Up to index of Isabelle/HOL/HOL-Complex/HahnBanach
theory FunctionOrder(* Title: HOL/Real/HahnBanach/FunctionOrder.thy
ID: $Id: FunctionOrder.thy,v 1.19 2005/06/17 14:13:09 haftmann Exp $
Author: Gertrud Bauer, TU Munich
*)
header {* An order on functions *}
theory FunctionOrder imports Subspace Linearform begin
subsection {* The graph of a function *}
text {*
We define the \emph{graph} of a (real) function @{text f} with
domain @{text F} as the set
\begin{center}
@{text "{(x, f x). x ∈ F}"}
\end{center}
So we are modeling partial functions by specifying the domain and
the mapping function. We use the term ``function'' also for its
graph.
*}
types 'a graph = "('a × real) set"
constdefs
graph :: "'a set => ('a => real) => 'a graph"
"graph F f ≡ {(x, f x) | x. x ∈ F}"
lemma graphI [intro]: "x ∈ F ==> (x, f x) ∈ graph F f"
by (unfold graph_def) blast
lemma graphI2 [intro?]: "x ∈ F ==> ∃t ∈ graph F f. t = (x, f x)"
by (unfold graph_def) blast
lemma graphE [elim?]:
"(x, y) ∈ graph F f ==> (x ∈ F ==> y = f x ==> C) ==> C"
by (unfold graph_def) blast
subsection {* Functions ordered by domain extension *}
text {*
A function @{text h'} is an extension of @{text h}, iff the graph of
@{text h} is a subset of the graph of @{text h'}.
*}
lemma graph_extI:
"(!!x. x ∈ H ==> h x = h' x) ==> H ⊆ H'
==> graph H h ⊆ graph H' h'"
by (unfold graph_def) blast
lemma graph_extD1 [dest?]:
"graph H h ⊆ graph H' h' ==> x ∈ H ==> h x = h' x"
by (unfold graph_def) blast
lemma graph_extD2 [dest?]:
"graph H h ⊆ graph H' h' ==> H ⊆ H'"
by (unfold graph_def) blast
subsection {* Domain and function of a graph *}
text {*
The inverse functions to @{text graph} are @{text domain} and @{text
funct}.
*}
constdefs
"domain" :: "'a graph => 'a set"
"domain g ≡ {x. ∃y. (x, y) ∈ g}"
funct :: "'a graph => ('a => real)"
"funct g ≡ λx. (SOME y. (x, y) ∈ g)"
text {*
The following lemma states that @{text g} is the graph of a function
if the relation induced by @{text g} is unique.
*}
lemma graph_domain_funct:
assumes uniq: "!!x y z. (x, y) ∈ g ==> (x, z) ∈ g ==> z = y"
shows "graph (domain g) (funct g) = g"
proof (unfold domain_def funct_def graph_def, auto) (* FIXME !? *)
fix a b assume "(a, b) ∈ g"
show "(a, SOME y. (a, y) ∈ g) ∈ g" by (rule someI2)
show "∃y. (a, y) ∈ g" ..
show "b = (SOME y. (a, y) ∈ g)"
proof (rule some_equality [symmetric])
fix y assume "(a, y) ∈ g"
show "y = b" by (rule uniq)
qed
qed
subsection {* Norm-preserving extensions of a function *}
text {*
Given a linear form @{text f} on the space @{text F} and a seminorm
@{text p} on @{text E}. The set of all linear extensions of @{text
f}, to superspaces @{text H} of @{text F}, which are bounded by
@{text p}, is defined as follows.
*}
constdefs
norm_pres_extensions ::
"'a::{plus, minus, zero} set => ('a => real) => 'a set => ('a => real)
=> 'a graph set"
"norm_pres_extensions E p F f
≡ {g. ∃H h. g = graph H h
∧ linearform H h
∧ H \<unlhd> E
∧ F \<unlhd> H
∧ graph F f ⊆ graph H h
∧ (∀x ∈ H. h x ≤ p x)}"
lemma norm_pres_extensionE [elim]:
"g ∈ norm_pres_extensions E p F f
==> (!!H h. g = graph H h ==> linearform H h
==> H \<unlhd> E ==> F \<unlhd> H ==> graph F f ⊆ graph H h
==> ∀x ∈ H. h x ≤ p x ==> C) ==> C"
by (unfold norm_pres_extensions_def) blast
lemma norm_pres_extensionI2 [intro]:
"linearform H h ==> H \<unlhd> E ==> F \<unlhd> H
==> graph F f ⊆ graph H h ==> ∀x ∈ H. h x ≤ p x
==> graph H h ∈ norm_pres_extensions E p F f"
by (unfold norm_pres_extensions_def) blast
lemma norm_pres_extensionI: (* FIXME ? *)
"∃H h. g = graph H h
∧ linearform H h
∧ H \<unlhd> E
∧ F \<unlhd> H
∧ graph F f ⊆ graph H h
∧ (∀x ∈ H. h x ≤ p x) ==> g ∈ norm_pres_extensions E p F f"
by (unfold norm_pres_extensions_def) blast
end
lemma graphI:
x ∈ F ==> (x, f x) ∈ graph F f
lemma graphI2:
x ∈ F ==> ∃t∈graph F f. t = (x, f x)
lemma graphE:
[| (x, y) ∈ graph F f; [| x ∈ F; y = f x |] ==> C |] ==> C
lemma graph_extI:
[| !!x. x ∈ H ==> h x = h' x; H ⊆ H' |] ==> graph H h ⊆ graph H' h'
lemma graph_extD1:
[| graph H h ⊆ graph H' h'; x ∈ H |] ==> h x = h' x
lemma graph_extD2:
graph H h ⊆ graph H' h' ==> H ⊆ H'
lemma graph_domain_funct:
(!!x y z. [| (x, y) ∈ g; (x, z) ∈ g |] ==> z = y) ==> graph (domain g) (funct g) = g
lemma norm_pres_extensionE:
[| g ∈ norm_pres_extensions E p F f; !!H h. [| g = graph H h; linearform H h; subspace H E; subspace F H; graph F f ⊆ graph H h; ∀x∈H. h x ≤ p x |] ==> C |] ==> C
lemma norm_pres_extensionI2:
[| linearform H h; subspace H E; subspace F H; graph F f ⊆ graph H h; ∀x∈H. h x ≤ p x |] ==> graph H h ∈ norm_pres_extensions E p F f
lemma norm_pres_extensionI:
∃H h. g = graph H h ∧ linearform H h ∧ subspace H E ∧ subspace F H ∧ graph F f ⊆ graph H h ∧ (∀x∈H. h x ≤ p x) ==> g ∈ norm_pres_extensions E p F f