Up to index of Isabelle/HOL/Hoare
theory HoareAbort(* Title: HOL/Hoare/HoareAbort.thy
ID: $Id: HoareAbort.thy,v 1.4 2005/06/17 14:13:07 haftmann Exp $
Author: Leonor Prensa Nieto & Tobias Nipkow
Copyright 2003 TUM
Like Hoare.thy, but with an Abort statement for modelling run time errors.
*)
theory HoareAbort imports Main
uses ("hoareAbort.ML") begin
types
'a bexp = "'a set"
'a assn = "'a set"
datatype
'a com = Basic "'a => 'a"
| Abort
| Seq "'a com" "'a com" ("(_;/ _)" [61,60] 60)
| Cond "'a bexp" "'a com" "'a com" ("(1IF _/ THEN _ / ELSE _/ FI)" [0,0,0] 61)
| While "'a bexp" "'a assn" "'a com" ("(1WHILE _/ INV {_} //DO _ /OD)" [0,0,0] 61)
syntax
"@assign" :: "id => 'b => 'a com" ("(2_ :=/ _)" [70,65] 61)
"@annskip" :: "'a com" ("SKIP")
translations
"SKIP" == "Basic id"
types 'a sem = "'a option => 'a option => bool"
consts iter :: "nat => 'a bexp => 'a sem => 'a sem"
primrec
"iter 0 b S = (λs s'. s ∉ Some ` b ∧ s=s')"
"iter (Suc n) b S =
(λs s'. s ∈ Some ` b ∧ (∃s''. S s s'' ∧ iter n b S s'' s'))"
consts Sem :: "'a com => 'a sem"
primrec
"Sem(Basic f) s s' = (case s of None => s' = None | Some t => s' = Some(f t))"
"Sem Abort s s' = (s' = None)"
"Sem(c1;c2) s s' = (∃s''. Sem c1 s s'' ∧ Sem c2 s'' s')"
"Sem(IF b THEN c1 ELSE c2 FI) s s' =
(case s of None => s' = None
| Some t => ((t ∈ b --> Sem c1 s s') ∧ (t ∉ b --> Sem c2 s s')))"
"Sem(While b x c) s s' =
(if s = None then s' = None else ∃n. iter n b (Sem c) s s')"
constdefs Valid :: "'a bexp => 'a com => 'a bexp => bool"
"Valid p c q == ∀s s'. Sem c s s' --> s : Some ` p --> s' : Some ` q"
syntax
"@hoare_vars" :: "[idts, 'a assn,'a com,'a assn] => bool"
("VARS _// {_} // _ // {_}" [0,0,55,0] 50)
syntax ("" output)
"@hoare" :: "['a assn,'a com,'a assn] => bool"
("{_} // _ // {_}" [0,55,0] 50)
(** parse translations **)
ML{*
local
fun free a = Free(a,dummyT)
fun abs((a,T),body) =
let val a = absfree(a, dummyT, body)
in if T = Bound 0 then a else Const(Syntax.constrainAbsC,dummyT) $ a $ T end
in
fun mk_abstuple [x] body = abs (x, body)
| mk_abstuple (x::xs) body =
Syntax.const "split" $ abs (x, mk_abstuple xs body);
fun mk_fbody a e [x as (b,_)] = if a=b then e else free b
| mk_fbody a e ((b,_)::xs) =
Syntax.const "Pair" $ (if a=b then e else free b) $ mk_fbody a e xs;
fun mk_fexp a e xs = mk_abstuple xs (mk_fbody a e xs)
end
*}
(* bexp_tr & assn_tr *)
(*all meta-variables for bexp except for TRUE are translated as if they
were boolean expressions*)
ML{*
fun bexp_tr (Const ("TRUE", _)) xs = Syntax.const "TRUE"
| bexp_tr b xs = Syntax.const "Collect" $ mk_abstuple xs b;
fun assn_tr r xs = Syntax.const "Collect" $ mk_abstuple xs r;
*}
(* com_tr *)
ML{*
fun com_tr (Const("@assign",_) $ Free (a,_) $ e) xs =
Syntax.const "Basic" $ mk_fexp a e xs
| com_tr (Const ("Basic",_) $ f) xs = Syntax.const "Basic" $ f
