y z. x xb y ∧ xa y z --> xa xb z) --> (∀xb xc. TC x xb xc --> xa xb xc)
lemma TC_STRONG_INDUCT:
∀R P. (∀x y. R x y --> P x y) ∧ (∀x y z. P x y ∧ P y z ∧ TC R x y ∧ TC R y z --> P x z) --> (∀u v. TC R u v --> P u v)
lemma TC_STRONG_INDUCT_LEFT1:
∀R P. (∀x y. R x y --> P x y) ∧ (∀x y z. R x y ∧ P y z ∧ TC R y z --> P x z) --> (∀u v. TC R u v --> P u v)
lemma TC_RTC:
∀R x y. TC R x y --> RTC R x y
lemma RTC_TC_RC:
∀R x y. RTC R x y --> RC R x y ∨ TC R x y
lemma TC_RC_EQNS:
∀R. RC (TC R) = RTC R ∧ TC (RC R) = RTC R
lemma RC_IDEM:
∀R. RC (RC R) = RC R
lemma TC_IDEM:
∀R. TC (TC R) = TC R
lemma RTC_IDEM:
∀R. RTC (RTC R) = RTC R
lemma RTC_CASES1:
∀x xa xb. RTC x xa xb = (xa = xb ∨ (∃u. x xa u ∧ RTC x u xb))
lemma RTC_CASES2:
∀x xa xb. RTC x xa xb = (xa = xb ∨ (∃u. RTC x xa u ∧ x u xb))
lemma RTC_CASES_RTC_TWICE:
∀x xa xb. RTC x xa xb = (∃u. RTC x xa u ∧ RTC x u xb)
lemma TC_CASES1:
∀R x z. TC R x z --> R x z ∨ (∃y. R x y ∧ TC R y z)
lemma TC_CASES2:
∀R x z. TC R x z --> R x z ∨ (∃y. TC R x y ∧ R y z)
lemma TC_MONOTONE:
∀R Q. (∀x y. R x y --> Q x y) --> (∀x y. TC R x y --> TC Q x y)
lemma RTC_MONOTONE:
∀R Q. (∀x y. R x y --> Q x y) --> (∀x y. RTC R x y --> RTC Q x y)
lemma WF_DEF:
∀R. WF R = (∀B. Ex B --> (∃min. B min ∧ (∀b. R b min --> ¬ B b)))
lemma WF_INDUCTION_THM:
∀R. WF R --> (∀P. (∀x. (∀y. R y x --> P y) --> P x) --> All P)
lemma WF_NOT_REFL:
∀x xa xb. WF x --> x xa xb --> xa ≠ xb
lemma EMPTY_REL_DEF:
∀x y. EMPTY_REL x y = False
lemma WF_EMPTY_REL:
WF EMPTY_REL
lemma WF_SUBSET:
∀x xa. WF x ∧ (∀xb y. xa xb y --> x xb y) --> WF xa
lemma WF_TC:
∀R. WF R --> WF (TC R)
lemma inv_image_def:
∀R f. relation.inv_image R f = (%x y. R (f x) (f y))
lemma WF_inv_image:
∀R f. WF R --> WF (relation.inv_image R f)
lemma RESTRICT_DEF:
∀f R x. RESTRICT f R x = (%y. if R y x then f y else ARB)
lemma RESTRICT_LEMMA:
∀x xa xb xc. xa xb xc --> RESTRICT x xa xc xb = x xb
lemma approx_def:
∀R M x f. approx R M x f = (f = RESTRICT (%y. M (RESTRICT f R y) y) R x)
lemma the_fun_def:
∀R M x. the_fun R M x = Eps (approx R M x)
lemma WFREC_DEF:
∀R M. WFREC R M = (%x. M (RESTRICT (the_fun (TC R) (%f v. M (RESTRICT f R v) v) x) R x) x)
lemma WFREC_THM:
∀R M. WF R --> (∀x. WFREC R M x = M (RESTRICT (WFREC R M) R x) x)
lemma WFREC_COROLLARY:
∀M R f. f = WFREC R M --> WF R --> (∀x. f x = M (RESTRICT f R x) x)
lemma WF_RECURSION_THM:
∀R. WF R --> (∀M. ∃!f. ∀x. f x = M (RESTRICT f R x) x)
lemma CURRY_ONE_ONE_THM:
(curry f = curry g) = (f = g)
lemma UNCURRY_ONE_ONE_THM:
((%(x, y). f x y) = (%(x, y). g x y)) = (f = g)
lemma pair_Axiom:
∀f. ∃x. ∀xa y. x (xa, y) = f xa y
lemma UNCURRY_CONG:
∀M M' f. M = M' ∧ (∀x y. M' = (x, y) --> f x y = f' x y) --> split f M = split f' M'
lemma ELIM_PEXISTS:
(∃p. P (fst p) (snd p)) = (∃p1. Ex (P p1))
lemma ELIM_PFORALL:
(∀p. P (fst p) (snd p)) = (∀p1. All (P p1))
lemma PFORALL_THM:
∀x. (∀xa. All (x xa)) = All (%(xa, y). x xa y)
lemma PEXISTS_THM:
∀x. (∃xa. Ex (x xa)) = Ex (%(xa, y). x xa y)
lemma LET2_RAND:
∀x xa xb. x (let (x, y) = xa in xb x y) = (let (xa, y) = xa in x (xb xa y))
lemma LET2_RATOR:
∀x xa xb. (let (x, y) = x in xa x y) xb = (let (x, y) = x in xa x y xb)
lemma pair_case_cong:
∀x xa xb. x = xa ∧ (∀x y. xa = (x, y) --> xb x y = f' x y) --> split xb x = split f' xa
lemma LEX_DEF:
∀R1 R2. LEX R1 R2 = (%(s, t) (u, v). R1 s u ∨ s = u ∧ R2 t v)
lemma WF_LEX:
∀x xa. WF x ∧ WF xa --> WF (LEX x xa)
lemma RPROD_DEF:
∀R1 R2. RPROD R1 R2 = (%(s, t) (u, v). R1 s u ∧ R2 t v)
lemma WF_RPROD:
∀R Q. WF R ∧ WF Q --> WF (RPROD R Q)
lemma LESS_0_0:
0 < Suc 0
lemma LESS_LEMMA1:
∀x xa. x < Suc xa --> x = xa ∨ x < xa
lemma LESS_LEMMA2:
∀m n. m = n ∨ m < n --> m < Suc n
lemma LESS_THM:
∀m n. (m < Suc n) = (m = n ∨ m < n)
lemma LESS_SUC_IMP:
∀x xa. x < Suc xa --> x ≠ xa --> x < xa
lemma EQ_LESS:
∀n. Suc m = n --> m < n
lemma NOT_LESS_EQ:
∀m n. m = n --> ¬ m < n
lemma SIMP_REC_REL:
∀fun x f n. SIMP_REC_REL fun x f n = (fun 0 = x ∧ (∀m<n. fun (Suc m) = f (fun m)))
lemma SIMP_REC_EXISTS:
∀x f n. ∃fun. SIMP_REC_REL fun x f n
lemma SIMP_REC_REL_UNIQUE:
∀x xa xb xc xd xe. SIMP_REC_REL xb x xa xd ∧ SIMP_REC_REL xc x xa xe --> (∀n. n < xd ∧ n < xe --> xb n = xc n)
lemma SIMP_REC_REL_UNIQUE_RESULT:
∀x f n. ∃!y. ∃g. SIMP_REC_REL g x f (Suc n) ∧ y = g n
lemma LESS_SUC_SUC:
∀m. m < Suc m ∧ m < Suc (Suc m)
lemma SIMP_REC_THM:
∀x f. SIMP_REC x f 0 = x ∧ (∀m. SIMP_REC x f (Suc m) = f (SIMP_REC x f m))
lemma PRE_DEF:
∀m. PRE m = (if m = 0 then 0 else SOME n. m = Suc n)
lemma PRE:
PRE 0 = 0 ∧ (∀m. PRE (Suc m) = m)
lemma PRIM_REC_FUN:
∀x f. PRIM_REC_FUN x f = SIMP_REC (%n. x) (%fun n. f (fun (PRE n)) n)
lemma PRIM_REC_EQN:
∀x f. (∀n. PRIM_REC_FUN x f 0 n = x) ∧ (∀m n. PRIM_REC_FUN x f (Suc m) n = f (PRIM_REC_FUN x f m (PRE n)) n)
lemma PRIM_REC:
∀x f m. PRIM_REC x f m = PRIM_REC_FUN x f m (PRE m)
lemma PRIM_REC_THM:
∀x f. PRIM_REC x f 0 = x ∧ (∀m. PRIM_REC x f (Suc m) = f (PRIM_REC x f m) m)
lemma DC:
∀P R a. P a ∧ (∀x. P x --> (∃y. P y ∧ R x y)) --> (∃x. x 0 = a ∧ (∀n. P (x n) ∧ R (x n) (x (Suc n))))
lemma num_Axiom_old:
∀e f. ∃!fn1. fn1 0 = e ∧ (∀n. fn1 (Suc n) = f (fn1 n) n)
lemma num_Axiom:
∀e f. ∃x. x 0 = e ∧ (∀n. x (Suc n) = f n (x n))
lemma wellfounded_def:
∀R. wellfounded R = (¬ (∃f. ∀n. R (f (Suc n)) (f n)))
lemma WF_IFF_WELLFOUNDED:
∀R. WF R = wellfounded R
lemma WF_PRED:
WF (%x y. y = Suc x)
lemma WF_LESS:
WF op <
lemma measure_def:
prim_rec.measure = relation.inv_image op <
lemma WF_measure:
∀x. WF (prim_rec.measure x)
lemma measure_thm:
∀x xa xb. prim_rec.measure x xa xb = (x xa < x xb)
lemma nat_elim__magic:
∀n. nat_elim__magic n = n
lemma TWO:
2 = Suc 1
lemma NORM_0:
0 = 0
lemma num_case_compute:
∀n. nat_case f g n = (if n = 0 then f else g (PRE n))
lemma ADD_CLAUSES:
0 + m = m ∧ m + 0 = m ∧ Suc m + n = Suc (m + n) ∧ m + Suc n = Suc (m + n)
lemma LESS_ADD:
∀m n. n < m --> (∃p. p + n = m)
lemma LESS_ANTISYM:
∀m n. ¬ (m < n ∧ n < m)
lemma LESS_LESS_SUC:
∀x xa. ¬ (x < xa ∧ xa < Suc x)
lemma FUN_EQ_LEMMA:
∀f x1 x2. f x1 ∧ ¬ f x2 --> x1 ≠ x2
lemma LESS_NOT_SUC:
∀m n. m < n ∧ n ≠ Suc m --> Suc m < n
lemma LESS_0_CASES:
∀m. 0 = m ∨ 0 < m
lemma LESS_CASES_IMP:
∀m n. ¬ m < n ∧ m ≠ n --> n < m
lemma LESS_CASES:
∀m n. m < n ∨ n ≤ m
lemma LESS_EQ_SUC_REFL:
∀m. m ≤ Suc m
lemma LESS_ADD_NONZERO:
∀m n. n ≠ 0 --> m < m + n
lemma LESS_EQ_ANTISYM:
∀x xa. ¬ (x < xa ∧ xa ≤ x)
lemma SUB_0:
∀m. 0 - m = 0 ∧ m - 0 = m
lemma SUC_SUB1:
∀m. Suc m - 1 = m
lemma PRE_SUB1:
∀m. PRE m = m - 1
lemma MULT_CLAUSES:
∀x xa. 0 * x = 0 ∧ x * 0 = 0 ∧ 1 * x = x ∧ x * 1 = x ∧ Suc x * xa = x * xa + xa ∧ x * Suc xa = x + x * xa
lemma PRE_SUB:
∀m n. PRE (m - n) = PRE m - n
lemma ADD_EQ_1:
∀m n. (m + n = 1) = (m = 1 ∧ n = 0 ∨ m = 0 ∧ n = 1)
lemma ADD_INV_0_EQ:
∀m n. (m + n = m) = (n = 0)
lemma PRE_SUC_EQ:
∀m n. 0 < n --> (m = PRE n) = (Suc m = n)
lemma INV_PRE_EQ:
∀m n. 0 < m ∧ 0 < n --> (PRE m = PRE n) = (m = n)
lemma LESS_SUC_NOT:
∀m n. m < n --> ¬ n < Suc m
lemma ADD_EQ_SUB:
∀m n p. n ≤ p --> (m + n = p) = (m = p - n)
lemma LESS_ADD_1:
∀x xa. xa < x --> (∃xb. x = xa + (xb + 1))
lemma NOT_ODD_EQ_EVEN:
∀n m. Suc (n + n) ≠ m + m
lemma MULT_SUC_EQ:
∀p m n. (n * Suc p = m * Suc p) = (n = m)
lemma MULT_EXP_MONO:
∀p q n m. (n * Suc q ^ p = m * Suc q ^ p) = (n = m)
lemma LESS_ADD_SUC:
∀m n. m < m + Suc n
lemma LESS_OR_EQ_ADD:
∀n m. n < m ∨ (∃p. n = p + m)
lemma WOP:
∀P. Ex P --> (∃n. P n ∧ (∀m<n. ¬ P m))
lemma INV_PRE_LESS:
∀m>0. ∀n. (PRE m < PRE n) = (m < n)
lemma INV_PRE_LESS_EQ:
∀n>0. ∀m. (PRE m ≤ PRE n) = (m ≤ n)
lemma SUB_EQ_EQ_0:
∀m n. (m - n = m) = (m = 0 ∨ n = 0)
lemma SUB_LESS_OR:
∀m n. n < m --> n ≤ m - 1
lemma LESS_SUB_ADD_LESS:
∀n m i. i < n - m --> i + m < n
lemma LESS_EQ_SUB_LESS:
∀x xa. xa ≤ x --> (∀c. (x - xa < c) = (x < xa + c))
lemma NOT_SUC_LESS_EQ:
∀x xa. (¬ Suc x ≤ xa) = (xa ≤ x)
lemma SUB_LESS_EQ_ADD:
∀m p. m ≤ p --> (∀n. (p - m ≤ n) = (p ≤ m + n))
lemma SUB_CANCEL:
∀x xa xb. xa ≤ x ∧ xb ≤ x --> (x - xa = x - xb) = (xa = xb)
lemma NOT_EXP_0:
∀m n. Suc n ^ m ≠ 0
lemma ZERO_LESS_EXP:
∀m n. 0 < Suc n ^ m
lemma ODD_OR_EVEN:
∀x. ∃xa. x = Suc (Suc 0) * xa ∨ x = Suc (Suc 0) * xa + 1
lemma LESS_EXP_SUC_MONO:
∀n m. Suc (Suc m) ^ n < Suc (Suc m) ^ Suc n
lemma LESS_LESS_CASES:
∀m n. m = n ∨ m < n ∨ n < m
lemma LESS_EQUAL_ADD:
∀m n. m ≤ n --> (∃p. n = m + p)
lemma MULT_EQ_1:
∀x y. (x * y = 1) = (x = 1 ∧ y = 1)
lemma FACT_LESS:
∀n. 0 < FACT n
lemma EVEN_ODD:
∀n. EVEN n = (¬ ODD n)
lemma ODD_EVEN:
∀x. ODD x = (¬ EVEN x)
lemma EVEN_OR_ODD:
∀x. EVEN x ∨ ODD x
lemma EVEN_AND_ODD:
∀x. ¬ (EVEN x ∧ ODD x)
lemma EVEN_ADD:
∀m n. EVEN (m + n) = (EVEN m = EVEN n)
lemma EVEN_MULT:
∀m n. EVEN (m * n) = (EVEN m ∨ EVEN n)
lemma ODD_ADD:
∀m n. ODD (m + n) = (ODD m ≠ ODD n)
lemma ODD_MULT:
∀m n. ODD (m * n) = (ODD m ∧ ODD n)
lemma EVEN_DOUBLE:
∀n. EVEN (2 * n)
lemma ODD_DOUBLE:
∀x. ODD (Suc (2 * x))
lemma EVEN_ODD_EXISTS:
∀x. (EVEN x --> (∃m. x = 2 * m)) ∧ (ODD x --> (∃m. x = Suc (2 * m)))
lemma EVEN_EXISTS:
∀n. EVEN n = (∃m. n = 2 * m)
lemma ODD_EXISTS:
∀n. ODD n = (∃m. n = Suc (2 * m))
lemma NOT_SUC_LESS_EQ_0:
∀x. ¬ Suc x ≤ 0
