Up to index of Isabelle/HOL/HOL-Complex
theory HyperDef(* Title : HOL/Real/Hyperreal/HyperDef.thy
ID : $Id: HyperDef.thy,v 1.49 2005/09/15 21:46:22 huffman Exp $
Author : Jacques D. Fleuriot
Copyright : 1998 University of Cambridge
Conversion to Isar and new proofs by Lawrence C Paulson, 2004
*)
header{*Construction of Hyperreals Using Ultrafilters*}
theory HyperDef
imports StarClasses "../Real/Real"
uses ("fuf.ML") (*Warning: file fuf.ML refers to the name Hyperdef!*)
begin
types hypreal = "real star"
syntax hypreal_of_real :: "real => real star"
translations "hypreal_of_real" => "star_of :: real => real star"
constdefs
omega :: hypreal -- {*an infinite number @{text "= [<1,2,3,...>]"} *}
"omega == star_n (%n. real (Suc n))"
epsilon :: hypreal -- {*an infinitesimal number @{text "= [<1,1/2,1/3,...>]"} *}
"epsilon == star_n (%n. inverse (real (Suc n)))"
syntax (xsymbols)
omega :: hypreal ("ω")
epsilon :: hypreal ("ε")
syntax (HTML output)
omega :: hypreal ("ω")
epsilon :: hypreal ("ε")
subsection{*Existence of Free Ultrafilter over the Naturals*}
text{*Also, proof of various properties of @{term FreeUltrafilterNat}:
an arbitrary free ultrafilter*}
lemma FreeUltrafilterNat_Ex: "∃U::nat set set. freeultrafilter U"
by (rule nat_infinite [THEN freeultrafilter_Ex])
lemma FreeUltrafilterNat_mem: "freeultrafilter FreeUltrafilterNat"
apply (unfold FreeUltrafilterNat_def)
apply (rule someI_ex)
apply (rule FreeUltrafilterNat_Ex)
done
lemma UltrafilterNat_mem: "ultrafilter FreeUltrafilterNat"
by (rule FreeUltrafilterNat_mem [THEN freeultrafilter.ultrafilter])
lemma FilterNat_mem: "filter FreeUltrafilterNat"
by (rule FreeUltrafilterNat_mem [THEN freeultrafilter.filter])
lemma FreeUltrafilterNat_finite: "finite x ==> x ∉ FreeUltrafilterNat"
by (rule FreeUltrafilterNat_mem [THEN freeultrafilter.finite])
lemma FreeUltrafilterNat_not_finite: "x ∈ FreeUltrafilterNat ==> ~ finite x"
by (rule FreeUltrafilterNat_mem [THEN freeultrafilter.infinite])
lemma FreeUltrafilterNat_empty [simp]: "{} ∉ FreeUltrafilterNat"
by (rule FilterNat_mem [THEN filter.empty])
lemma FreeUltrafilterNat_Int:
"[| X ∈ FreeUltrafilterNat; Y ∈ FreeUltrafilterNat |]
==> X Int Y ∈ FreeUltrafilterNat"
by (rule FilterNat_mem [THEN filter.Int])
lemma FreeUltrafilterNat_subset:
"[| X ∈ FreeUltrafilterNat; X ⊆ Y |]
==> Y ∈ FreeUltrafilterNat"
by (rule FilterNat_mem [THEN filter.subset])
lemma FreeUltrafilterNat_Compl:
"X ∈ FreeUltrafilterNat ==> -X ∉ FreeUltrafilterNat"
apply (erule contrapos_pn)