| com_tr (Const ("Seq",_) $ c1 $ c2) xs =
Syntax.const "Seq" $ com_tr c1 xs $ com_tr c2 xs
| com_tr (Const ("Cond",_) $ b $ c1 $ c2) xs =
Syntax.const "Cond" $ bexp_tr b xs $ com_tr c1 xs $ com_tr c2 xs
| com_tr (Const ("While",_) $ b $ I $ c) xs =
Syntax.const "While" $ bexp_tr b xs $ assn_tr I xs $ com_tr c xs
| com_tr t _ = t (* if t is just a Free/Var *)
*}
(* triple_tr *)
ML{*
local
fun var_tr(Free(a,_)) = (a,Bound 0) (* Bound 0 = dummy term *)
| var_tr(Const ("_constrain", _) $ (Free (a,_)) $ T) = (a,T);
fun vars_tr (Const ("_idts", _) $ idt $ vars) = var_tr idt :: vars_tr vars
| vars_tr t = [var_tr t]
in
fun hoare_vars_tr [vars, pre, prg, post] =
let val xs = vars_tr vars
in Syntax.const "Valid" $
assn_tr pre xs $ com_tr prg xs $ assn_tr post xs
end
| hoare_vars_tr ts = raise TERM ("hoare_vars_tr", ts);
end
*}
parse_translation {* [("@hoare_vars", hoare_vars_tr)] *}
(*****************************************************************************)
(*** print translations ***)
ML{*
fun dest_abstuple (Const ("split",_) $ (Abs(v,_, body))) =
subst_bound (Syntax.free v, dest_abstuple body)
| dest_abstuple (Abs(v,_, body)) = subst_bound (Syntax.free v, body)
| dest_abstuple trm = trm;
fun abs2list (Const ("split",_) $ (Abs(x,T,t))) = Free (x, T)::abs2list t
| abs2list (Abs(x,T,t)) = [Free (x, T)]
| abs2list _ = [];
fun mk_ts (Const ("split",_) $ (Abs(x,_,t))) = mk_ts t
| mk_ts (Abs(x,_,t)) = mk_ts t
| mk_ts (Const ("Pair",_) $ a $ b) = a::(mk_ts b)
| mk_ts t = [t];
fun mk_vts (Const ("split",_) $ (Abs(x,_,t))) =
((Syntax.free x)::(abs2list t), mk_ts t)
| mk_vts (Abs(x,_,t)) = ([Syntax.free x], [t])
| mk_vts t = raise Match;
fun find_ch [] i xs = (false, (Syntax.free "not_ch",Syntax.free "not_ch" ))
| find_ch ((v,t)::vts) i xs = if t=(Bound i) then find_ch vts (i-1) xs
else (true, (v, subst_bounds (xs,t)));
fun is_f (Const ("split",_) $ (Abs(x,_,t))) = true
| is_f (Abs(x,_,t)) = true
| is_f t = false;
*}
(* assn_tr' & bexp_tr'*)
ML{*
fun assn_tr' (Const ("Collect",_) $ T) = dest_abstuple T
| assn_tr' (Const ("op Int",_) $ (Const ("Collect",_) $ T1) $
(Const ("Collect",_) $ T2)) =
Syntax.const "op Int" $ dest_abstuple T1 $ dest_abstuple T2
| assn_tr' t = t;
fun bexp_tr' (Const ("Collect",_) $ T) = dest_abstuple T
| bexp_tr' t = t;
*}
(*com_tr' *)
ML{*
fun mk_assign f =
let val (vs, ts) = mk_vts f;
val (ch, which) = find_ch (vs~~ts) ((length vs)-1) (rev vs)
in if ch then Syntax.const "@assign" $ fst(which) $ snd(which)
else Syntax.const "@skip" end;
fun com_tr' (Const ("Basic",_) $ f) = if is_f f then mk_assign f
else Syntax.const "Basic" $ f
| com_tr' (Const ("Seq",_) $ c1 $ c2) = Syntax.const "Seq" $
com_tr' c1 $ com_tr' c2
| com_tr' (Const ("Cond",_) $ b $ c1 $ c2) = Syntax.const "Cond" $
bexp_tr' b $ com_tr' c1 $ com_tr' c2