lemma NOT_LEQ:
∀x xa. (¬ x ≤ xa) = (Suc xa ≤ x)
lemma NOT_NUM_EQ:
∀x xa. (x ≠ xa) = (Suc x ≤ xa ∨ Suc xa ≤ x)
lemma NOT_GREATER_EQ:
∀x xa. (¬ xa ≤ x) = (Suc x ≤ xa)
lemma SUC_ADD_SYM:
∀m n. Suc (m + n) = Suc n + m
lemma NOT_SUC_ADD_LESS_EQ:
∀m n. ¬ Suc (m + n) ≤ m
lemma SUB_LEFT_ADD:
∀m n p. m + (n - p) = (if n ≤ p then m else m + n - p)
lemma SUB_RIGHT_ADD:
∀m n p. m - n + p = (if m ≤ n then p else m + p - n)
lemma SUB_LEFT_SUB:
∀m n p. m - (n - p) = (if n ≤ p then m else m + p - n)
lemma SUB_LEFT_SUC:
∀m n. Suc (m - n) = (if m ≤ n then Suc 0 else Suc m - n)
lemma SUB_LEFT_LESS_EQ:
∀m n p. (m ≤ n - p) = (m + p ≤ n ∨ m ≤ 0)
lemma SUB_RIGHT_LESS_EQ:
∀m n p. (m - n ≤ p) = (m ≤ n + p)
lemma SUB_RIGHT_LESS:
∀m n p. (m - n < p) = (m < n + p ∧ 0 < p)
lemma SUB_RIGHT_GREATER_EQ:
∀m n p. (p ≤ m - n) = (n + p ≤ m ∨ p ≤ 0)
lemma SUB_LEFT_GREATER:
∀m n p. (n - p < m) = (n < m + p ∧ 0 < m)
lemma SUB_RIGHT_GREATER:
∀m n p. (p < m - n) = (n + p < m)
lemma SUB_LEFT_EQ:
∀m n p. (m = n - p) = (m + p = n ∨ m ≤ 0 ∧ n ≤ p)
lemma SUB_RIGHT_EQ:
∀m n p. (m - n = p) = (m = n + p ∨ m ≤ n ∧ p ≤ 0)
lemma LE:
(∀n. (n ≤ 0) = (n = 0)) ∧ (∀m n. (m ≤ Suc n) = (m = Suc n ∨ m ≤ n))
lemma DA:
∀k n. 0 < n --> (∃x q. k = q * n + x ∧ x < n)
lemma DIV_LESS_EQ:
∀n>0. ∀k. k div n ≤ k
lemma DIV_UNIQUE:
∀n k q. (∃r. k = q * n + r ∧ r < n) --> k div n = q
lemma MOD_UNIQUE:
∀n k r. (∃q. k = q * n + r ∧ r < n) --> k mod n = r
lemma DIV_MULT:
∀n r. r < n --> (∀q. (q * n + r) div n = q)
lemma MOD_EQ_0:
∀n>0. ∀k. k * n mod n = 0
lemma ZERO_MOD:
∀n>0. 0 mod n = 0
lemma ZERO_DIV:
∀n>0. 0 div n = 0
lemma MOD_MULT:
∀n r. r < n --> (∀q. (q * n + r) mod n = r)
lemma MOD_TIMES:
∀n>0. ∀q r. (q * n + r) mod n = r mod n
lemma MOD_PLUS:
∀n>0. ∀j k. (j mod n + k mod n) mod n = (j + k) mod n
lemma MOD_MOD:
∀n>0. ∀k. k mod n mod n = k mod n
lemma ADD_DIV_ADD_DIV:
∀x>0. ∀xa r. (xa * x + r) div x = xa + r div x
lemma MOD_MULT_MOD:
∀m n. 0 < n ∧ 0 < m --> (∀x. x mod (n * m) mod n = x mod n)
lemma DIVMOD_ID:
∀n>0. n div n = 1 ∧ n mod n = 0
lemma DIV_DIV_DIV_MULT:
∀x xa. 0 < x ∧ 0 < xa --> (∀xb. xb div x div xa = xb div (x * xa))
lemma DIV_P:
∀P p q. 0 < q --> P (p div q) = (∃k r. p = k * q + r ∧ r < q ∧ P k)
lemma MOD_P:
∀P p q. 0 < q --> P (p mod q) = (∃k r. p = k * q + r ∧ r < q ∧ P r)
lemma MOD_TIMES2:
∀n>0. ∀j k. j mod n * (k mod n) mod n = j * k mod n
lemma MOD_COMMON_FACTOR:
∀n p q. 0 < n ∧ 0 < q --> n * (p mod q) = n * p mod (n * q)
lemma num_case_cong:
∀M M' b f. M = M' ∧ (M' = 0 --> b = b') ∧ (∀n. M' = Suc n --> f n = f' n) --> nat_case b f M = nat_case b' f' M'
lemma SUC_ELIM_THM:
∀P. (∀n. P (Suc n) n) = (∀n>0. P n (n - 1))
lemma SUB_ELIM_THM:
P (a - b) = (∀x. (b = a + x --> P 0) ∧ (a = b + x --> P x))
lemma PRE_ELIM_THM:
P (PRE n) = (∀m. (n = 0 --> P 0) ∧ (n = Suc m --> P m))
lemma MULT_INCREASES:
∀m n. 1 < m ∧ 0 < n --> Suc n ≤ m * n
lemma EXP_ALWAYS_BIG_ENOUGH:
∀b>1. ∀n. ∃m. n ≤ b ^ m
lemma EXP_EQ_0:
∀n m. (n ^ m = 0) = (n = 0 ∧ 0 < m)
lemma EXP_1:
∀x. 1 ^ x = 1 ∧ x ^ 1 = x
lemma EXP_EQ_1:
∀n m. (n ^ m = 1) = (n = 1 ∨ m = 0)
lemma MIN_MAX_EQ:
∀x xa. (min x xa = max x xa) = (x = xa)
lemma MIN_MAX_LT:
∀x xa. (min x xa < max x xa) = (x ≠ xa)
lemma MIN_MAX_PRED:
∀P m n. P m ∧ P n --> P (min m n) ∧ P (max m n)
lemma MIN_LT:
∀x xa. (min xa x < xa) = (xa ≠ x ∧ min xa x = x) ∧ (min xa x < x) = (xa ≠ x ∧ min xa x = xa) ∧ (xa < min xa x) = False ∧ (x < min xa x) = False
lemma MAX_LT:
∀x xa. (xa < max xa x) = (xa ≠ x ∧ max xa x = x) ∧ (x < max xa x) = (xa ≠ x ∧ max xa x = xa) ∧ (max xa x < xa) = False ∧ (max xa x < x) = False
lemma MIN_LE:
∀x xa. min xa x ≤ xa ∧ min xa x ≤ x
lemma MAX_LE:
∀x xa. xa ≤ max xa x ∧ x ≤ max xa x
lemma MIN_0:
∀x. min x 0 = 0 ∧ min 0 x = 0
lemma MAX_0:
∀x. max x 0 = x ∧ max 0 x = x
lemma EXISTS_GREATEST:
∀P. (Ex P ∧ (∃x. ∀y. x < y --> ¬ P y)) = (∃x. P x ∧ (∀y. x < y --> ¬ P y))
lemma trat_1:
trat_1 = (0, 0)
lemma trat_inv:
∀x y. trat_inv (x, y) = (y, x)
lemma trat_add:
∀x y x' y'. trat_add (x, y) (x', y') = (PRE (Suc x * Suc y' + Suc x' * Suc y), PRE (Suc y * Suc y'))
lemma trat_mul:
∀x y x' y'. trat_mul (x, y) (x', y') = (PRE (Suc x * Suc x'), PRE (Suc y * Suc y'))
lemma trat_eq:
∀x y x' y'. trat_eq (x, y) (x', y') = (Suc x * Suc y' = Suc x' * Suc y)
lemma TRAT_EQ_REFL:
∀p. trat_eq p p
lemma TRAT_EQ_SYM:
∀p q. trat_eq p q = trat_eq q p
lemma TRAT_EQ_TRANS:
∀p q r. trat_eq p q ∧ trat_eq q r --> trat_eq p r
lemma TRAT_EQ_AP:
∀p q. p = q --> trat_eq p q
lemma TRAT_ADD_SYM_EQ:
∀h i. trat_add h i = trat_add i h
lemma TRAT_MUL_SYM_EQ:
∀h i. trat_mul h i = trat_mul i h
lemma TRAT_INV_WELLDEFINED:
∀p q. trat_eq p q --> trat_eq (trat_inv p) (trat_inv q)
lemma TRAT_ADD_WELLDEFINED:
∀p q r. trat_eq p q --> trat_eq (trat_add p r) (trat_add q r)
lemma TRAT_ADD_WELLDEFINED2:
∀p1 p2 q1 q2. trat_eq p1 p2 ∧ trat_eq q1 q2 --> trat_eq (trat_add p1 q1) (trat_add p2 q2)
lemma TRAT_MUL_WELLDEFINED:
∀p q r. trat_eq p q --> trat_eq (trat_mul p r) (trat_mul q r)
lemma TRAT_MUL_WELLDEFINED2:
∀p1 p2 q1 q2. trat_eq p1 p2 ∧ trat_eq q1 q2 --> trat_eq (trat_mul p1 q1) (trat_mul p2 q2)
lemma TRAT_ADD_SYM:
∀h i. trat_eq (trat_add h i) (trat_add i h)
lemma TRAT_ADD_ASSOC:
∀h i j. trat_eq (trat_add h (trat_add i j)) (trat_add (trat_add h i) j)
lemma TRAT_MUL_SYM:
∀h i. trat_eq (trat_mul h i) (trat_mul i h)
lemma TRAT_MUL_ASSOC:
∀h i j. trat_eq (trat_mul h (trat_mul i j)) (trat_mul (trat_mul h i) j)
lemma TRAT_LDISTRIB:
∀h i j. trat_eq (trat_mul h (trat_add i j)) (trat_add (trat_mul h i) (trat_mul h j))
lemma TRAT_MUL_LID:
∀h. trat_eq (trat_mul trat_1 h) h
lemma TRAT_MUL_LINV:
∀h. trat_eq (trat_mul (trat_inv h) h) trat_1
lemma TRAT_NOZERO:
∀h i. ¬ trat_eq (trat_add h i) h
lemma TRAT_ADD_TOTAL:
∀h i. trat_eq h i ∨ (∃d. trat_eq h (trat_add i d)) ∨ (∃d. trat_eq i (trat_add h d))
lemma TRAT_SUCINT_0:
∀n. trat_eq (trat_sucint n) (n, 0)
lemma TRAT_ARCH:
∀h. ∃n d. trat_eq (trat_sucint n) (trat_add h d)
lemma TRAT_SUCINT:
trat_eq (trat_sucint 0) trat_1 ∧ (∀n. trat_eq (trat_sucint (Suc n)) (trat_add (trat_sucint n) trat_1))
lemma TRAT_EQ_EQUIV:
∀p q. trat_eq p q = (trat_eq p = trat_eq q)
lemmas hrat_TY_DEF:
∃rep. TYPE_DEFINITION (%x. ∃xa. x = trat_eq xa) rep
lemmas hrat_TY_DEF:
∃rep. TYPE_DEFINITION (%x. ∃xa. x = trat_eq xa) rep
lemma hrat_1:
hrat_1 = mk_hrat (trat_eq trat_1)
lemma hrat_inv:
∀T1. hrat_inv T1 = mk_hrat (trat_eq (trat_inv (Eps (dest_hrat T1))))
lemma hrat_add:
∀T1 T2. hrat_add T1 T2 = mk_hrat (trat_eq (trat_add (Eps (dest_hrat T1)) (Eps (dest_hrat T2))))
lemma hrat_mul:
∀T1 T2. hrat_mul T1 T2 = mk_hrat (trat_eq (trat_mul (Eps (dest_hrat T1)) (Eps (dest_hrat T2))))
lemma hrat_sucint:
∀T1. hrat_sucint T1 = mk_hrat (trat_eq (trat_sucint T1))
lemma HRAT_ADD_SYM:
∀h i. hrat_add h i = hrat_add i h
lemma HRAT_ADD_ASSOC:
∀h i j. hrat_add h (hrat_add i j) = hrat_add (hrat_add h i) j
lemma HRAT_MUL_SYM:
∀h i. hrat_mul h i = hrat_mul i h
lemma HRAT_MUL_ASSOC:
∀h i j. hrat_mul h (hrat_mul i j) = hrat_mul (hrat_mul h i) j
lemma HRAT_LDISTRIB:
∀h i j. hrat_mul h (hrat_add i j) = hrat_add (hrat_mul h i) (hrat_mul h j)
lemma HRAT_MUL_LID:
∀h. hrat_mul hrat_1 h = h
lemma HRAT_MUL_LINV:
∀h. hrat_mul (hrat_inv h) h = hrat_1
lemma HRAT_NOZERO:
∀h i. hrat_add h i ≠ h
lemma HRAT_ADD_TOTAL:
∀h i. h = i ∨ (∃x. h = hrat_add i x) ∨ (∃x. i = hrat_add h x)
lemma HRAT_ARCH:
∀h. ∃x xa. hrat_sucint x = hrat_add h xa
lemma HRAT_SUCINT:
hrat_sucint 0 = hrat_1 ∧ (∀x. hrat_sucint (Suc x) = hrat_add (hrat_sucint x) hrat_1)
lemma hrat_lt:
∀x y. hrat_lt x y = (∃d. y = hrat_add x d)
lemma HRAT_LT_REFL:
∀x. ¬ hrat_lt x x
lemma HRAT_LT_TRANS:
∀x y z. hrat_lt x y ∧ hrat_lt y z --> hrat_lt x z
lemma HRAT_LT_ANTISYM:
∀x y. ¬ (hrat_lt x y ∧ hrat_lt y x)
lemma HRAT_LT_TOTAL:
∀x y. x = y ∨ hrat_lt x y ∨ hrat_lt y x
lemma HRAT_MUL_RID:
∀x. hrat_mul x hrat_1 = x
lemma HRAT_MUL_RINV:
∀x. hrat_mul x (hrat_inv x) = hrat_1
lemma HRAT_RDISTRIB:
∀x y z. hrat_mul (hrat_add x y) z = hrat_add (hrat_mul x z) (hrat_mul y z)
lemma HRAT_LT_ADDL:
∀x y. hrat_lt x (hrat_add x y)
lemma HRAT_LT_ADDR:
∀x xa. hrat_lt xa (hrat_add x xa)
lemma HRAT_LT_GT:
∀x y. hrat_lt x y --> ¬ hrat_lt y x
lemma HRAT_LT_NE:
∀x y. hrat_lt x y --> x ≠ y
lemma HRAT_EQ_LADD:
∀x y z. (hrat_add x y = hrat_add x z) = (y = z)
lemma HRAT_EQ_LMUL:
∀x y z. (hrat_mul x y = hrat_mul x z) = (y = z)
lemma HRAT_LT_ADD2:
∀u v x y. hrat_lt u x ∧ hrat_lt v y --> hrat_lt (hrat_add u v) (hrat_add x y)
lemma HRAT_LT_LADD:
∀x y z. hrat_lt (hrat_add z x) (hrat_add z y) = hrat_lt x y
lemma HRAT_LT_RADD:
∀x y z. hrat_lt (hrat_add x z) (hrat_add y z) = hrat_lt x y
lemma HRAT_LT_MUL2:
∀u v x y. hrat_lt u x ∧ hrat_lt v y --> hrat_lt (hrat_mul u v) (hrat_mul x y)
lemma HRAT_LT_LMUL:
∀x y z. hrat_lt (hrat_mul z x) (hrat_mul z y) = hrat_lt x y
lemma HRAT_LT_RMUL:
∀x y z. hrat_lt (hrat_mul x z) (hrat_mul y z) = hrat_lt x y
lemma HRAT_LT_LMUL1:
∀x y. hrat_lt (hrat_mul x y) y = hrat_lt x hrat_1
lemma HRAT_LT_RMUL1:
∀x y. hrat_lt (hrat_mul x y) x = hrat_lt y hrat_1
lemma HRAT_GT_LMUL1:
∀x y. hrat_lt y (hrat_mul x y) = hrat_lt hrat_1 x
lemma HRAT_LT_L1:
∀x y. hrat_lt (hrat_mul (hrat_inv x) y) hrat_1 = hrat_lt y x
lemma HRAT_LT_R1:
∀x y. hrat_lt (hrat_mul x (hrat_inv y)) hrat_1 = hrat_lt x y
lemma HRAT_GT_L1:
∀x y. hrat_lt hrat_1 (hrat_mul (hrat_inv x) y) = hrat_lt x y
lemma HRAT_INV_MUL:
∀x y. hrat_inv (hrat_mul x y) = hrat_mul (hrat_inv x) (hrat_inv y)
lemma HRAT_UP:
∀x. Ex (hrat_lt x)
lemma HRAT_DOWN:
∀x. ∃xa. hrat_lt xa x
lemma HRAT_DOWN2:
∀x y. ∃xa. hrat_lt xa x ∧ hrat_lt xa y
lemma HRAT_MEAN:
∀x y. hrat_lt x y --> (∃xa. hrat_lt x xa ∧ hrat_lt xa y)
lemma isacut:
∀C. isacut C = (Ex C ∧ (∃x. ¬ C x) ∧ (∀x y. C x ∧ hrat_lt y x --> C y) ∧ (∀x. C x --> (∃y. C y ∧ hrat_lt x y)))
lemma cut_of_hrat:
∀x. cut_of_hrat x = (%y. hrat_lt y x)
lemma ISACUT_HRAT:
∀h. isacut (cut_of_hrat h)
lemmas hreal_TY_DEF:
∃rep. TYPE_DEFINITION isacut rep
lemmas hreal_TY_DEF:
∃rep. TYPE_DEFINITION isacut rep
lemma EQUAL_CUTS:
∀X Y. hreal.cut X = hreal.cut Y --> X = Y
lemma CUT_ISACUT:
∀x. isacut (hreal.cut x)
lemma CUT_NONEMPTY:
∀x. Ex (hreal.cut x)
lemma CUT_BOUNDED:
∀x. ∃xa. ¬ hreal.cut x xa
lemma CUT_DOWN:
∀x xa xb. hreal.cut x xa ∧ hrat_lt xb xa --> hreal.cut x xb
lemma CUT_UP:
∀x xa. hreal.cut x xa --> (∃y. hreal.cut x y ∧ hrat_lt xa y)
lemma CUT_UBOUND:
∀x xa xb. ¬ hreal.cut x xa ∧ hrat_lt xa xb --> ¬ hreal.cut x xb
lemma CUT_STRADDLE:
∀X x y. hreal.cut X x ∧ ¬ hreal.cut X y --> hrat_lt x y
lemma CUT_NEARTOP_ADD:
∀X e. ∃x. hreal.cut X x ∧ ¬ hreal.cut X (hrat_add x e)
lemma CUT_NEARTOP_MUL:
∀X u. hrat_lt hrat_1 u --> (∃x. hreal.cut X x ∧ ¬ hreal.cut X (hrat_mul u x))
lemma hreal_1:
hreal_1 = hreal (cut_of_hrat hrat_1)
lemma hreal_add:
∀X Y. hreal_add X Y = hreal (%w. ∃x y. w = hrat_add x y ∧ hreal.cut X x ∧ hreal.cut Y y)
lemma hreal_mul:
∀X Y. hreal_mul X Y = hreal (%w. ∃x y. w = hrat_mul x y ∧ hreal.cut X x ∧ hreal.cut Y y)
lemma hreal_inv:
∀X. hreal_inv X = hreal (%w. ∃d. hrat_lt d hrat_1 ∧ (∀x. hreal.cut X x --> hrat_lt (hrat_mul w x) d))
lemma hreal_sup:
∀P. hreal_sup P = hreal (%w. ∃X. P X ∧ hreal.cut X w)
lemma hreal_lt:
∀X Y. hreal_lt X Y = (X ≠ Y ∧ (∀x. hreal.cut X x --> hreal.cut Y x))
lemma HREAL_INV_ISACUT:
∀X. isacut (%w. ∃d. hrat_lt d hrat_1 ∧ (∀x. hreal.cut X x --> hrat_lt (hrat_mul w x) d))
lemma HREAL_ADD_ISACUT:
∀X Y. isacut (%w. ∃x y. w = hrat_add x y ∧ hreal.cut X x ∧ hreal.cut Y y)
lemma HREAL_MUL_ISACUT:
∀X Y. isacut (%w. ∃x y. w = hrat_mul x y ∧ hreal.cut X x ∧ hreal.cut Y y)
lemma HREAL_ADD_SYM:
∀X Y. hreal_add X Y = hreal_add Y X
lemma HREAL_MUL_SYM:
∀X Y. hreal_mul X Y = hreal_mul Y X
lemma HREAL_ADD_ASSOC:
∀X Y Z. hreal_add X (hreal_add Y Z) = hreal_add (hreal_add X Y) Z
lemma HREAL_MUL_ASSOC:
∀X Y Z. hreal_mul X (hreal_mul Y Z) = hreal_mul (hreal_mul X Y) Z
lemma HREAL_LDISTRIB:
∀X Y Z. hreal_mul X (hreal_add Y Z) = hreal_add (hreal_mul X Y) (hreal_mul X Z)
lemma HREAL_MUL_LID:
∀X. hreal_mul hreal_1 X = X
lemma HREAL_MUL_LINV:
∀X. hreal_mul (hreal_inv X) X = hreal_1
lemma HREAL_NOZERO:
∀X Y. hreal_add X Y ≠ X
lemma hreal_sub:
∀Y X. hreal_sub Y X = hreal (%w. ∃x. ¬ hreal.cut X x ∧ hreal.cut Y (hrat_add x w))
lemma HREAL_LT_LEMMA:
∀X Y. hreal_lt X Y --> (∃x. ¬ hreal.cut X x ∧ hreal.cut Y x)
lemma HREAL_SUB_ISACUT:
∀X Y. hreal_lt X Y --> isacut (%w. ∃x. ¬ hreal.cut X x ∧ hreal.cut Y (hrat_add x w))
lemma HREAL_SUB_ADD:
∀X Y. hreal_lt X Y --> hreal_add (hreal_sub Y X) X = Y
lemma HREAL_LT_TOTAL:
∀X Y. X = Y ∨ hreal_lt X Y ∨ hreal_lt Y X
lemma HREAL_LT:
∀X Y. hreal_lt X Y = (∃D. Y = hreal_add X D)
lemma HREAL_ADD_TOTAL:
∀X Y. X = Y ∨ (∃D. Y = hreal_add X D) ∨ (∃D. X = hreal_add Y D)
lemma HREAL_SUP_ISACUT:
∀P. Ex P ∧ (∃Y. ∀X. P X --> hreal_lt X Y) --> isacut (%w. ∃X. P X ∧ hreal.cut X w)
lemma HREAL_SUP:
∀P. Ex P ∧ (∃Y. ∀X. P X --> hreal_lt X Y) --> (∀Y. (∃X. P X ∧ hreal_lt Y X) = hreal_lt Y (hreal_sup P))
lemma numeral_suc:
Suc ALT_ZERO = NUMERAL_BIT1 ALT_ZERO ∧ (∀x. Suc (NUMERAL_BIT1 x) = NUMERAL_BIT2 x) ∧ (∀x. Suc (NUMERAL_BIT2 x) = NUMERAL_BIT1 (Suc x))
lemma iZ:
∀x. iZ x = x
lemma iiSUC:
∀n. iiSUC n = Suc (Suc n)
lemma numeral_distrib:
(∀x. 0 + x = x) ∧ (∀x. x + 0 = x) ∧ (∀x xa. NUMERAL x + NUMERAL xa = NUMERAL (iZ (x + xa))) ∧ (∀x. 0 * x = 0) ∧ (∀x. x * 0 = 0) ∧ (∀x xa. NUMERAL x * NUMERAL xa = NUMERAL (x * xa)) ∧ (∀x. 0 - x = 0) ∧ (∀x. x - 0 = x) ∧ (∀x xa. NUMERAL x - NUMERAL xa = NUMERAL (x - xa)) ∧ (∀x. 0 ^ NUMERAL (NUMERAL_BIT1 x) = 0) ∧ (∀x. 0 ^ NUMERAL (NUMERAL_BIT2 x) = 0) ∧ (∀x. x ^ 0 = 1) ∧ (∀x xa. NUMERAL x ^ NUMERAL xa = NUMERAL (x ^ xa)) ∧ Suc 0 = 1 ∧ (∀x. Suc (NUMERAL x) = NUMERAL (Suc x)) ∧ PRE 0 = 0 ∧ (∀x. PRE (NUMERAL x) = NUMERAL (PRE x)) ∧ (∀x. (NUMERAL x = 0) = (x = ALT_ZERO)) ∧ (∀x. (0 = NUMERAL x) = (x = ALT_ZERO)) ∧ (∀x xa. (NUMERAL x = NUMERAL xa) = (x = xa)) ∧ (∀x. (x < 0) = False) ∧ (∀x. (0 < NUMERAL x) = (ALT_ZERO < x)) ∧ (∀x xa. (NUMERAL x < NUMERAL xa) = (x < xa)) ∧ (∀x. (x < 0) = False) ∧ (∀x. (0 < NUMERAL x) = (ALT_ZERO < x)) ∧ (∀x xa. (NUMERAL xa < NUMERAL x) = (xa < x)) ∧ (∀x. (0 ≤ x) = True) ∧ (∀x. (NUMERAL x ≤ 0) = (x ≤ ALT_ZERO)) ∧ (∀x xa. (NUMERAL x ≤ NUMERAL xa) = (x ≤ xa)) ∧ (∀x. (0 ≤ x) = True) ∧ (∀x. (x ≤ 0) = (x = 0)) ∧ (∀x xa. (NUMERAL xa ≤ NUMERAL x) = (xa ≤ x)) ∧ (∀x. ODD (NUMERAL x) = ODD x) ∧ (∀x. EVEN (NUMERAL x) = EVEN x) ∧ ¬ ODD 0 ∧ EVEN 0
lemma numeral_iisuc:
iiSUC ALT_ZERO = NUMERAL_BIT2 ALT_ZERO ∧ iiSUC (NUMERAL_BIT1 n) = NUMERAL_BIT1 (Suc n) ∧ iiSUC (NUMERAL_BIT2 n) = NUMERAL_BIT2 (Suc n)
lemma numeral_add:
∀x xa. iZ (ALT_ZERO + x) = x ∧ iZ (x + ALT_ZERO) = x ∧ iZ (NUMERAL_BIT1 x + NUMERAL_BIT1 xa) = NUMERAL_BIT2 (iZ (x + xa)) ∧ iZ (NUMERAL_BIT1 x + NUMERAL_BIT2 xa) = NUMERAL_BIT1 (Suc (x + xa)) ∧ iZ (NUMERAL_BIT2 x + NUMERAL_BIT1 xa) = NUMERAL_BIT1 (Suc (x + xa)) ∧ iZ (NUMERAL_BIT2 x + NUMERAL_BIT2 xa) = NUMERAL_BIT2 (Suc (x + xa)) ∧ Suc (ALT_ZERO + x) = Suc x ∧ Suc (x + ALT_ZERO) = Suc x ∧ Suc (NUMERAL_BIT1 x + NUMERAL_BIT1 xa) = NUMERAL_BIT1 (Suc (x + xa)) ∧ Suc (NUMERAL_BIT1 x + NUMERAL_BIT2 xa) = NUMERAL_BIT2 (Suc (x + xa)) ∧ Suc (NUMERAL_BIT2 x + NUMERAL_BIT1 xa) = NUMERAL_BIT2 (Suc (x + xa)) ∧ Suc (NUMERAL_BIT2 x + NUMERAL_BIT2 xa) = NUMERAL_BIT1 (iiSUC (x + xa)) ∧ iiSUC (ALT_ZERO + x) = iiSUC x ∧ iiSUC (x + ALT_ZERO) = iiSUC x ∧ iiSUC (NUMERAL_BIT1 x + NUMERAL_BIT1 xa) = NUMERAL_BIT2 (Suc (x + xa)) ∧ iiSUC (NUMERAL_BIT1 x + NUMERAL_BIT2 xa) = NUMERAL_BIT1 (iiSUC (x + xa)) ∧ iiSUC (NUMERAL_BIT2 x + NUMERAL_BIT1 xa) = NUMERAL_BIT1 (iiSUC (x + xa)) ∧ iiSUC (NUMERAL_BIT2 x + NUMERAL_BIT2 xa) = NUMERAL_BIT2 (iiSUC (x + xa))
lemma numeral_eq:
∀x xa. (ALT_ZERO = NUMERAL_BIT1 x) = False ∧ (NUMERAL_BIT1 x = ALT_ZERO) = False ∧ (ALT_ZERO = NUMERAL_BIT2 x) = False ∧ (NUMERAL_BIT2 x = ALT_ZERO) = False ∧ (NUMERAL_BIT1 x = NUMERAL_BIT2 xa) = False ∧ (NUMERAL_BIT2 x = NUMERAL_BIT1 xa) = False ∧ (NUMERAL_BIT1 x = NUMERAL_BIT1 xa) = (x = xa) ∧ (NUMERAL_BIT2 x = NUMERAL_BIT2 xa) = (x = xa)
lemma numeral_lt:
∀x xa. (ALT_ZERO < NUMERAL_BIT1 x) = True ∧ (ALT_ZERO < NUMERAL_BIT2 x) = True ∧ (x < ALT_ZERO) = False ∧ (NUMERAL_BIT1 x < NUMERAL_BIT1 xa) = (x < xa) ∧ (NUMERAL_BIT2 x < NUMERAL_BIT2 xa) = (x < xa) ∧ (NUMERAL_BIT1 x < NUMERAL_BIT2 xa) = (¬ xa < x) ∧ (NUMERAL_BIT2 x < NUMERAL_BIT1 xa) = (x < xa)
lemma numeral_lte:
∀x xa. (ALT_ZERO ≤ x) = True ∧ (NUMERAL_BIT1 x ≤ ALT_ZERO) = False ∧ (NUMERAL_BIT2 x ≤ ALT_ZERO) = False ∧ (NUMERAL_BIT1 x ≤ NUMERAL_BIT1 xa) = (x ≤ xa) ∧ (NUMERAL_BIT1 x ≤ NUMERAL_BIT2 xa) = (x ≤ xa) ∧ (NUMERAL_BIT2 x ≤ NUMERAL_BIT1 xa) = (¬ xa ≤ x) ∧ (NUMERAL_BIT2 x ≤ NUMERAL_BIT2 xa) = (x ≤ xa)
lemma numeral_pre:
PRE ALT_ZERO = ALT_ZERO ∧ PRE (NUMERAL_BIT1 ALT_ZERO) = ALT_ZERO ∧ (∀x. PRE (NUMERAL_BIT1 (NUMERAL_BIT1 x)) = NUMERAL_BIT2 (PRE (NUMERAL_BIT1 x))) ∧ (∀x. PRE (NUMERAL_BIT1 (NUMERAL_BIT2 x)) = NUMERAL_BIT2 (NUMERAL_BIT1 x)) ∧ (∀x. PRE (NUMERAL_BIT2 x) = NUMERAL_BIT1 x)
lemma bit_initiality:
∀zf b1f b2f. ∃x. x ALT_ZERO = zf ∧ (∀n. x (NUMERAL_BIT1 n) = b1f n (x n)) ∧ (∀n. x (NUMERAL_BIT2 n) = b2f n (x n))
lemma iDUB:
∀x. iDUB x = x + x
lemma bit_induction:
∀P. P ALT_ZERO ∧ (∀n. P n --> P (NUMERAL_BIT1 n)) ∧ (∀n. P n --> P (NUMERAL_BIT2 n)) --> All P
lemma iSUB_THM:
∀xa xb xc. iSUB xa ALT_ZERO x = ALT_ZERO ∧ iSUB True xb ALT_ZERO = xb ∧ iSUB False (NUMERAL_BIT1 xb) ALT_ZERO = iDUB xb ∧ iSUB True (NUMERAL_BIT1 xb) (NUMERAL_BIT1 xc) = iDUB (iSUB True xb xc) ∧ iSUB False (NUMERAL_BIT1 xb) (NUMERAL_BIT1 xc) = NUMERAL_BIT1 (iSUB False xb xc) ∧ iSUB True (NUMERAL_BIT1 xb) (NUMERAL_BIT2 xc) = NUMERAL_BIT1 (iSUB False xb xc) ∧ iSUB False (NUMERAL_BIT1 xb) (NUMERAL_BIT2 xc) = iDUB (iSUB False xb xc) ∧ iSUB False (NUMERAL_BIT2 xb) ALT_ZERO = NUMERAL_BIT1 xb ∧ iSUB True (NUMERAL_BIT2 xb) (NUMERAL_BIT1 xc) = NUMERAL_BIT1 (iSUB True xb xc) ∧ iSUB False (NUMERAL_BIT2 xb) (NUMERAL_BIT1 xc) = iDUB (iSUB True xb xc) ∧ iSUB True (NUMERAL_BIT2 xb) (NUMERAL_BIT2 xc) = iDUB (iSUB True xb xc) ∧ iSUB False (NUMERAL_BIT2 xb) (NUMERAL_BIT2 xc) = NUMERAL_BIT1 (iSUB False xb xc)
lemma numeral_sub:
∀x xa. NUMERAL (x - xa) = (if xa < x then NUMERAL (iSUB True x xa) else 0)
lemma iDUB_removal:
∀x. iDUB (NUMERAL_BIT1 x) = NUMERAL_BIT2 (iDUB x) ∧ iDUB (NUMERAL_BIT2 x) = NUMERAL_BIT2 (NUMERAL_BIT1 x) ∧ iDUB ALT_ZERO = ALT_ZERO
lemma numeral_mult:
∀x xa. ALT_ZERO * x = ALT_ZERO ∧ x * ALT_ZERO = ALT_ZERO ∧ NUMERAL_BIT1 x * xa = iZ (iDUB (x * xa) + xa) ∧ NUMERAL_BIT2 x * xa = iDUB (iZ (x * xa + xa))
lemma iSQR:
∀x. iSQR x = x * x
lemma numeral_exp:
(∀x. x ^ ALT_ZERO = NUMERAL_BIT1 ALT_ZERO) ∧ (∀x xa. x ^ NUMERAL_BIT1 xa = x * iSQR (x ^ xa)) ∧ (∀x xa. x ^ NUMERAL_BIT2 xa = iSQR x * iSQR (x ^ xa))
lemma numeral_evenodd:
∀x. EVEN ALT_ZERO ∧ EVEN (NUMERAL_BIT2 x) ∧ ¬ EVEN (NUMERAL_BIT1 x) ∧ ¬ ODD ALT_ZERO ∧ ¬ ODD (NUMERAL_BIT2 x) ∧ ODD (NUMERAL_BIT1 x)
lemma numeral_fact:
∀n. FACT n = (if n = 0 then 1 else n * FACT (PRE n))
lemma numeral_funpow:
∀n. (f ^ n) x = (if n = 0 then x else (f ^ (n - 1)) (f x))
lemma INJ_INVERSE2:
∀P. (∀x1 y1 x2 y2. (P x1 y1 = P x2 y2) = (x1 = x2 ∧ y1 = y2)) --> (∃x Y. ∀xa y. x (P xa y) = xa ∧ Y (P xa y) = y)
lemma NUMPAIR:
∀x y. NUMPAIR x y = 2 ^ x * (2 * y + 1)
lemma NUMPAIR_INJ_LEMMA:
∀x xa xb xc. NUMPAIR x xa = NUMPAIR xb xc --> x = xb
lemma NUMPAIR_INJ:
∀x1 y1 x2 y2. (NUMPAIR x1 y1 = NUMPAIR x2 y2) = (x1 = x2 ∧ y1 = y2)
lemma NUMSUM:
∀b x. NUMSUM b x = (if b then Suc (2 * x) else 2 * x)
lemma NUMSUM_INJ:
∀b1 x1 b2 x2. (NUMSUM b1 x1 = NUMSUM b2 x2) = (b1 = b2 ∧ x1 = x2)
lemma INJN:
∀m. INJN m = (%n a. n = m)
lemma INJN_INJ:
∀n1 n2. (INJN n1 = INJN n2) = (n1 = n2)
lemma INJA:
∀a. INJA a = (%n b. b = a)
lemma INJA_INJ:
∀a1 a2. (INJA a1 = INJA a2) = (a1 = a2)
lemma INJF:
∀f. INJF f = (%n. f (NUMFST n) (NUMSND n))
lemma INJF_INJ:
∀f1 f2. (INJF f1 = INJF f2) = (f1 = f2)
lemma INJP:
∀f1 f2. INJP f1 f2 = (%n a. if NUMLEFT n then f1 (NUMRIGHT n) a else f2 (NUMRIGHT n) a)
lemma INJP_INJ:
∀f1 f1' f2 f2'. (INJP f1 f2 = INJP f1' f2') = (f1 = f1' ∧ f2 = f2')
lemma ZCONSTR:
∀c i r. ZCONSTR c i r = INJP (INJN (Suc c)) (INJP (INJA i) (INJF r))
lemma ZBOT:
ZBOT = INJP (INJN 0) (SOME z. True)
lemma ZCONSTR_ZBOT:
∀x xa xb. ZCONSTR x xa xb ≠ ZBOT
lemma ZRECSPACE:
ZRECSPACE = (%a0. ∀ZRECSPACE'. (∀a0. a0 = ZBOT ∨ (∃c i r. a0 = ZCONSTR c i r ∧ (∀n. ZRECSPACE' (r n))) --> ZRECSPACE' a0) --> ZRECSPACE' a0)
lemma ZRECSPACE_rules:
ZRECSPACE ZBOT ∧ (∀c i r. (∀n. ZRECSPACE (r n)) --> ZRECSPACE (ZCONSTR c i r))
lemma ZRECSPACE_ind:
∀x. x ZBOT ∧ (∀c i r. (∀n. x (r n)) --> x (ZCONSTR c i r)) --> (∀a0. ZRECSPACE a0 --> x a0)
lemma ZRECSPACE_cases:
∀a0. ZRECSPACE a0 = (a0 = ZBOT ∨ (∃c i r. a0 = ZCONSTR c i r ∧ (∀n. ZRECSPACE (r n))))
lemmas recspace_TY_DEF:
∃rep. TYPE_DEFINITION ZRECSPACE rep
lemmas recspace_TY_DEF:
∃rep. TYPE_DEFINITION ZRECSPACE rep
lemma BOTTOM:
BOTTOM = mk_rec ZBOT
lemma CONSTR:
∀c i r. CONSTR c i r = mk_rec (ZCONSTR c i (%n. dest_rec (r n)))
lemma MK_REC_INJ:
∀x y. mk_rec x = mk_rec y --> ZRECSPACE x ∧ ZRECSPACE y --> x = y
lemma DEST_REC_INJ:
∀x y. (dest_rec x = dest_rec y) = (x = y)
lemma CONSTR_BOT:
∀c i r. CONSTR c i r ≠ BOTTOM
lemma CONSTR_INJ:
∀c1 i1 r1 c2 i2 r2. (CONSTR c1 i1 r1 = CONSTR c2 i2 r2) = (c1 = c2 ∧ i1 = i2 ∧ r1 = r2)
lemma CONSTR_IND:
∀P. P BOTTOM ∧ (∀c i r. (∀n. P (r n)) --> P (CONSTR c i r)) --> All P
lemma CONSTR_REC:
∀Fn. ∃f. ∀c i r. f (CONSTR c i r) = Fn c i r (%n. f (r n))
lemma FNIL:
∀n. FNIL n = (SOME x. True)
lemma ISO:
∀f g. ISO f g = ((∀x. f (g x) = x) ∧ (∀y. g (f y) = y))
lemma ISO_REFL:
ISO (%x. x) (%x. x)
lemma ISO_FUN:
ISO f f' ∧ ISO g g' --> ISO (%h a'. g (h (f' a'))) (%h a. g' (h (f a)))
lemma ISO_USAGE:
ISO f g --> (∀P. All P = (∀x. P (g x))) ∧ (∀P. Ex P = (∃x. P (g x))) ∧ (∀a b. (a = g b) = (f a = b))
lemma ONE_DIVIDES_ALL:
All (op dvd 1)
lemma DIVIDES_ADD_2:
∀a b c. a dvd b ∧ a dvd b + c --> a dvd c
lemma DIVIDES_FACT:
∀b>0. b dvd FACT b
lemma DIVIDES_MULT_LEFT:
∀x xa. (x * xa dvd xa) = (xa = 0 ∨ x = 1)
lemma prime_def:
∀a. prime.prime a = (a ≠ 1 ∧ (∀b. b dvd a --> b = a ∨ b = 1))
lemma NOT_PRIME_0:
¬ prime.prime 0
lemma NOT_PRIME_1:
¬ prime.prime 1
lemma NULL:
null [] ∧ (∀x xa. ¬ null (x # xa))
lemma list_case_compute:
∀l. list_case b f l = (if null l then b else f (hd l) (tl l))
lemma LIST_NOT_EQ:
∀l1 l2. l1 ≠ l2 --> (∀x xa. x # l1 ≠ xa # l2)
lemma NOT_EQ_LIST:
∀h1 h2. h1 ≠ h2 --> (∀x xa. h1 # x ≠ h2 # xa)
lemma EQ_LIST:
∀h1 h2. h1 = h2 --> (∀l1 l2. l1 = l2 --> h1 # l1 = h2 # l2)
lemma CONS:
∀l. ¬ null l --> hd l # tl l = l
lemma MAP_EQ_NIL:
∀l f. (map f l = []) = (l = []) ∧ ([] = map f l) = (l = [])
lemma EVERY_EL:
∀l P. list_all P l = (∀n<length l. P (EL n l))
lemma EVERY_CONJ:
∀l. list_all (%x. P x ∧ Q x) l = (list_all P l ∧ list_all Q l)
lemma EVERY_MEM:
∀P l. list_all P l = (∀e. e mem l --> P e)
lemma EXISTS_MEM:
∀P l. list_exists P l = (∃e. e mem l ∧ P e)
lemma MEM_APPEND:
∀e l1 l2. e mem l1 @ l2 = (e mem l1 ∨ e mem l2)
lemma EXISTS_APPEND:
∀P l1 l2. list_exists P (l1 @ l2) = (list_exists P l1 ∨ list_exists P l2)
lemma NOT_EVERY:
∀P l. (¬ list_all P l) = list_exists (Not o P) l
lemma NOT_EXISTS:
∀P l. (¬ list_exists P l) = list_all (Not o P) l
lemma MEM_MAP:
∀l f x. x mem map f l = (∃y. x = f y ∧ y mem l)
lemma LENGTH_CONS:
∀l n. (length l = Suc n) = (∃h l'. length l' = n ∧ l = h # l')
lemma LENGTH_EQ_CONS:
∀P n. (∀l. length l = Suc n --> P l) = (∀l. length l = n --> (∀x. P (x # l)))
lemma LENGTH_EQ_NIL:
∀P. (∀l. length l = 0 --> P l) = P []
lemma CONS_ACYCLIC:
∀l x. l ≠ x # l ∧ x # l ≠ l
lemma APPEND_eq_NIL:
(∀l1 l2. ([] = l1 @ l2) = (l1 = [] ∧ l2 = [])) ∧ (∀l1 l2. (l1 @ l2 = []) = (l1 = [] ∧ l2 = []))
lemma APPEND_11:
(∀l1 l2 l3. (l1 @ l2 = l1 @ l3) = (l2 = l3)) ∧ (∀l1 l2 l3. (l2 @ l1 = l3 @ l1) = (l2 = l3))
lemma EL_compute:
∀n. EL n l = (if n = 0 then hd l else EL (PRE n) (tl l))
lemma WF_LIST_PRED:
WF (%L1 L2. ∃h. L2 = h # L1)
lemma list_size_cong:
∀M N f f'. M = N ∧ (∀x. x mem N --> f x = f' x) --> list_size f M = list_size f' N
lemma FOLDR_CONG:
∀l l' b b' f f'. l = l' ∧ b = b' ∧ (∀x a. x mem l' --> f x a = f' x a) --> foldr f l b = foldr f' l' b'
lemma FOLDL_CONG:
∀l l' b b' f f'. l = l' ∧ b = b' ∧ (∀x a. x mem l' --> f a x = f' a x) --> foldl f b l = foldl f' b' l'
lemma MAP_CONG:
∀l1 l2 f f'. l1 = l2 ∧ (∀x. x mem l2 --> f x = f' x) --> map f l1 = map f' l2
lemma EXISTS_CONG:
∀l1 l2 P P'. l1 = l2 ∧ (∀x. x mem l2 --> P x = P' x) --> list_exists P l1 = list_exists P' l2
lemma EVERY_CONG:
∀l1 l2 P P'. l1 = l2 ∧ (∀x. x mem l2 --> P x = P' x) --> list_all P l1 = list_all P' l2
lemma EVERY_MONOTONIC:
∀P Q. (∀x. P x --> Q x) --> (∀l. list_all P l --> list_all Q l)
lemma LENGTH_ZIP:
∀l1 l2. length l1 = length l2 --> length (zip l1 l2) = length l1 ∧ length (zip l1 l2) = length l2
lemma LENGTH_UNZIP:
∀pl. length (fst (unzip pl)) = length pl ∧ length (snd (unzip pl)) = length pl
lemma ZIP_UNZIP:
∀l. ZIP (unzip l) = l
lemma UNZIP_ZIP:
∀l1 l2. length l1 = length l2 --> unzip (zip l1 l2) = (l1, l2)
lemma ZIP_MAP:
∀l1 l2 f1 f2. length l1 = length l2 --> zip (map f1 l1) l2 = map (%p. (f1 (fst p), snd p)) (zip l1 l2) ∧ zip l1 (map f2 l2) = map (%p. (fst p, f2 (snd p))) (zip l1 l2)
lemma MEM_ZIP:
∀l1 l2 p. length l1 = length l2 --> p mem zip l1 l2 = (∃n<length l1. p = (EL n l1, EL n l2))
lemma EL_ZIP:
∀l1 l2 n. length l1 = length l2 ∧ n < length l1 --> EL n (zip l1 l2) = (EL n l1, EL n l2)
lemma MAP2_ZIP:
∀l1 l2. length l1 = length l2 --> (∀f. map2 f l1 l2 = map (%(x, y). f x y) (zip l1 l2))
lemma MEM_EL:
∀l x. x mem l = (∃n<length l. x = EL n l)
lemma LAST_CONS:
(∀x. last [x] = x) ∧ (∀x xa xb. last (x # xa # xb) = last (xa # xb))
lemma FRONT_CONS:
(∀x. butlast [x] = []) ∧ (∀x xa xb. butlast (x # xa # xb) = x # butlast (xa # xb))
lemma EXTENSION:
∀s t. (s = t) = (∀x. IN x s = IN x t)
lemma NOT_EQUAL_SETS:
∀x xa. (x ≠ xa) = (∃xb. IN xb xa = (¬ IN xb x))
lemma NUM_SET_WOP:
∀s. (∃n. IN n s) = (∃n. IN n s ∧ (∀m. IN m s --> n ≤ m))
lemma SET_MINIMUM:
∀s M. (∃x. IN x s) = (∃x. IN x s ∧ (∀y. IN y s --> M x ≤ M y))
lemma EMPTY_DEF:
EMPTY = (%x. False)
lemma NOT_IN_EMPTY:
∀x. ¬ IN x EMPTY
lemma MEMBER_NOT_EMPTY:
∀x. (∃xa. IN xa x) = (x ≠ EMPTY)
lemma UNIV_DEF:
pred_set.UNIV = (%x. True)
lemma IN_UNIV:
∀x. IN x pred_set.UNIV
lemma UNIV_NOT_EMPTY:
pred_set.UNIV ≠ EMPTY
lemma EMPTY_NOT_UNIV:
EMPTY ≠ pred_set.UNIV
lemma EQ_UNIV:
(∀x. IN x s) = (s = pred_set.UNIV)
lemma SUBSET_DEF:
∀s t. SUBSET s t = (∀x. IN x s --> IN x t)
lemma SUBSET_TRANS:
∀x xa xb. SUBSET x xa ∧ SUBSET xa xb --> SUBSET x xb
lemma SUBSET_REFL:
∀x. SUBSET x x
lemma SUBSET_ANTISYM:
∀x xa. SUBSET x xa ∧ SUBSET xa x --> x = xa
lemma EMPTY_SUBSET:
All (SUBSET EMPTY)
lemma SUBSET_EMPTY:
∀x. SUBSET x EMPTY = (x = EMPTY)
lemma SUBSET_UNIV:
∀x. SUBSET x pred_set.UNIV
lemma UNIV_SUBSET:
∀x. SUBSET pred_set.UNIV x = (x = pred_set.UNIV)
lemma PSUBSET_DEF:
∀s t. PSUBSET s t = (SUBSET s t ∧ s ≠ t)
lemma PSUBSET_TRANS:
∀x xa xb. PSUBSET x xa ∧ PSUBSET xa xb --> PSUBSET x xb
lemma PSUBSET_IRREFL:
∀x. ¬ PSUBSET x x
lemma NOT_PSUBSET_EMPTY:
∀x. ¬ PSUBSET x EMPTY
lemma NOT_UNIV_PSUBSET:
∀x. ¬ PSUBSET pred_set.UNIV x
lemma PSUBSET_UNIV:
∀x. PSUBSET x pred_set.UNIV = (∃xa. ¬ IN xa x)
lemma UNION_DEF:
∀s t. pred_set.UNION s t = GSPEC (%x. (x, IN x s ∨ IN x t))
lemma IN_UNION:
∀x xa xb. IN xb (pred_set.UNION x xa) = (IN xb x ∨ IN xb xa)