apply (erule UltrafilterNat_mem [THEN ultrafilter.not_mem_iff, THEN iffD2])
done
lemma FreeUltrafilterNat_Compl_mem:
"X∉ FreeUltrafilterNat ==> -X ∈ FreeUltrafilterNat"
by (rule UltrafilterNat_mem [THEN ultrafilter.not_mem_iff, THEN iffD1])
lemma FreeUltrafilterNat_Compl_iff1:
"(X ∉ FreeUltrafilterNat) = (-X ∈ FreeUltrafilterNat)"
by (rule UltrafilterNat_mem [THEN ultrafilter.not_mem_iff])
lemma FreeUltrafilterNat_Compl_iff2:
"(X ∈ FreeUltrafilterNat) = (-X ∉ FreeUltrafilterNat)"
by (auto simp add: FreeUltrafilterNat_Compl_iff1 [symmetric])
lemma cofinite_mem_FreeUltrafilterNat: "finite (-X) ==> X ∈ FreeUltrafilterNat"
apply (drule FreeUltrafilterNat_finite)
apply (simp add: FreeUltrafilterNat_Compl_iff2 [symmetric])
done
lemma FreeUltrafilterNat_UNIV [iff]: "UNIV ∈ FreeUltrafilterNat"
by (rule FilterNat_mem [THEN filter.UNIV])
lemma FreeUltrafilterNat_Nat_set_refl [intro]:
"{n. P(n) = P(n)} ∈ FreeUltrafilterNat"
by simp
lemma FreeUltrafilterNat_P: "{n::nat. P} ∈ FreeUltrafilterNat ==> P"
by (rule ccontr, simp)
lemma FreeUltrafilterNat_Ex_P: "{n. P(n)} ∈ FreeUltrafilterNat ==> ∃n. P(n)"
by (rule ccontr, simp)
lemma FreeUltrafilterNat_all: "∀n. P(n) ==> {n. P(n)} ∈ FreeUltrafilterNat"
by (auto)
text{*Define and use Ultrafilter tactics*}
use "fuf.ML"
method_setup fuf = {*
Method.ctxt_args (fn ctxt =>
Method.METHOD (fn facts =>
fuf_tac (local_clasimpset_of ctxt) 1)) *}
"free ultrafilter tactic"
method_setup ultra = {*
Method.ctxt_args (fn ctxt =>
Method.METHOD (fn facts =>
ultra_tac (local_clasimpset_of ctxt) 1)) *}
"ultrafilter tactic"
text{*One further property of our free ultrafilter*}
lemma FreeUltrafilterNat_Un:
"X Un Y ∈ FreeUltrafilterNat
==> X ∈ FreeUltrafilterNat | Y ∈ FreeUltrafilterNat"
by (auto, ultra)
subsection{*Properties of @{term starrel}*}
text{*Proving that @{term starrel} is an equivalence relation*}
lemma starrel_iff: "((X,Y) ∈ starrel) = ({n. X n = Y n} ∈ FreeUltrafilterNat)"
by (rule StarDef.starrel_iff)
lemma starrel_refl: "(x,x) ∈ starrel"
by (simp add: starrel_def)
lemma starrel_sym [rule_format (no_asm)]: "(x,y) ∈ starrel --> (y,x) ∈ starrel"
by (simp add: starrel_def eq_commute)
lemma starrel_trans:
"[|(x,y) ∈ starrel; (y,z) ∈ starrel|] ==> (x,z) ∈ starrel"
by (simp add: starrel_def, ultra)
lemma equiv_starrel: "equiv UNIV starrel"
by (rule StarDef.equiv_starrel)
(* (starrel `` {x} = starrel `` {y}) = ((x,y) ∈ starrel) *)
lemmas equiv_starrel_iff =
eq_equiv_class_iff [OF equiv_starrel UNIV_I UNIV_I, simp]
lemma starrel_in_hypreal [simp]: "starrel``{x}:star"