| com_tr' (Const ("While",_) $ b $ I $ c) = Syntax.const "While" $
bexp_tr' b $ assn_tr' I $ com_tr' c
| com_tr' t = t;
fun spec_tr' [p, c, q] =
Syntax.const "@hoare" $ assn_tr' p $ com_tr' c $ assn_tr' q
*}
print_translation {* [("Valid", spec_tr')] *}
(*** The proof rules ***)
lemma SkipRule: "p ⊆ q ==> Valid p (Basic id) q"
by (auto simp:Valid_def)
lemma BasicRule: "p ⊆ {s. f s ∈ q} ==> Valid p (Basic f) q"
by (auto simp:Valid_def)
lemma SeqRule: "Valid P c1 Q ==> Valid Q c2 R ==> Valid P (c1;c2) R"
by (auto simp:Valid_def)
lemma CondRule:
"p ⊆ {s. (s ∈ b --> s ∈ w) ∧ (s ∉ b --> s ∈ w')}
==> Valid w c1 q ==> Valid w' c2 q ==> Valid p (Cond b c1 c2) q"
by (fastsimp simp:Valid_def image_def)
lemma iter_aux:
"! s s'. Sem c s s' --> s ∈ Some ` (I ∩ b) --> s' ∈ Some ` I ==>
(!!s s'. s ∈ Some ` I ==> iter n b (Sem c) s s' ==> s' ∈ Some ` (I ∩ -b))";
apply(unfold image_def)
apply(induct n)
apply clarsimp
apply(simp (no_asm_use))
apply blast
done
lemma WhileRule:
"p ⊆ i ==> Valid (i ∩ b) c i ==> i ∩ (-b) ⊆ q ==> Valid p (While b i c) q"
apply(simp add:Valid_def)
apply(simp (no_asm) add:image_def)
apply clarify
apply(drule iter_aux)
prefer 2 apply assumption
apply blast
apply blast
done
lemma AbortRule: "p ⊆ {s. False} ==> Valid p Abort q"
by(auto simp:Valid_def)
use "hoareAbort.ML"
method_setup vcg = {*
Method.no_args
(Method.SIMPLE_METHOD' HEADGOAL (hoare_tac (K all_tac))) *}
"verification condition generator"
method_setup vcg_simp = {*
Method.ctxt_args (fn ctxt =>
Method.METHOD (fn facts =>
hoare_tac (asm_full_simp_tac (local_simpset_of ctxt))1)) *}
"verification condition generator plus simplification"
(* Special syntax for guarded statements and guarded array updates: *)
syntax
guarded_com :: "bool => 'a com => 'a com" ("(2_ ->/ _)" 71)
array_update :: "'a list => nat => 'a => 'a com" ("(2_[_] :=/ _)" [70,65] 61)
translations
"P -> c" == "IF P THEN c ELSE Abort FI"
"a[i] := v" => "(i < length a) -> (a := list_update a i v)"
(* reverse translation not possible because of duplicate "a" *)
text{* Note: there is no special syntax for guarded array access. Thus
you must write @{text"j < length a -> a[i] := a!j"}. *}
end
lemma SkipRule:
p ⊆ q ==> {p} SKIP {q}
lemma BasicRule:
p ⊆ {s. f s ∈ q} ==> {p} Basic f {q}
lemma SeqRule:
[| {P}
c1.0
{Q};
{Q}
c2.0
{R} |]
==> {P}
c1.0; c2.0
{R}
lemma CondRule:
[| p ⊆ {s. (s ∈ b --> s ∈ w) ∧ (s ∉ b --> s ∈ w')}; {w} c1.0 {q}; {w'} c2.0 {q} |] ==> {p} IF b THEN c1.0 ELSE c2.0 FI {q}
lemma iter_aux:
[| ∀s s'. Sem c s s' --> s ∈ Some ` (I ∩ b) --> s' ∈ Some ` I; s ∈ Some ` I; iter n b (Sem c) s s' |] ==> s' ∈ Some ` (I ∩ - b)
lemma WhileRule:
[| p ⊆ i; {i ∩ b} c {i}; i ∩ - b ⊆ q |] ==> {p} WHILE b INV {i} DO c OD {q}
lemma AbortRule:
p ⊆ {s. False} ==> {p} Abort {q}
theorem Compl_Collect:
- Collect b = {x. ¬ b x}