lemma UNION_ASSOC:
∀x xa xb. pred_set.UNION x (pred_set.UNION xa xb) = pred_set.UNION (pred_set.UNION x xa) xb
lemma UNION_IDEMPOT:
∀x. pred_set.UNION x x = x
lemma UNION_COMM:
∀x xa. pred_set.UNION x xa = pred_set.UNION xa x
lemma SUBSET_UNION:
(∀x xa. SUBSET x (pred_set.UNION x xa)) ∧ (∀x xa. SUBSET x (pred_set.UNION xa x))
lemma UNION_SUBSET:
∀s t u. SUBSET (pred_set.UNION s t) u = (SUBSET s u ∧ SUBSET t u)
lemma SUBSET_UNION_ABSORPTION:
∀x xa. SUBSET x xa = (pred_set.UNION x xa = xa)
lemma UNION_EMPTY:
(∀x. pred_set.UNION EMPTY x = x) ∧ (∀x. pred_set.UNION x EMPTY = x)
lemma UNION_UNIV:
(∀x. pred_set.UNION pred_set.UNIV x = pred_set.UNIV) ∧ (∀x. pred_set.UNION x pred_set.UNIV = pred_set.UNIV)
lemma EMPTY_UNION:
∀x xa. (pred_set.UNION x xa = EMPTY) = (x = EMPTY ∧ xa = EMPTY)
lemma INTER_DEF:
∀s t. pred_set.INTER s t = GSPEC (%x. (x, IN x s ∧ IN x t))
lemma IN_INTER:
∀x xa xb. IN xb (pred_set.INTER x xa) = (IN xb x ∧ IN xb xa)
lemma INTER_ASSOC:
∀x xa xb. pred_set.INTER x (pred_set.INTER xa xb) = pred_set.INTER (pred_set.INTER x xa) xb
lemma INTER_IDEMPOT:
∀x. pred_set.INTER x x = x
lemma INTER_COMM:
∀x xa. pred_set.INTER x xa = pred_set.INTER xa x
lemma INTER_SUBSET:
(∀x xa. SUBSET (pred_set.INTER x xa) x) ∧ (∀x xa. SUBSET (pred_set.INTER xa x) x)
lemma SUBSET_INTER:
∀s t u. SUBSET s (pred_set.INTER t u) = (SUBSET s t ∧ SUBSET s u)
lemma SUBSET_INTER_ABSORPTION:
∀x xa. SUBSET x xa = (pred_set.INTER x xa = x)
lemma INTER_EMPTY:
(∀x. pred_set.INTER EMPTY x = EMPTY) ∧ (∀x. pred_set.INTER x EMPTY = EMPTY)
lemma INTER_UNIV:
(∀x. pred_set.INTER pred_set.UNIV x = x) ∧ (∀x. pred_set.INTER x pred_set.UNIV = x)
lemma UNION_OVER_INTER:
∀x xa xb. pred_set.INTER x (pred_set.UNION xa xb) = pred_set.UNION (pred_set.INTER x xa) (pred_set.INTER x xb)
lemma INTER_OVER_UNION:
∀x xa xb. pred_set.UNION x (pred_set.INTER xa xb) = pred_set.INTER (pred_set.UNION x xa) (pred_set.UNION x xb)
lemma DISJOINT_DEF:
∀s t. DISJOINT s t = (pred_set.INTER s t = EMPTY)
lemma IN_DISJOINT:
∀x xa. DISJOINT x xa = (¬ (∃xb. IN xb x ∧ IN xb xa))
lemma DISJOINT_SYM:
∀x xa. DISJOINT x xa = DISJOINT xa x
lemma DISJOINT_EMPTY:
∀x. DISJOINT EMPTY x ∧ DISJOINT x EMPTY
lemma DISJOINT_EMPTY_REFL:
∀x. (x = EMPTY) = DISJOINT x x
lemma DISJOINT_UNION:
∀x xa xb. DISJOINT (pred_set.UNION x xa) xb = (DISJOINT x xb ∧ DISJOINT xa xb)
lemma DISJOINT_UNION_BOTH:
∀s t u. DISJOINT (pred_set.UNION s t) u = (DISJOINT s u ∧ DISJOINT t u) ∧ DISJOINT u (pred_set.UNION s t) = (DISJOINT s u ∧ DISJOINT t u)
lemma DIFF_DEF:
∀s t. DIFF s t = GSPEC (%x. (x, IN x s ∧ ¬ IN x t))
lemma IN_DIFF:
∀s t x. IN x (DIFF s t) = (IN x s ∧ ¬ IN x t)
lemma DIFF_EMPTY:
∀s. DIFF s EMPTY = s
lemma EMPTY_DIFF:
∀s. DIFF EMPTY s = EMPTY
lemma DIFF_UNIV:
∀s. DIFF s pred_set.UNIV = EMPTY
lemma DIFF_DIFF:
∀x xa. DIFF (DIFF x xa) xa = DIFF x xa
lemma DIFF_EQ_EMPTY:
∀x. DIFF x x = EMPTY
lemma INSERT_DEF:
∀x s. INSERT x s = GSPEC (%y. (y, y = x ∨ IN y s))
lemma IN_INSERT:
∀x xa xb. IN x (INSERT xa xb) = (x = xa ∨ IN x xb)
lemma COMPONENT:
∀x xa. IN x (INSERT x xa)
lemma SET_CASES:
∀x. x = EMPTY ∨ (∃xa xb. x = INSERT xa xb ∧ ¬ IN xa xb)
lemma DECOMPOSITION:
∀s x. IN x s = (∃t. s = INSERT x t ∧ ¬ IN x t)
lemma ABSORPTION:
∀x xa. IN x xa = (INSERT x xa = xa)
lemma INSERT_INSERT:
∀x xa. INSERT x (INSERT x xa) = INSERT x xa
lemma INSERT_COMM:
∀x xa xb. INSERT x (INSERT xa xb) = INSERT xa (INSERT x xb)
lemma INSERT_UNIV:
∀x. INSERT x pred_set.UNIV = pred_set.UNIV
lemma NOT_INSERT_EMPTY:
∀x xa. INSERT x xa ≠ EMPTY
lemma NOT_EMPTY_INSERT:
∀x xa. EMPTY ≠ INSERT x xa
lemma INSERT_UNION:
∀x s t. pred_set.UNION (INSERT x s) t = (if IN x t then pred_set.UNION s t else INSERT x (pred_set.UNION s t))
lemma INSERT_UNION_EQ:
∀x s t. pred_set.UNION (INSERT x s) t = INSERT x (pred_set.UNION s t)
lemma INSERT_INTER:
∀x s t. pred_set.INTER (INSERT x s) t = (if IN x t then INSERT x (pred_set.INTER s t) else pred_set.INTER s t)
lemma DISJOINT_INSERT:
∀x xa xb. DISJOINT (INSERT x xa) xb = (DISJOINT xa xb ∧ ¬ IN x xb)
lemma INSERT_SUBSET:
∀x xa xb. SUBSET (INSERT x xa) xb = (IN x xb ∧ SUBSET xa xb)
lemma SUBSET_INSERT:
∀x xa. ¬ IN x xa --> (∀xb. SUBSET xa (INSERT x xb) = SUBSET xa xb)
lemma INSERT_DIFF:
∀s t x. DIFF (INSERT x s) t = (if IN x t then DIFF s t else INSERT x (DIFF s t))
lemma DELETE_DEF:
∀s x. DELETE s x = DIFF s (INSERT x EMPTY)
lemma IN_DELETE:
∀x xa xb. IN xa (DELETE x xb) = (IN xa x ∧ xa ≠ xb)
lemma DELETE_NON_ELEMENT:
∀x xa. (¬ IN x xa) = (DELETE xa x = xa)
lemma IN_DELETE_EQ:
∀s x x'. (IN x s = IN x' s) = (IN x (DELETE s x') = IN x' (DELETE s x))
lemma EMPTY_DELETE:
∀x. DELETE EMPTY x = EMPTY
lemma DELETE_DELETE:
∀x xa. DELETE (DELETE xa x) x = DELETE xa x
lemma DELETE_COMM:
∀x xa xb. DELETE (DELETE xb x) xa = DELETE (DELETE xb xa) x
lemma DELETE_SUBSET:
∀x xa. SUBSET (DELETE xa x) xa
lemma SUBSET_DELETE:
∀x xa xb. SUBSET xa (DELETE xb x) = (¬ IN x xa ∧ SUBSET xa xb)
lemma SUBSET_INSERT_DELETE:
∀x s t. SUBSET s (INSERT x t) = SUBSET (DELETE s x) t
lemma DIFF_INSERT:
∀x xa xb. DIFF x (INSERT xb xa) = DIFF (DELETE x xb) xa
lemma PSUBSET_INSERT_SUBSET:
∀x xa. PSUBSET x xa = (∃xb. ¬ IN xb x ∧ SUBSET (INSERT xb x) xa)
lemma PSUBSET_MEMBER:
∀s t. PSUBSET s t = (SUBSET s t ∧ (∃y. IN y t ∧ ¬ IN y s))
lemma DELETE_INSERT:
∀x xa xb. DELETE (INSERT x xb) xa = (if x = xa then DELETE xb xa else INSERT x (DELETE xb xa))
lemma INSERT_DELETE:
∀x xa. IN x xa --> INSERT x (DELETE xa x) = xa
lemma DELETE_INTER:
∀x xa xb. pred_set.INTER (DELETE x xb) xa = DELETE (pred_set.INTER x xa) xb
lemma DISJOINT_DELETE_SYM:
∀x xa xb. DISJOINT (DELETE x xb) xa = DISJOINT (DELETE xa xb) x
lemma REST_DEF:
∀s. REST s = DELETE s (CHOICE s)
lemma CHOICE_NOT_IN_REST:
∀x. ¬ IN (CHOICE x) (REST x)
lemma CHOICE_INSERT_REST:
∀s. s ≠ EMPTY --> INSERT (CHOICE s) (REST s) = s
lemma REST_SUBSET:
∀x. SUBSET (REST x) x
lemma REST_PSUBSET:
∀x. x ≠ EMPTY --> PSUBSET (REST x) x
lemma SING_DEF:
∀s. SING s = (∃x. s = INSERT x EMPTY)
lemma SING:
∀x. SING (INSERT x EMPTY)
lemma IN_SING:
∀x xa. IN x (INSERT xa EMPTY) = (x = xa)
lemma NOT_SING_EMPTY:
∀x. INSERT x EMPTY ≠ EMPTY
lemma NOT_EMPTY_SING:
∀x. EMPTY ≠ INSERT x EMPTY
lemma EQUAL_SING:
∀x xa. (INSERT x EMPTY = INSERT xa EMPTY) = (x = xa)
lemma DISJOINT_SING_EMPTY:
∀x. DISJOINT (INSERT x EMPTY) EMPTY
lemma INSERT_SING_UNION:
∀x xa. INSERT xa x = pred_set.UNION (INSERT xa EMPTY) x
lemma SING_DELETE:
∀x. DELETE (INSERT x EMPTY) x = EMPTY
lemma DELETE_EQ_SING:
∀x xa. IN xa x --> (DELETE x xa = EMPTY) = (x = INSERT xa EMPTY)
lemma CHOICE_SING:
∀x. CHOICE (INSERT x EMPTY) = x
lemma REST_SING:
∀x. REST (INSERT x EMPTY) = EMPTY
lemma SING_IFF_EMPTY_REST:
∀x. SING x = (x ≠ EMPTY ∧ REST x = EMPTY)
lemma IMAGE_DEF:
∀f s. IMAGE f s = GSPEC (%x. (f x, IN x s))
lemma IN_IMAGE:
∀x xa xb. IN x (IMAGE xb xa) = (∃xc. x = xb xc ∧ IN xc xa)
lemma IMAGE_IN:
∀x xa. IN x xa --> (∀xb. IN (xb x) (IMAGE xb xa))
lemma IMAGE_EMPTY:
∀x. IMAGE x EMPTY = EMPTY
lemma IMAGE_ID:
∀x. IMAGE (%x. x) x = x
lemma IMAGE_COMPOSE:
∀x xa xb. IMAGE (x o xa) xb = IMAGE x (IMAGE xa xb)
lemma IMAGE_INSERT:
∀x xa xb. IMAGE x (INSERT xa xb) = INSERT (x xa) (IMAGE x xb)
lemma IMAGE_EQ_EMPTY:
∀s x. (IMAGE x s = EMPTY) = (s = EMPTY)
lemma IMAGE_DELETE:
∀f x s. ¬ IN x s --> IMAGE f (DELETE s x) = IMAGE f s
lemma IMAGE_UNION:
∀x xa xb. IMAGE x (pred_set.UNION xa xb) = pred_set.UNION (IMAGE x xa) (IMAGE x xb)
lemma IMAGE_SUBSET:
∀x xa. SUBSET x xa --> (∀xb. SUBSET (IMAGE xb x) (IMAGE xb xa))
lemma IMAGE_INTER:
∀f s t. SUBSET (IMAGE f (pred_set.INTER s t)) (pred_set.INTER (IMAGE f s) (IMAGE f t))
lemma INJ_DEF:
∀f s t. INJ f s t = ((∀x. IN x s --> IN (f x) t) ∧ (∀x y. IN x s ∧ IN y s --> f x = f y --> x = y))
lemma INJ_ID:
∀x. INJ (%x. x) x x
lemma INJ_COMPOSE:
∀x xa xb xc xd. INJ x xb xc ∧ INJ xa xc xd --> INJ (xa o x) xb xd
lemma INJ_EMPTY:
∀x. All (INJ x EMPTY) ∧ (∀xa. INJ x xa EMPTY = (xa = EMPTY))
lemma SURJ_DEF:
∀f s t. SURJ f s t = ((∀x. IN x s --> IN (f x) t) ∧ (∀x. IN x t --> (∃y. IN y s ∧ f y = x)))
lemma SURJ_ID:
∀x. SURJ (%x. x) x x
lemma SURJ_COMPOSE:
∀x xa xb xc xd. SURJ x xb xc ∧ SURJ xa xc xd --> SURJ (xa o x) xb xd
lemma SURJ_EMPTY:
∀x. (∀xa. SURJ x EMPTY xa = (xa = EMPTY)) ∧ (∀xa. SURJ x xa EMPTY = (xa = EMPTY))
lemma IMAGE_SURJ:
∀x xa xb. SURJ x xa xb = (IMAGE x xa = xb)
lemma BIJ_DEF:
∀f s t. BIJ f s t = (INJ f s t ∧ SURJ f s t)
lemma BIJ_ID:
∀x. BIJ (%x. x) x x
lemma BIJ_EMPTY:
∀x. (∀xa. BIJ x EMPTY xa = (xa = EMPTY)) ∧ (∀xa. BIJ x xa EMPTY = (xa = EMPTY))
lemma BIJ_COMPOSE:
∀x xa xb xc xd. BIJ x xb xc ∧ BIJ xa xc xd --> BIJ (xa o x) xb xd
lemma FINITE_DEF:
∀s. FINITE s = (∀P. P EMPTY ∧ (∀s. P s --> (∀e. P (INSERT e s))) --> P s)
lemma FINITE_EMPTY:
FINITE EMPTY
lemma FINITE_INDUCT:
∀P. P EMPTY ∧ (∀s. FINITE s ∧ P s --> (∀e. ¬ IN e s --> P (INSERT e s))) --> (∀s. FINITE s --> P s)
lemma FINITE_INSERT:
∀x s. FINITE (INSERT x s) = FINITE s
lemma FINITE_DELETE:
∀x s. FINITE (DELETE s x) = FINITE s
lemma FINITE_UNION:
∀s t. FINITE (pred_set.UNION s t) = (FINITE s ∧ FINITE t)