by (simp add: star_def starrel_def quotient_def, blast)
declare Abs_star_inject [simp] Abs_star_inverse [simp]
declare equiv_starrel [THEN eq_equiv_class_iff, simp]
lemmas eq_starrelD = eq_equiv_class [OF _ equiv_starrel]
lemma lemma_starrel_refl [simp]: "x ∈ starrel `` {x}"
by (simp add: starrel_def)
lemma hypreal_empty_not_mem [simp]: "{} ∉ star"
apply (simp add: star_def)
apply (auto elim!: quotientE equalityCE)
done
lemma Rep_hypreal_nonempty [simp]: "Rep_star x ≠ {}"
by (insert Rep_star [of x], auto)
subsection{*@{term hypreal_of_real}:
the Injection from @{typ real} to @{typ hypreal}*}
lemma inj_hypreal_of_real: "inj(hypreal_of_real)"
by (rule inj_onI, simp)
lemma Rep_star_star_n_iff [simp]:
"(X ∈ Rep_star (star_n Y)) = ({n. Y n = X n} ∈ \<U>)"
by (simp add: star_n_def)
lemma Rep_star_star_n: "X ∈ Rep_star (star_n X)"
by simp
subsection{* Properties of @{term star_n} *}
lemma star_n_add:
"star_n X + star_n Y = star_n (%n. X n + Y n)"
by (simp only: star_add_def starfun2_star_n)
lemma star_n_minus:
"- star_n X = star_n (%n. -(X n))"
by (simp only: star_minus_def starfun_star_n)
lemma star_n_diff:
"star_n X - star_n Y = star_n (%n. X n - Y n)"
by (simp only: star_diff_def starfun2_star_n)
lemma star_n_mult:
"star_n X * star_n Y = star_n (%n. X n * Y n)"
by (simp only: star_mult_def starfun2_star_n)
lemma star_n_inverse:
"inverse (star_n X) = star_n (%n. inverse(X n))"
by (simp only: star_inverse_def starfun_star_n)
lemma star_n_le:
"star_n X ≤ star_n Y =
({n. X n ≤ Y n} ∈ FreeUltrafilterNat)"
by (simp only: star_le_def starP2_star_n)
lemma star_n_less:
"star_n X < star_n Y = ({n. X n < Y n} ∈ FreeUltrafilterNat)"
by (simp only: star_less_def starP2_star_n)
lemma star_n_zero_num: "0 = star_n (%n. 0)"
by (simp only: star_zero_def star_of_def)
lemma star_n_one_num: "1 = star_n (%n. 1)"
by (simp only: star_one_def star_of_def)
lemma star_n_abs:
"abs (star_n X) = star_n (%n. abs (X n))"
by (simp only: star_abs_def starfun_star_n)
subsection{*Misc Others*}
lemma hypreal_not_refl2: "!!(x::hypreal). x < y ==> x ≠ y"
by (auto)
lemma hypreal_eq_minus_iff: "((x::hypreal) = y) = (x + - y = 0)"
by auto
lemma hypreal_mult_left_cancel: "(c::hypreal) ≠ 0 ==> (c*a=c*b) = (a=b)"
by auto
lemma hypreal_mult_right_cancel: "(c::hypreal) ≠ 0 ==> (a*c=b*c) = (a=b)"
by auto
lemma hypreal_omega_gt_zero [simp]: "0 < omega"
by (simp add: omega_def star_n_zero_num star_n_less)
subsection{*Existence of Infinite Hyperreal Number*}
text{*Existence of infinite number not corresponding to any real number.
Use assumption that member @{term FreeUltrafilterNat} is not finite.*}
text{*A few lemmas first*}
lemma lemma_omega_empty_singleton_disj: "{n::nat. x = real n} = {} |
(∃y. {n::nat. x = real n} = {y})"
by force
lemma lemma_finite_omega_set: "finite {n::nat. x = real n}"
by (cut_tac x = x in lemma_omega_empty_singleton_disj, auto)
lemma not_ex_hypreal_of_real_eq_omega:
"~ (∃x. hypreal_of_real x = omega)"
apply (simp add: omega_def)
apply (simp add: star_of_def star_n_eq_iff)
apply (auto simp add: real_of_nat_Suc diff_eq_eq [symmetric]
lemma_finite_omega_set [THEN FreeUltrafilterNat_finite])
done
lemma hypreal_of_real_not_eq_omega: "hypreal_of_real x ≠ omega"
by (insert not_ex_hypreal_of_real_eq_omega, auto)
text{*Existence of infinitesimal number also not corresponding to any
real number*}
lemma lemma_epsilon_empty_singleton_disj:
"{n::nat. x = inverse(real(Suc n))} = {} |
(∃y. {n::nat. x = inverse(real(Suc n))} = {y})"
by auto
lemma lemma_finite_epsilon_set: "finite {n. x = inverse(real(Suc n))}"
by (cut_tac x = x in lemma_epsilon_empty_singleton_disj, auto)
lemma not_ex_hypreal_of_real_eq_epsilon: "~ (∃x. hypreal_of_real x = epsilon)"
by (auto simp add: epsilon_def star_of_def star_n_eq_iff
lemma_finite_epsilon_set [THEN FreeUltrafilterNat_finite])
lemma hypreal_of_real_not_eq_epsilon: "hypreal_of_real x ≠ epsilon"
by (insert not_ex_hypreal_of_real_eq_epsilon, auto)
lemma hypreal_epsilon_not_zero: "epsilon ≠ 0"
by (simp add: epsilon_def star_zero_def star_of_def star_n_eq_iff
del: star_of_zero)
lemma hypreal_epsilon_inverse_omega: "epsilon = inverse(omega)"
by (simp add: epsilon_def omega_def star_n_inverse)
ML
{*
val omega_def = thm "omega_def";
val epsilon_def = thm "epsilon_def";
val FreeUltrafilterNat_Ex = thm "FreeUltrafilterNat_Ex";
val FreeUltrafilterNat_mem = thm "FreeUltrafilterNat_mem";
val FreeUltrafilterNat_finite = thm "FreeUltrafilterNat_finite";
val FreeUltrafilterNat_not_finite = thm "FreeUltrafilterNat_not_finite";
val FreeUltrafilterNat_empty = thm "FreeUltrafilterNat_empty";
val FreeUltrafilterNat_Int = thm "FreeUltrafilterNat_Int";
val FreeUltrafilterNat_subset = thm "FreeUltrafilterNat_subset";
val FreeUltrafilterNat_Compl = thm "FreeUltrafilterNat_Compl";
val FreeUltrafilterNat_Compl_mem = thm "FreeUltrafilterNat_Compl_mem";
val FreeUltrafilterNat_Compl_iff1 = thm "FreeUltrafilterNat_Compl_iff1";
val FreeUltrafilterNat_Compl_iff2 = thm "FreeUltrafilterNat_Compl_iff2";
val FreeUltrafilterNat_UNIV = thm "FreeUltrafilterNat_UNIV";
val FreeUltrafilterNat_Nat_set_refl = thm "FreeUltrafilterNat_Nat_set_refl";
val FreeUltrafilterNat_P = thm "FreeUltrafilterNat_P";
val FreeUltrafilterNat_Ex_P = thm "FreeUltrafilterNat_Ex_P";