lemma INTER_FINITE:
∀s. FINITE s --> (∀t. FINITE (pred_set.INTER s t))
lemma SUBSET_FINITE:
∀s. FINITE s --> (∀t. SUBSET t s --> FINITE t)
lemma PSUBSET_FINITE:
∀x. FINITE x --> (∀xa. PSUBSET xa x --> FINITE xa)
lemma FINITE_DIFF:
∀s. FINITE s --> (∀t. FINITE (DIFF s t))
lemma FINITE_SING:
∀x. FINITE (INSERT x EMPTY)
lemma SING_FINITE:
∀x. SING x --> FINITE x
lemma IMAGE_FINITE:
∀s. FINITE s --> (∀f. FINITE (IMAGE f s))
lemma CARD_EMPTY:
CARD EMPTY = 0
lemma CARD_INSERT:
∀s. FINITE s --> (∀x. CARD (INSERT x s) = (if IN x s then CARD s else Suc (CARD s)))
lemma CARD_EQ_0:
∀s. FINITE s --> (CARD s = 0) = (s = EMPTY)
lemma CARD_DELETE:
∀s. FINITE s --> (∀x. CARD (DELETE s x) = (if IN x s then CARD s - 1 else CARD s))
lemma CARD_INTER_LESS_EQ:
∀s. FINITE s --> (∀t. CARD (pred_set.INTER s t) ≤ CARD s)
lemma CARD_UNION:
∀s. FINITE s --> (∀t. FINITE t --> CARD (pred_set.UNION s t) + CARD (pred_set.INTER s t) = CARD s + CARD t)
lemma CARD_SUBSET:
∀s. FINITE s --> (∀t. SUBSET t s --> CARD t ≤ CARD s)
lemma CARD_PSUBSET:
∀s. FINITE s --> (∀t. PSUBSET t s --> CARD t < CARD s)
lemma CARD_SING:
∀x. CARD (INSERT x EMPTY) = 1
lemma SING_IFF_CARD1:
∀x. SING x = (CARD x = 1 ∧ FINITE x)
lemma CARD_DIFF:
∀t. FINITE t --> (∀s. FINITE s --> CARD (DIFF s t) = CARD s - CARD (pred_set.INTER s t))
lemma LESS_CARD_DIFF:
∀t. FINITE t --> (∀s. FINITE s --> CARD t < CARD s --> 0 < CARD (DIFF s t))
lemma FINITE_COMPLETE_INDUCTION:
∀P. (∀x. (∀y. PSUBSET y x --> P y) --> FINITE x --> P x) --> (∀x. FINITE x --> P x)
lemma INFINITE_DEF:
∀s. INFINITE s = (¬ FINITE s)
lemma NOT_IN_FINITE:
INFINITE pred_set.UNIV = (∀s. FINITE s --> (∃x. ¬ IN x s))
lemma INFINITE_INHAB:
∀x. INFINITE x --> (∃xa. IN xa x)
lemma IMAGE_11_INFINITE:
∀f. (∀x y. f x = f y --> x = y) --> (∀s. INFINITE s --> INFINITE (IMAGE f s))
lemma INFINITE_SUBSET:
∀x. INFINITE x --> (∀xa. SUBSET x xa --> INFINITE xa)
lemma IN_INFINITE_NOT_FINITE:
∀x xa. INFINITE x ∧ FINITE xa --> (∃xb. IN xb x ∧ ¬ IN xb xa)
lemma INFINITE_UNIV:
INFINITE pred_set.UNIV = (∃f. (∀x y. f x = f y --> x = y) ∧ (∃y. ∀x. f x ≠ y))
lemma FINITE_PSUBSET_INFINITE:
∀x. INFINITE x = (∀xa. FINITE xa --> SUBSET xa x --> PSUBSET xa x)
lemma FINITE_PSUBSET_UNIV:
INFINITE pred_set.UNIV = (∀s. FINITE s --> PSUBSET s pred_set.UNIV)
lemma INFINITE_DIFF_FINITE:
∀s t. INFINITE s ∧ FINITE t --> DIFF s t ≠ EMPTY
lemma FINITE_ISO_NUM:
∀s. FINITE s --> (∃f. (∀n m. n < CARD s ∧ m < CARD s --> f n = f m --> n = m) ∧ s = GSPEC (%n. (f n, n < CARD s)))
lemma FINITE_WEAK_ENUMERATE:
∀x. FINITE x = (∃f b. ∀e. IN e x = (∃n<b. e = f n))
lemma BIGUNION:
∀P. BIGUNION P = GSPEC (%x. (x, ∃p. IN p P ∧ IN x p))
lemma IN_BIGUNION:
∀x xa. IN x (BIGUNION xa) = (∃s. IN x s ∧ IN s xa)
lemma BIGUNION_EMPTY:
BIGUNION EMPTY = EMPTY
lemma BIGUNION_SING:
∀x. BIGUNION (INSERT x EMPTY) = x
lemma BIGUNION_UNION:
∀x xa. BIGUNION (pred_set.UNION x xa) = pred_set.UNION (BIGUNION x) (BIGUNION xa)
lemma DISJOINT_BIGUNION:
(∀s t. DISJOINT (BIGUNION s) t = (∀s'. IN s' s --> DISJOINT s' t)) ∧ (∀x xa. DISJOINT xa (BIGUNION x) = (∀xb. IN xb x --> DISJOINT xa xb))
lemma BIGUNION_INSERT:
∀x xa. BIGUNION (INSERT x xa) = pred_set.UNION x (BIGUNION xa)
lemma BIGUNION_SUBSET:
∀X P. SUBSET (BIGUNION P) X = (∀Y. IN Y P --> SUBSET Y X)
lemma FINITE_BIGUNION:
∀x. FINITE x ∧ (∀s. IN s x --> FINITE s) --> FINITE (BIGUNION x)
lemma BIGINTER:
∀B. BIGINTER B = GSPEC (%x. (x, ∀P. IN P B --> IN x P))
lemma IN_BIGINTER:
IN x (BIGINTER B) = (∀P. IN P B --> IN x P)
lemma BIGINTER_INSERT:
∀P B. BIGINTER (INSERT P B) = pred_set.INTER P (BIGINTER B)
lemma BIGINTER_EMPTY:
BIGINTER EMPTY = pred_set.UNIV
lemma BIGINTER_INTER:
∀x xa. BIGINTER (INSERT x (INSERT xa EMPTY)) = pred_set.INTER x xa
lemma BIGINTER_SING:
∀x. BIGINTER (INSERT x EMPTY) = x
lemma SUBSET_BIGINTER:
∀X P. SUBSET X (BIGINTER P) = (∀x. IN x P --> SUBSET X x)
lemma DISJOINT_BIGINTER:
∀x xa xb. IN xa xb ∧ DISJOINT xa x --> DISJOINT x (BIGINTER xb) ∧ DISJOINT (BIGINTER xb) x
lemma CROSS_DEF:
∀P Q. CROSS P Q = GSPEC (%p. (p, IN (fst p) P ∧ IN (snd p) Q))
lemma IN_CROSS:
∀x xa xb. IN xb (CROSS x xa) = (IN (fst xb) x ∧ IN (snd xb) xa)
lemma CROSS_EMPTY:
∀x. CROSS x EMPTY = EMPTY ∧ CROSS EMPTY x = EMPTY
lemma CROSS_INSERT_LEFT:
∀x xa xb. CROSS (INSERT xb x) xa = pred_set.UNION (CROSS (INSERT xb EMPTY) xa) (CROSS x xa)
lemma CROSS_INSERT_RIGHT:
∀x xa xb. CROSS x (INSERT xb xa) = pred_set.UNION (CROSS x (INSERT xb EMPTY)) (CROSS x xa)
lemma FINITE_CROSS:
∀x xa. FINITE x ∧ FINITE xa --> FINITE (CROSS x xa)
lemma CROSS_SINGS:
∀x xa. CROSS (INSERT x EMPTY) (INSERT xa EMPTY) = INSERT (x, xa) EMPTY
lemma CARD_SING_CROSS:
∀x s. FINITE s --> CARD (CROSS (INSERT x EMPTY) s) = CARD s
lemma CARD_CROSS:
∀x xa. FINITE x ∧ FINITE xa --> CARD (CROSS x xa) = CARD x * CARD xa
lemma CROSS_SUBSET:
∀x xa xb xc. SUBSET (CROSS xb xc) (CROSS x xa) = (xb = EMPTY ∨ xc = EMPTY ∨ SUBSET xb x ∧ SUBSET xc xa)
lemma FINITE_CROSS_EQ:
∀P Q. FINITE (CROSS P Q) = (P = EMPTY ∨ Q = EMPTY ∨ FINITE P ∧ FINITE Q)
lemma COMPL_DEF:
∀P. COMPL P = DIFF pred_set.UNIV P
lemma IN_COMPL:
∀x xa. IN x (COMPL xa) = (¬ IN x xa)
lemma COMPL_COMPL:
∀x. COMPL (COMPL x) = x
lemma COMPL_CLAUSES:
∀x. pred_set.INTER (COMPL x) x = EMPTY ∧ pred_set.UNION (COMPL x) x = pred_set.UNIV
lemma COMPL_SPLITS:
∀x xa. pred_set.UNION (pred_set.INTER x xa) (pred_set.INTER (COMPL x) xa) = xa
lemma INTER_UNION_COMPL:
∀x xa. pred_set.INTER x xa = COMPL (pred_set.UNION (COMPL x) (COMPL xa))
lemma COMPL_EMPTY:
COMPL EMPTY = pred_set.UNIV
lemma count_def:
∀n. count n = GSPEC (%m. (m, m < n))
lemma IN_COUNT:
∀m n. IN m (count n) = (m < n)
lemma COUNT_ZERO:
count 0 = EMPTY
lemma COUNT_SUC:
∀n. count (Suc n) = INSERT n (count n)
lemma FINITE_COUNT:
∀n. FINITE (count n)
lemma CARD_COUNT:
∀n. CARD (count n) = n
lemma ITSET_tupled_primitive_def:
∀f. ITSET_tupled f = WFREC (SOME R. WF R ∧ (∀b s. FINITE s ∧ s ≠ EMPTY --> R (REST s, f (CHOICE s) b) (s, b))) (%ITSET_tupled (v, v1). if FINITE v then if v = EMPTY then v1 else ITSET_tupled (REST v, f (CHOICE v) v1) else ARB)
lemma ITSET_curried_def:
∀f x x1. ITSET f x x1 = ITSET_tupled f (x, x1)
lemma ITSET_IND:
∀P. (∀s b. (FINITE s ∧ s ≠ EMPTY --> P (REST s) (f (CHOICE s) b)) --> P s b) --> (∀v. All (P v))
lemma ITSET_THM:
∀s f b. FINITE s --> ITSET f s b = (if s = EMPTY then b else ITSET f (REST s) (f (CHOICE s) b))
lemma ITSET_EMPTY:
∀x xa. ITSET x EMPTY xa = xa
lemma ASSOC_DEF:
∀f. ASSOC f = (∀x y z. f x (f y z) = f (f x y) z)
lemma COMM_DEF:
∀f. COMM f = (∀x y. f x y = f y x)
lemma FCOMM_DEF:
∀f g. FCOMM f g = (∀x y z. g x (f y z) = f (g x y) z)
lemma RIGHT_ID_DEF:
∀f e. RIGHT_ID f e = (∀x. f x e = x)
lemma LEFT_ID_DEF:
∀f e. LEFT_ID f e = (∀x. f e x = x)
lemma MONOID_DEF:
∀f e. MONOID f e = (ASSOC f ∧ RIGHT_ID f e ∧ LEFT_ID f e)
lemma ASSOC_CONJ:
ASSOC op ∧
lemma ASSOC_DISJ:
ASSOC op ∨
lemma FCOMM_ASSOC:
∀x. FCOMM x x = ASSOC x
lemma MONOID_CONJ_T:
MONOID op ∧ True
lemma MONOID_DISJ_F:
MONOID op ∨ False
lemma IS_EL_DEF:
∀x l. x mem l = list_exists (op = x) l
lemma AND_EL_DEF:
AND_EL = list_all I
lemma OR_EL_DEF:
OR_EL = list_exists I
lemma LAST:
∀x l. last (SNOC x l) = x
lemma BUTLAST:
∀x l. butlast (SNOC x l) = l
lemma EL:
(∀x. EL 0 x = hd x) ∧ (∀x xa. EL (Suc x) xa = EL x (tl xa))
lemma SNOC_APPEND:
∀x l. SNOC x l = l @ [x]
lemma REVERSE:
rev [] = [] ∧ (∀x xa. rev (x # xa) = SNOC x (rev xa))
lemma REVERSE_SNOC:
∀x l. rev (SNOC x l) = x # rev l
lemma SNOC_Axiom:
∀e f. ∃x. x [] = e ∧ (∀xa l. x (SNOC xa l) = f xa l (x l))
lemma PREFIX_DEF:
∀P l. PREFIX P l = fst (SPLITP (Not o P) l)
lemma SUFFIX_DEF:
∀P l. SUFFIX P l = foldl (%l' x. if P x then SNOC x l' else []) [] l
lemma UNZIP_FST_DEF:
∀l. UNZIP_FST l = fst (unzip l)
lemma UNZIP_SND_DEF:
∀l. UNZIP_SND l = snd (unzip l)
lemma LENGTH_MAP2:
∀l1 l2. length l1 = length l2 --> (∀f. length (map2 f l1 l2) = length l1 ∧ length (map2 f l1 l2) = length l2)
lemma NULL_EQ_NIL:
∀l. null l = (l = [])
lemma LENGTH_EQ:
∀x y. x = y --> length x = length y
lemma LENGTH_NOT_NULL:
∀l. (0 < length l) = (¬ null l)
lemma SNOC_INDUCT:
∀P. P [] ∧ (∀l. P l --> (∀x. P (SNOC x l))) --> All P
lemma SNOC_CASES:
∀x'. x' = [] ∨ (∃x l. x' = SNOC x l)
lemma LENGTH_SNOC:
∀x l. length (SNOC x l) = Suc (length l)
lemma NOT_NIL_SNOC:
∀x xa. [] ≠ SNOC x xa
lemma NOT_SNOC_NIL:
∀x xa. SNOC x xa ≠ []
lemma SNOC_11:
∀x l x' l'. (SNOC x l = SNOC x' l') = (x = x' ∧ l = l')
lemma SNOC_EQ_LENGTH_EQ:
∀x1 l1 x2 l2. SNOC x1 l1 = SNOC x2 l2 --> length l1 = length l2
lemma SNOC_REVERSE_CONS:
∀x xa. SNOC x xa = rev (x # rev xa)
lemma MAP_SNOC:
∀x xa xb. map x (SNOC xa xb) = SNOC (x xa) (map x xb)
lemma FOLDR_SNOC:
∀f e x l. foldr f (SNOC x l) e = foldr f l (f x e)
lemma FOLDL_SNOC:
∀f e x l. foldl f e (SNOC x l) = f (foldl f e l) x
lemma FOLDR_FOLDL:
∀f e. MONOID f e --> (∀l. foldr f l e = foldl f e l)
lemma LENGTH_FOLDR:
∀l. length l = foldr (%x. Suc) l 0
lemma LENGTH_FOLDL:
∀l. length l = foldl (%l' x. Suc l') 0 l
lemma MAP_FOLDR:
∀f l. map f l = foldr (%x. op # (f x)) l []
lemma MAP_FOLDL:
∀f l. map f l = foldl (%l' x. SNOC (f x) l') [] l
lemma MAP_o:
∀f g. map (f o g) = map f o map g
lemma FILTER_FOLDR:
∀P l. filter P l = foldr (%x l'. if P x then x # l' else l') l []
lemma FILTER_SNOC:
∀P x l. filter P (SNOC x l) = (if P x then SNOC x (filter P l) else filter P l)
lemma FILTER_FOLDL:
∀P l. filter P l = foldl (%l' x. if P x then SNOC x l' else l') [] l
lemma FILTER_COMM:
∀f1 f2 l. filter f1 (filter f2 l) = filter f2 (filter f1 l)
lemma FILTER_IDEM:
∀f l. filter f (filter f l) = filter f l
lemma LENGTH_SEG:
∀n k l. n + k ≤ length l --> length (SEG n k l) = n
lemma APPEND_NIL:
(∀l. l @ [] = l) ∧ (∀x. [] @ x = x)
lemma APPEND_SNOC:
∀l1 x l2. l1 @ SNOC x l2 = SNOC x (l1 @ l2)
lemma APPEND_FOLDR:
∀l1 l2. l1 @ l2 = foldr op # l1 l2
lemma APPEND_FOLDL:
∀l1 l2. l1 @ l2 = foldl (%l' x. SNOC x l') l1 l2
lemma CONS_APPEND:
∀x l. x # l = [x] @ l
lemma ASSOC_APPEND:
ASSOC op @
lemma MONOID_APPEND_NIL:
MONOID op @ []
lemma APPEND_LENGTH_EQ:
∀l1 l1'. length l1 = length l1' --> (∀l2 l2'. length l2 = length l2' --> (l1 @ l2 = l1' @ l2') = (l1 = l1' ∧ l2 = l2'))
lemma FLAT_SNOC:
∀x l. concat (SNOC x l) = concat l @ x
lemma FLAT_FOLDR:
∀l. concat l = foldr op @ l []
lemma FLAT_FOLDL:
∀l. concat l = foldl op @ [] l
lemma LENGTH_FLAT:
∀l. length (concat l) = sum (map size l)
lemma REVERSE_FOLDR:
∀l. rev l = foldr SNOC l []
lemma REVERSE_FOLDL:
∀l. rev l = foldl (%l' x. x # l') [] l
lemma ALL_EL_SNOC:
∀P x l. list_all P (SNOC x l) = (list_all P l ∧ P x)
lemma ALL_EL_MAP:
∀P f l. list_all P (map f l) = list_all (P o f) l
lemma SOME_EL_SNOC:
∀P x l. list_exists P (SNOC x l) = (P x ∨ list_exists P l)
lemma IS_EL_SNOC:
∀y x l. y mem SNOC x l = (y = x ∨ y mem l)
lemma SUM_SNOC:
∀x l. sum (SNOC x l) = sum l + x
lemma SUM_FOLDL:
∀l. sum l = foldl op + 0 l
lemma IS_PREFIX_APPEND:
∀l1 l2. IS_PREFIX l1 l2 = (∃l. l1 = l2 @ l)
lemma IS_SUFFIX_APPEND:
∀l1 l2. IS_SUFFIX l1 l2 = (∃l. l1 = l @ l2)
lemma IS_SUBLIST_APPEND:
∀l1 l2. IS_SUBLIST l1 l2 = (∃l l'. l1 = l @ l2 @ l')
lemma IS_PREFIX_IS_SUBLIST:
∀l1 l2. IS_PREFIX l1 l2 --> IS_SUBLIST l1 l2
lemma IS_SUFFIX_IS_SUBLIST:
∀l1 l2. IS_SUFFIX l1 l2 --> IS_SUBLIST l1 l2
lemma IS_PREFIX_REVERSE:
∀l1 l2. IS_PREFIX (rev l1) (rev l2) = IS_SUFFIX l1 l2
lemma IS_SUFFIX_REVERSE:
∀l2 l1. IS_SUFFIX (rev l1) (rev l2) = IS_PREFIX l1 l2
lemma IS_SUBLIST_REVERSE:
∀l1 l2. IS_SUBLIST (rev l1) (rev l2) = IS_SUBLIST l1 l2
lemma PREFIX_FOLDR:
∀P x. PREFIX P x = foldr (%x l'. if P x then x # l' else []) x []
lemma PREFIX:
(∀x. PREFIX x [] = []) ∧ (∀x xa xb. PREFIX x (xa # xb) = (if x xa then xa # PREFIX x xb else []))
lemma IS_PREFIX_PREFIX:
∀P l. IS_PREFIX l (PREFIX P l)
lemma LENGTH_SCANL:
∀f e l. length (SCANL f e l) = Suc (length l)
lemma LENGTH_SCANR:
∀f e l. length (SCANR f e l) = Suc (length l)
lemma COMM_MONOID_FOLDL:
∀x. COMM x --> (∀xa. MONOID x xa --> (∀e l. foldl x e l = x e (foldl x xa l)))
lemma COMM_MONOID_FOLDR:
∀x. COMM x --> (∀xa. MONOID x xa --> (∀e l. foldr x l e = x e (foldr x l xa)))
lemma FCOMM_FOLDR_APPEND:
∀x xa. FCOMM x xa --> (∀xb. LEFT_ID x xb --> (∀l1 l2. foldr xa (l1 @ l2) xb = x (foldr xa l1 xb) (foldr xa l2 xb)))
lemma FCOMM_FOLDL_APPEND:
∀x xa. FCOMM x xa --> (∀xb. RIGHT_ID xa xb --> (∀l1 l2. foldl x xb (l1 @ l2) = xa (foldl x xb l1) (foldl x xb l2)))
lemma FOLDL_SINGLE:
∀x xa xb. foldl x xa [xb] = x xa xb
lemma FOLDR_SINGLE:
∀x xa xb. foldr x [xb] xa = x xb xa
lemma FOLDR_CONS_NIL:
∀l. foldr op # l [] = l
lemma FOLDL_SNOC_NIL:
∀l. foldl (%xs x. SNOC x xs) [] l = l
lemma FOLDR_REVERSE:
∀x xa xb. foldr x (rev xb) xa = foldl (%xa y. x y xa) xa xb
lemma FOLDL_REVERSE:
∀x xa xb. foldl x xa (rev xb) = foldr (%xa y. x y xa) xb xa
lemma FOLDR_MAP:
∀f e g l. foldr f (map g l) e = foldr (%x. f (g x)) l e
lemma FOLDL_MAP:
∀f e g l. foldl f e (map g l) = foldl (%x y. f x (g y)) e l
lemma ALL_EL_FOLDR:
∀P l. list_all P l = foldr (%x. op ∧ (P x)) l True
lemma ALL_EL_FOLDL:
∀P l. list_all P l = foldl (%l' x. l' ∧ P x) True l
lemma SOME_EL_FOLDR:
∀P l. list_exists P l = foldr (%x. op ∨ (P x)) l False
lemma SOME_EL_FOLDL:
∀P l. list_exists P l = foldl (%l' x. l' ∨ P x) False l
lemma ALL_EL_FOLDR_MAP:
∀x xa. list_all x xa = foldr op ∧ (map x xa) True
lemma ALL_EL_FOLDL_MAP:
∀x xa. list_all x xa = foldl op ∧ True (map x xa)
lemma SOME_EL_FOLDR_MAP:
∀x xa. list_exists x xa = foldr op ∨ (map x xa) False
lemma SOME_EL_FOLDL_MAP:
∀x xa. list_exists x xa = foldl op ∨ False (map x xa)
lemma FOLDR_FILTER:
∀f e P l. foldr f (filter P l) e = foldr (%x y. if P x then f x y else y) l e
lemma FOLDL_FILTER:
∀f e P l. foldl f e (filter P l) = foldl (%x y. if P y then f x y else x) e l
lemma ASSOC_FOLDR_FLAT:
∀f. ASSOC f --> (∀e. LEFT_ID f e --> (∀l. foldr f (concat l) e = foldr f (map (FOLDR f e) l) e))
lemma ASSOC_FOLDL_FLAT:
∀f. ASSOC f --> (∀e. RIGHT_ID f e --> (∀l. foldl f e (concat l) = foldl f e (map (foldl f e) l)))
lemma SOME_EL_MAP:
∀P f l. list_exists P (map f l) = list_exists (P o f) l
lemma SOME_EL_DISJ:
∀P Q l. list_exists (%x. P x ∨ Q x) l = (list_exists P l ∨ list_exists Q l)
lemma IS_EL_FOLDR:
∀x xa. x mem xa = foldr (%xa. op ∨ (x = xa)) xa False
lemma IS_EL_FOLDL:
∀x xa. x mem xa = foldl (%l' xa. l' ∨ x = xa) False xa
lemma NULL_FOLDR:
∀l. null l = foldr (%x l'. False) l True
lemma NULL_FOLDL:
∀l. null l = foldl (%x l'. False) True l
lemma SEG_LENGTH_ID:
∀l. SEG (length l) 0 l = l
lemma SEG_SUC_CONS:
∀m n l x. SEG m (Suc n) (x # l) = SEG m n l
lemma SEG_0_SNOC:
∀m l x. m ≤ length l --> SEG m 0 (SNOC x l) = SEG m 0 l
lemma BUTLASTN_SEG:
∀n l. n ≤ length l --> BUTLASTN n l = SEG (length l - n) 0 l
lemma LASTN_CONS:
∀n l. n ≤ length l --> (∀x. LASTN n (x # l) = LASTN n l)
lemma LENGTH_LASTN:
∀n l. n ≤ length l --> length (LASTN n l) = n
lemma LASTN_LENGTH_ID:
∀l. LASTN (length l) l = l
lemma LASTN_LASTN:
∀l n m. m ≤ length l --> n ≤ m --> LASTN n (LASTN m l) = LASTN n l
lemma FIRSTN_LENGTH_ID:
∀l. FIRSTN (length l) l = l
lemma FIRSTN_SNOC:
∀n l. n ≤ length l --> (∀x. FIRSTN n (SNOC x l) = FIRSTN n l)
lemma BUTLASTN_LENGTH_NIL:
∀l. BUTLASTN (length l) l = []
lemma BUTLASTN_SUC_BUTLAST:
∀n l. n < length l --> BUTLASTN (Suc n) l = BUTLASTN n (butlast l)
lemma BUTLASTN_BUTLAST:
∀n l. n < length l --> BUTLASTN n (butlast l) = butlast (BUTLASTN n l)
lemma LENGTH_BUTLASTN:
∀n l. n ≤ length l --> length (BUTLASTN n l) = length l - n
lemma BUTLASTN_BUTLASTN:
∀m n l. n + m ≤ length l --> BUTLASTN n (BUTLASTN m l) = BUTLASTN (n + m) l
lemma APPEND_BUTLASTN_LASTN:
∀n l. n ≤ length l --> BUTLASTN n l @ LASTN n l = l
lemma APPEND_FIRSTN_LASTN:
∀m n l. m + n = length l --> FIRSTN n l @ LASTN m l = l
lemma BUTLASTN_APPEND2:
∀n l1 l2. n ≤ length l2 --> BUTLASTN n (l1 @ l2) = l1 @ BUTLASTN n l2
lemma BUTLASTN_LENGTH_APPEND:
∀l2 l1. BUTLASTN (length l2) (l1 @ l2) = l1
lemma LASTN_LENGTH_APPEND:
∀l2 l1. LASTN (length l2) (l1 @ l2) = l2
lemma BUTLASTN_CONS:
∀n l. n ≤ length l --> (∀x. BUTLASTN n (x # l) = x # BUTLASTN n l)
lemma BUTLASTN_LENGTH_CONS:
∀l x. BUTLASTN (length l) (x # l) = [x]
lemma LAST_LASTN_LAST:
∀n l. n ≤ length l --> 0 < n --> last (LASTN n l) = last l
lemma BUTLASTN_LASTN_NIL:
∀n l. n ≤ length l --> BUTLASTN n (LASTN n l) = []
lemma LASTN_BUTLASTN:
∀n m l. n + m ≤ length l --> LASTN n (BUTLASTN m l) = BUTLASTN m (LASTN (n + m) l)
lemma BUTLASTN_LASTN:
∀m n l. m ≤ n ∧ n ≤ length l --> BUTLASTN m (LASTN n l) = LASTN (n - m) (BUTLASTN m l)
lemma LASTN_1:
∀l. l ≠ [] --> LASTN 1 l = [last l]
lemma BUTLASTN_1:
∀l. l ≠ [] --> BUTLASTN 1 l = butlast l
lemma BUTLASTN_APPEND1:
∀l2 n. length l2 ≤ n --> (∀l1. BUTLASTN n (l1 @ l2) = BUTLASTN (n - length l2) l1)
lemma LASTN_APPEND2:
∀n l2. n ≤ length l2 --> (∀l1. LASTN n (l1 @ l2) = LASTN n l2)
lemma LASTN_APPEND1:
∀l2 n. length l2 ≤ n --> (∀l1. LASTN n (l1 @ l2) = LASTN (n - length l2) l1 @ l2)
lemma LASTN_MAP:
∀n l. n ≤ length l --> (∀f. LASTN n (map f l) = map f (LASTN n l))
lemma BUTLASTN_MAP:
∀n l. n ≤ length l --> (∀f. BUTLASTN n (map f l) = map f (BUTLASTN n l))
lemma ALL_EL_LASTN:
∀P l. list_all P l --> (∀m≤length l. list_all P (LASTN m l))
lemma ALL_EL_BUTLASTN:
∀P l. list_all P l --> (∀m≤length l. list_all P (BUTLASTN m l))
lemma LENGTH_FIRSTN:
∀n l. n ≤ length l --> length (FIRSTN n l) = n
lemma FIRSTN_FIRSTN:
∀m l. m ≤ length l --> (∀n≤m. FIRSTN n (FIRSTN m l) = FIRSTN n l)
lemma LENGTH_BUTFIRSTN:
∀n l. n ≤ length l --> length (BUTFIRSTN n l) = length l - n
lemma BUTFIRSTN_LENGTH_NIL:
∀l. BUTFIRSTN (length l) l = []
lemma BUTFIRSTN_APPEND1:
∀n l1. n ≤ length l1 --> (∀l2. BUTFIRSTN n (l1 @ l2) = BUTFIRSTN n l1 @ l2)
lemma BUTFIRSTN_APPEND2:
∀l1 n. length l1 ≤ n --> (∀l2. BUTFIRSTN n (l1 @ l2) = BUTFIRSTN (n - length l1) l2)
lemma BUTFIRSTN_BUTFIRSTN:
∀n m l. n + m ≤ length l --> BUTFIRSTN n (BUTFIRSTN m l) = BUTFIRSTN (n + m) l
lemma APPEND_FIRSTN_BUTFIRSTN:
∀n l. n ≤ length l --> FIRSTN n l @ BUTFIRSTN n l = l
lemma LASTN_SEG:
∀n l. n ≤ length l --> LASTN n l = SEG n (length l - n) l
lemma FIRSTN_SEG:
∀n l. n ≤ length l --> FIRSTN n l = SEG n 0 l
lemma BUTFIRSTN_SEG:
∀n l. n ≤ length l --> BUTFIRSTN n l = SEG (length l - n) n l