val FreeUltrafilterNat_all = thm "FreeUltrafilterNat_all";
val FreeUltrafilterNat_Un = thm "FreeUltrafilterNat_Un";
val starrel_iff = thm "starrel_iff";
val starrel_in_hypreal = thm "starrel_in_hypreal";
val Abs_star_inverse = thm "Abs_star_inverse";
val lemma_starrel_refl = thm "lemma_starrel_refl";
val hypreal_empty_not_mem = thm "hypreal_empty_not_mem";
val Rep_hypreal_nonempty = thm "Rep_hypreal_nonempty";
val inj_hypreal_of_real = thm "inj_hypreal_of_real";
(* val eq_Abs_star = thm "eq_Abs_star"; *)
val star_n_minus = thm "star_n_minus";
val star_n_add = thm "star_n_add";
val star_n_diff = thm "star_n_diff";
val star_n_mult = thm "star_n_mult";
val star_n_inverse = thm "star_n_inverse";
val hypreal_mult_left_cancel = thm "hypreal_mult_left_cancel";
val hypreal_mult_right_cancel = thm "hypreal_mult_right_cancel";
val hypreal_not_refl2 = thm "hypreal_not_refl2";
val star_n_less = thm "star_n_less";
val hypreal_eq_minus_iff = thm "hypreal_eq_minus_iff";
val star_n_le = thm "star_n_le";
val star_n_zero_num = thm "star_n_zero_num";
val star_n_one_num = thm "star_n_one_num";
val hypreal_omega_gt_zero = thm "hypreal_omega_gt_zero";
val lemma_omega_empty_singleton_disj = thm"lemma_omega_empty_singleton_disj";
val lemma_finite_omega_set = thm"lemma_finite_omega_set";
val not_ex_hypreal_of_real_eq_omega = thm"not_ex_hypreal_of_real_eq_omega";
val hypreal_of_real_not_eq_omega = thm"hypreal_of_real_not_eq_omega";
val not_ex_hypreal_of_real_eq_epsilon = thm"not_ex_hypreal_of_real_eq_epsilon";
val hypreal_of_real_not_eq_epsilon = thm"hypreal_of_real_not_eq_epsilon";
val hypreal_epsilon_not_zero = thm"hypreal_epsilon_not_zero";
val hypreal_epsilon_inverse_omega = thm"hypreal_epsilon_inverse_omega";
*}
end
lemma FreeUltrafilterNat_Ex:
∃U. freeultrafilter U
lemma FreeUltrafilterNat_mem:
freeultrafilter \<U>
lemma UltrafilterNat_mem:
ultrafilter \<U>
lemma FilterNat_mem:
Filter.filter \<U>
lemma FreeUltrafilterNat_finite:
finite x ==> x ∉ \<U>
lemma FreeUltrafilterNat_not_finite:
x ∈ \<U> ==> infinite x
lemma FreeUltrafilterNat_empty:
{} ∉ \<U>
lemma FreeUltrafilterNat_Int:
[| X ∈ \<U>; Y ∈ \<U> |] ==> X ∩ Y ∈ \<U>
lemma FreeUltrafilterNat_subset:
[| X ∈ \<U>; X ⊆ Y |] ==> Y ∈ \<U>
lemma FreeUltrafilterNat_Compl:
X ∈ \<U> ==> - X ∉ \<U>
lemma FreeUltrafilterNat_Compl_mem:
X ∉ \<U> ==> - X ∈ \<U>
lemma FreeUltrafilterNat_Compl_iff1:
(X ∉ \<U>) = (- X ∈ \<U>)
lemma FreeUltrafilterNat_Compl_iff2:
(X ∈ \<U>) = (- X ∉ \<U>)
lemma cofinite_mem_FreeUltrafilterNat:
finite (- X) ==> X ∈ \<U>
lemma FreeUltrafilterNat_UNIV:
UNIV ∈ \<U>
lemma FreeUltrafilterNat_Nat_set_refl:
{n. P n = P n} ∈ \<U>
lemma FreeUltrafilterNat_P:
{n. P} ∈ \<U> ==> P
lemma FreeUltrafilterNat_Ex_P:
{n. P n} ∈ \<U> ==> ∃n. P n
lemma FreeUltrafilterNat_all:
∀n. P n ==> {n. P n} ∈ \<U>
lemma FreeUltrafilterNat_Un:
X ∪ Y ∈ \<U> ==> X ∈ \<U> ∨ Y ∈ \<U>
lemma starrel_iff:
((X, Y) ∈ starrel) = ({n. X n = Y n} ∈ \<U>)
lemma starrel_refl:
(x, x) ∈ starrel
lemma starrel_sym:
(x, y) ∈ starrel ==> (y, x) ∈ starrel
lemma starrel_trans:
[| (x, y) ∈ starrel; (y, z) ∈ starrel |] ==> (x, z) ∈ starrel
lemma equiv_starrel:
equiv UNIV starrel
lemmas equiv_starrel_iff:
(starrel `` {x} = starrel `` {y}) = ((x, y) ∈ starrel)
lemmas equiv_starrel_iff:
(starrel `` {x} = starrel `` {y}) = ((x, y) ∈ starrel)
lemma starrel_in_hypreal:
starrel `` {x} ∈ star
lemmas eq_starrelD:
[| starrel `` {a} = starrel `` {b}; b ∈ UNIV |] ==> (a, b) ∈ starrel
lemmas eq_starrelD:
[| starrel `` {a} = starrel `` {b}; b ∈ UNIV |] ==> (a, b) ∈ starrel
lemma lemma_starrel_refl:
x ∈ starrel `` {x}
lemma hypreal_empty_not_mem:
{} ∉ star
lemma Rep_hypreal_nonempty:
Rep_star x ≠ {}
lemma inj_hypreal_of_real:
inj star_of
lemma Rep_star_star_n_iff:
(X ∈ Rep_star (star_n Y)) = ({n. Y n = X n} ∈ \<U>)
lemma Rep_star_star_n:
X ∈ Rep_star (star_n X)
lemma star_n_add:
star_n X + star_n Y = star_n (%n. X n + Y n)
lemma star_n_minus:
- star_n X = star_n (%n. - X n)
lemma star_n_diff:
star_n X - star_n Y = star_n (%n. X n - Y n)
lemma star_n_mult:
star_n X * star_n Y = star_n (%n. X n * Y n)
lemma star_n_inverse:
inverse (star_n X) = star_n (%n. inverse (X n))
lemma star_n_le:
(star_n X ≤ star_n Y) = ({n. X n ≤ Y n} ∈ \<U>)
lemma star_n_less:
(star_n X < star_n Y) = ({n. X n < Y n} ∈ \<U>)
lemma star_n_zero_num:
0 = star_n (%n. 0::'a)
lemma star_n_one_num:
1 = star_n (%n. 1::'a)
lemma star_n_abs:
¦star_n X¦ = star_n (%n. ¦X n¦)
lemma hypreal_not_refl2:
x < y ==> x ≠ y
lemma hypreal_eq_minus_iff:
(x = y) = (x + - y = 0)
lemma hypreal_mult_left_cancel:
c ≠ 0 ==> (c * a = c * b) = (a = b)
lemma hypreal_mult_right_cancel:
c ≠ 0 ==> (a * c = b * c) = (a = b)
lemma hypreal_omega_gt_zero:
0 < ω
lemma lemma_omega_empty_singleton_disj:
{n. x = real n} = {} ∨ (∃y. {n. x = real n} = {y})
lemma lemma_finite_omega_set:
finite {n. x = real n}
lemma not_ex_hypreal_of_real_eq_omega:
¬ (∃x. star_of x = ω)
lemma hypreal_of_real_not_eq_omega:
star_of x ≠ ω
lemma lemma_epsilon_empty_singleton_disj:
{n. x = inverse (real (Suc n))} = {} ∨
(∃y. {n. x = inverse (real (Suc n))} = {y})
lemma lemma_finite_epsilon_set:
finite {n. x = inverse (real (Suc n))}
lemma not_ex_hypreal_of_real_eq_epsilon:
¬ (∃x. star_of x = ε)
lemma hypreal_of_real_not_eq_epsilon:
star_of x ≠ ε
lemma hypreal_epsilon_not_zero:
ε ≠ 0
lemma hypreal_epsilon_inverse_omega:
ε = inverse ω