lemma BUTFIRSTN_SNOC:
∀n l. n ≤ length l --> (∀x. BUTFIRSTN n (SNOC x l) = SNOC x (BUTFIRSTN n l))
lemma APPEND_BUTLASTN_BUTFIRSTN:
∀m n l. m + n = length l --> BUTLASTN m l @ BUTFIRSTN n l = l
lemma SEG_SEG:
∀n1 m1 n2 m2 l. n1 + m1 ≤ length l ∧ n2 + m2 ≤ n1 --> SEG n2 m2 (SEG n1 m1 l) = SEG n2 (m1 + m2) l
lemma SEG_APPEND1:
∀n m l1. n + m ≤ length l1 --> (∀l2. SEG n m (l1 @ l2) = SEG n m l1)
lemma SEG_APPEND2:
∀l1 m n l2. length l1 ≤ m ∧ n ≤ length l2 --> SEG n m (l1 @ l2) = SEG n (m - length l1) l2
lemma SEG_FIRSTN_BUTFISTN:
∀n m l. n + m ≤ length l --> SEG n m l = FIRSTN n (BUTFIRSTN m l)
lemma SEG_APPEND:
∀m l1 n l2. m < length l1 ∧ length l1 ≤ n + m ∧ n + m ≤ length l1 + length l2 --> SEG n m (l1 @ l2) = SEG (length l1 - m) m l1 @ SEG (n + m - length l1) 0 l2
lemma SEG_LENGTH_SNOC:
∀x xa. SEG 1 (length x) (SNOC xa x) = [xa]
lemma SEG_SNOC:
∀n m l. n + m ≤ length l --> (∀x. SEG n m (SNOC x l) = SEG n m l)
lemma ELL_SEG:
∀n l. n < length l --> ELL n l = hd (SEG 1 (PRE (length l - n)) l)
lemma SNOC_FOLDR:
∀x l. SNOC x l = foldr op # l [x]
lemma IS_EL_FOLDR_MAP:
∀x xa. x mem xa = foldr op ∨ (map (op = x) xa) False
lemma IS_EL_FOLDL_MAP:
∀x xa. x mem xa = foldl op ∨ False (map (op = x) xa)
lemma FILTER_FILTER:
∀P Q l. filter P (filter Q l) = [x∈l . P x ∧ Q x]
lemma FCOMM_FOLDR_FLAT:
∀g f. FCOMM g f --> (∀e. LEFT_ID g e --> (∀l. foldr f (concat l) e = foldr g (map (FOLDR f e) l) e))
lemma FCOMM_FOLDL_FLAT:
∀f g. FCOMM f g --> (∀e. RIGHT_ID g e --> (∀l. foldl f e (concat l) = foldl g e (map (foldl f e) l)))
lemma FOLDR_MAP_REVERSE:
∀f. (∀a b c. f a (f b c) = f b (f a c)) --> (∀e g l. foldr f (map g (rev l)) e = foldr f (map g l) e)
lemma FOLDR_FILTER_REVERSE:
∀f. (∀a b c. f a (f b c) = f b (f a c)) --> (∀e P l. foldr f (filter P (rev l)) e = foldr f (filter P l) e)
lemma COMM_ASSOC_FOLDR_REVERSE:
∀f. COMM f --> ASSOC f --> (∀e l. foldr f (rev l) e = foldr f l e)
lemma COMM_ASSOC_FOLDL_REVERSE:
∀f. COMM f --> ASSOC f --> (∀e l. foldl f e (rev l) = foldl f e l)
lemma ELL_LAST:
∀l. ¬ null l --> ELL 0 l = last l
lemma ELL_0_SNOC:
∀l x. ELL 0 (SNOC x l) = x
lemma ELL_SNOC:
∀n>0. ∀x l. ELL n (SNOC x l) = ELL (PRE n) l
lemma ELL_SUC_SNOC:
∀n x xa. ELL (Suc n) (SNOC x xa) = ELL n xa
lemma ELL_CONS:
∀n l. n < length l --> (∀x. ELL n (x # l) = ELL n l)
lemma ELL_LENGTH_CONS:
∀l x. ELL (length l) (x # l) = x
lemma ELL_LENGTH_SNOC:
∀l x. ELL (length l) (SNOC x l) = (if null l then x else hd l)
lemma ELL_APPEND2:
∀n l2. n < length l2 --> (∀l1. ELL n (l1 @ l2) = ELL n l2)
lemma ELL_APPEND1:
∀l2 n. length l2 ≤ n --> (∀l1. ELL n (l1 @ l2) = ELL (n - length l2) l1)
lemma ELL_PRE_LENGTH:
∀l. l ≠ [] --> ELL (PRE (length l)) l = hd l
lemma EL_LENGTH_SNOC:
∀l x. EL (length l) (SNOC x l) = x
lemma EL_PRE_LENGTH:
∀l. l ≠ [] --> EL (PRE (length l)) l = last l
lemma EL_SNOC:
∀n l. n < length l --> (∀x. EL n (SNOC x l) = EL n l)
lemma EL_ELL:
∀n l. n < length l --> EL n l = ELL (PRE (length l - n)) l
lemma EL_LENGTH_APPEND:
∀l2 l1. ¬ null l2 --> EL (length l1) (l1 @ l2) = hd l2
lemma ELL_EL:
∀n l. n < length l --> ELL n l = EL (PRE (length l - n)) l
lemma ELL_MAP:
∀n l f. n < length l --> ELL n (map f l) = f (ELL n l)
lemma LENGTH_BUTLAST:
∀l. l ≠ [] --> length (butlast l) = PRE (length l)
lemma BUTFIRSTN_LENGTH_APPEND:
∀l1 l2. BUTFIRSTN (length l1) (l1 @ l2) = l2
lemma FIRSTN_APPEND1:
∀n l1. n ≤ length l1 --> (∀l2. FIRSTN n (l1 @ l2) = FIRSTN n l1)
lemma FIRSTN_APPEND2:
∀l1 n. length l1 ≤ n --> (∀l2. FIRSTN n (l1 @ l2) = l1 @ FIRSTN (n - length l1) l2)
lemma FIRSTN_LENGTH_APPEND:
∀l1 l2. FIRSTN (length l1) (l1 @ l2) = l1
lemma REVERSE_FLAT:
∀l. rev (concat l) = concat (rev (map rev l))
lemma MAP_FILTER:
∀f P l. (∀x. P (f x) = P x) --> map f (filter P l) = filter P (map f l)
lemma FLAT_REVERSE:
∀l. concat (rev l) = rev (concat (map rev l))
lemma FLAT_FLAT:
∀l. concat (concat l) = concat (map concat l)
lemma SOME_EL_REVERSE:
∀P l. list_exists P (rev l) = list_exists P l
lemma ALL_EL_SEG:
∀P l. list_all P l --> (∀m k. m + k ≤ length l --> list_all P (SEG m k l))
lemma ALL_EL_FIRSTN:
∀P l. list_all P l --> (∀m≤length l. list_all P (FIRSTN m l))
lemma ALL_EL_BUTFIRSTN:
∀P l. list_all P l --> (∀m≤length l. list_all P (BUTFIRSTN m l))
lemma SOME_EL_SEG:
∀m k l. m + k ≤ length l --> (∀P. list_exists P (SEG m k l) --> list_exists P l)
lemma SOME_EL_FIRSTN:
∀m l. m ≤ length l --> (∀P. list_exists P (FIRSTN m l) --> list_exists P l)
lemma SOME_EL_BUTFIRSTN:
∀m l. m ≤ length l --> (∀P. list_exists P (BUTFIRSTN m l) --> list_exists P l)
lemma SOME_EL_LASTN:
∀m l. m ≤ length l --> (∀P. list_exists P (LASTN m l) --> list_exists P l)
lemma SOME_EL_BUTLASTN:
∀m l. m ≤ length l --> (∀P. list_exists P (BUTLASTN m l) --> list_exists P l)
lemma IS_EL_REVERSE:
∀x l. x mem rev l = x mem l
lemma IS_EL_FILTER:
∀P x. P x --> (∀l. x mem filter P l = x mem l)
lemma IS_EL_SEG:
∀n m l. n + m ≤ length l --> (∀x. x mem SEG n m l --> x mem l)
lemma IS_EL_SOME_EL:
∀x l. x mem l = list_exists (op = x) l
lemma IS_EL_FIRSTN:
∀x xa. x ≤ length xa --> (∀xb. xb mem FIRSTN x xa --> xb mem xa)
lemma IS_EL_BUTFIRSTN:
∀x xa. x ≤ length xa --> (∀xb. xb mem BUTFIRSTN x xa --> xb mem xa)
lemma IS_EL_BUTLASTN:
∀x xa. x ≤ length xa --> (∀xb. xb mem BUTLASTN x xa --> xb mem xa)
lemma IS_EL_LASTN:
∀x xa. x ≤ length xa --> (∀xb. xb mem LASTN x xa --> xb mem xa)
lemma ZIP_SNOC:
∀l1 l2. length l1 = length l2 --> (∀x1 x2. zip (SNOC x1 l1) (SNOC x2 l2) = SNOC (x1, x2) (zip l1 l2))
lemma UNZIP_SNOC:
∀x l. unzip (SNOC x l) = (SNOC (fst x) (fst (unzip l)), SNOC (snd x) (snd (unzip l)))
lemma LENGTH_UNZIP_FST:
∀x. length (UNZIP_FST x) = length x
lemma LENGTH_UNZIP_SND:
∀x. length (UNZIP_SND x) = length x
lemma SUM_APPEND:
∀l1 l2. sum (l1 @ l2) = sum l1 + sum l2
lemma SUM_REVERSE:
∀l. sum (rev l) = sum l
lemma SUM_FLAT:
∀l. sum (concat l) = sum (map sum l)
lemma EL_APPEND1:
∀n l1 l2. n < length l1 --> EL n (l1 @ l2) = EL n l1
lemma EL_APPEND2:
∀l1 n. length l1 ≤ n --> (∀l2. EL n (l1 @ l2) = EL (n - length l1) l2)
lemma EL_MAP:
∀n l. n < length l --> (∀f. EL n (map f l) = f (EL n l))
lemma EL_CONS:
∀n>0. ∀x l. EL n (x # l) = EL (PRE n) l
lemma EL_SEG:
∀n l. n < length l --> EL n l = hd (SEG 1 n l)
lemma EL_IS_EL:
∀n l. n < length l --> EL n l mem l
lemma TL_SNOC:
∀x l. tl (SNOC x l) = (if null l then [] else SNOC x (tl l))
lemma EL_REVERSE:
∀n l. n < length l --> EL n (rev l) = EL (PRE (length l - n)) l
lemma EL_REVERSE_ELL:
∀n l. n < length l --> EL n (rev l) = ELL n l
lemma ELL_LENGTH_APPEND:
∀l1 l2. ¬ null l1 --> ELL (length l2) (l1 @ l2) = last l1
lemma ELL_IS_EL:
∀n l. n < length l --> ELL n l mem l
lemma ELL_REVERSE:
∀n l. n < length l --> ELL n (rev l) = ELL (PRE (length l - n)) l
lemma ELL_REVERSE_EL:
∀n l. n < length l --> ELL n (rev l) = EL n l
lemma FIRSTN_BUTLASTN:
∀n l. n ≤ length l --> FIRSTN n l = BUTLASTN (length l - n) l
lemma BUTLASTN_FIRSTN:
∀n l. n ≤ length l --> BUTLASTN n l = FIRSTN (length l - n) l
lemma LASTN_BUTFIRSTN:
∀n l. n ≤ length l --> LASTN n l = BUTFIRSTN (length l - n) l
lemma BUTFIRSTN_LASTN:
∀n l. n ≤ length l --> BUTFIRSTN n l = LASTN (length l - n) l
lemma SEG_LASTN_BUTLASTN:
∀n m l. n + m ≤ length l --> SEG n m l = LASTN n (BUTLASTN (length l - (n + m)) l)
lemma BUTFIRSTN_REVERSE:
∀n l. n ≤ length l --> BUTFIRSTN n (rev l) = rev (BUTLASTN n l)
lemma BUTLASTN_REVERSE:
∀n l. n ≤ length l --> BUTLASTN n (rev l) = rev (BUTFIRSTN n l)
lemma LASTN_REVERSE:
∀n l. n ≤ length l --> LASTN n (rev l) = rev (FIRSTN n l)
lemma FIRSTN_REVERSE:
∀n l. n ≤ length l --> FIRSTN n (rev l) = rev (LASTN n l)
lemma SEG_REVERSE:
∀n m l. n + m ≤ length l --> SEG n m (rev l) = rev (SEG n (length l - (n + m)) l)
lemma LENGTH_GENLIST:
∀f n. length (GENLIST f n) = n
lemma LENGTH_REPLICATE:
∀n x. length (REPLICATE n x) = n
lemma IS_EL_REPLICATE:
∀n>0. ∀x. x mem REPLICATE n x
lemma ALL_EL_REPLICATE:
∀x n. list_all (op = x) (REPLICATE n x)
lemma AND_EL_FOLDL:
∀l. AND_EL l = foldl op ∧ True l
lemma AND_EL_FOLDR:
∀l. AND_EL l = foldr op ∧ l True
lemma OR_EL_FOLDL:
∀l. OR_EL l = foldl op ∨ False l
lemma OR_EL_FOLDR:
∀l. OR_EL l = foldr op ∨ l False
lemma UNIT_DEF:
∀x. UNIT x = Pair x
lemma BIND_DEF:
∀g f. BIND g f = (%(x, y). f x y) o g
lemma MMAP_DEF:
∀f m. MMAP f m = BIND m (UNIT o f)
lemma JOIN_DEF:
∀z. JOIN z = BIND z I
lemma BIND_LEFT_UNIT:
∀k x. BIND (UNIT x) k = k x
lemma UNIT_UNCURRY:
∀x. split UNIT x = x
lemma BIND_RIGHT_UNIT:
∀k. BIND k UNIT = k
lemma BIND_ASSOC:
∀x xa xb. BIND x (%a. BIND (xa a) xb) = BIND (BIND x xa) xb
lemma MMAP_ID:
MMAP I = I
lemma MMAP_COMP:
∀f g. MMAP (f o g) = MMAP f o MMAP g
lemma MMAP_UNIT:
∀f. MMAP f o UNIT = UNIT o f
lemma MMAP_JOIN:
∀f. MMAP f o JOIN = JOIN o MMAP (MMAP f)
lemma JOIN_UNIT:
JOIN o UNIT = I
lemma JOIN_MMAP_UNIT:
JOIN o MMAP UNIT = I
lemma JOIN_MAP_JOIN:
JOIN o MMAP JOIN = JOIN o JOIN
lemma JOIN_MAP:
∀x xa. BIND x xa = JOIN (MMAP xa x)
lemma FST_o_UNIT:
∀x. fst o UNIT x = K x
lemma SND_o_UNIT:
∀x. snd o UNIT x = I
lemma FST_o_MMAP:
∀x xa. fst o MMAP x xa = x o (fst o xa)