Up to index of Isabelle/HOL/HoareParallel
theory RG_Examplesheader {* \section{Examples} *}
theory RG_Examples imports RG_Syntax begin
lemmas definitions [simp]= stable_def Pre_def Rely_def Guar_def Post_def Com_def
subsection {* Set Elements of an Array to Zero *}
lemma le_less_trans2: "[|(j::nat)<k; i≤ j|] ==> i<k"
by simp
lemma add_le_less_mono: "[| (a::nat) < c; b≤d |] ==> a + b < c + d"
by simp
record Example1 =
A :: "nat list"
lemma Example1:
"\<turnstile> COBEGIN
SCHEME [0 ≤ i < n]
(´A := ´A [i := 0],
\<lbrace> n < length ´A \<rbrace>,
\<lbrace> length ºA = length ªA ∧ ºA ! i = ªA ! i \<rbrace>,
\<lbrace> length ºA = length ªA ∧ (∀j<n. i ≠ j --> ºA ! j = ªA ! j) \<rbrace>,
\<lbrace> ´A ! i = 0 \<rbrace>)
COEND
SAT [\<lbrace> n < length ´A \<rbrace>, \<lbrace> ºA = ªA \<rbrace>, \<lbrace> True \<rbrace>, \<lbrace> ∀i < n. ´A ! i = 0 \<rbrace>]"
apply(rule Parallel)
apply (auto intro!: Basic)
done
lemma Example1_parameterized:
"k < t ==>
\<turnstile> COBEGIN
SCHEME [k*n≤i<(Suc k)*n] (´A:=´A[i:=0],
\<lbrace>t*n < length ´A\<rbrace>,
\<lbrace>t*n < length ºA ∧ length ºA=length ªA ∧ ºA!i = ªA!i\<rbrace>,
\<lbrace>t*n < length ºA ∧ length ºA=length ªA ∧ (∀j<length ºA . i≠j --> ºA!j = ªA!j)\<rbrace>,
\<lbrace>´A!i=0\<rbrace>)
COEND
SAT [\<lbrace>t*n < length ´A\<rbrace>,
\<lbrace>t*n < length ºA ∧ length ºA=length ªA ∧ (∀i<n. ºA!(k*n+i)=ªA!(k*n+i))\<rbrace>,
\<lbrace>t*n < length ºA ∧ length ºA=length ªA ∧
(∀i<length ºA . (i<k*n --> ºA!i = ªA!i) ∧ ((Suc k)*n ≤ i--> ºA!i = ªA!i))\<rbrace>,
\<lbrace>∀i<n. ´A!(k*n+i) = 0\<rbrace>]"
apply(rule Parallel)
apply auto
apply(erule_tac x="k*n +i" in allE)
apply(subgoal_tac "k*n+i <length (A b)")
apply force
apply(erule le_less_trans2)
apply(case_tac t,simp+)
apply (simp add:add_commute)
apply(simp add: add_le_mono)
apply(rule Basic)
apply simp
apply clarify
apply (subgoal_tac "k*n+i< length (A x)")
apply simp
apply(erule le_less_trans2)
apply(case_tac t,simp+)
apply (simp add:add_commute)
apply(rule add_le_mono, auto)
done
subsection {* Increment a Variable in Parallel *}
subsubsection {* Two components *}
record Example2 =
x :: nat
c_0 :: nat
c_1 :: nat
lemma Example2:
"\<turnstile> COBEGIN
(〈 ´x:=´x+1;; ´c_0:=´c_0 + 1 〉,
\<lbrace>´x=´c_0 + ´c_1 ∧ ´c_0=0\<rbrace>,
\<lbrace>ºc_0 = ªc_0 ∧
(ºx=ºc_0 + ºc_1
--> ªx = ªc_0 + ªc_1)\<rbrace>,
\<lbrace>ºc_1 = ªc_1 ∧
(ºx=ºc_0 + ºc_1
--> ªx =ªc_0 + ªc_1)\<rbrace>,
\<lbrace>´x=´c_0 + ´c_1 ∧ ´c_0=1 \<rbrace>)
\<parallel>
(〈 ´x:=´x+1;; ´c_1:=´c_1+1 〉,
\<lbrace>´x=´c_0 + ´c_1 ∧ ´c_1=0 \<rbrace>,
\<lbrace>ºc_1 = ªc_1 ∧
(ºx=ºc_0 + ºc_1
--> ªx = ªc_0 + ªc_1)\<rbrace>,
\<lbrace>ºc_0 = ªc_0 ∧
(ºx=ºc_0 + ºc_1
--> ªx =ªc_0 + ªc_1)\<rbrace>,
\<lbrace>´x=´c_0 + ´c_1 ∧ ´c_1=1\<rbrace>)
COEND
SAT [\<lbrace>´x=0 ∧ ´c_0=0 ∧ ´c_1=0\<rbrace>,
\<lbrace>ºx=ªx ∧ ºc_0= ªc_0 ∧ ºc_1=ªc_1\<rbrace>,
\<lbrace>True\<rbrace>,
\<lbrace>´x=2\<rbrace>]"
apply(rule Parallel)
apply simp_all
apply clarify
apply(case_tac i)
apply simp
apply(rule conjI)
apply clarify
apply simp
apply clarify
apply simp
apply(case_tac j,simp)
apply simp
apply simp
apply(rule conjI)
apply clarify
apply simp
apply clarify
apply simp
apply(subgoal_tac "j=0")
apply (rotate_tac -1)
apply (simp (asm_lr))
apply arith
apply clarify
apply(case_tac i,simp,simp)
apply clarify
apply simp
apply(erule_tac x=0 in all_dupE)
apply(erule_tac x=1 in allE,simp)
apply clarify
apply(case_tac i,simp)
apply(rule Await)
apply simp_all
apply(clarify)
apply(rule Seq)
prefer 2
apply(rule Basic)
apply simp_all
apply(rule subset_refl)
apply(rule Basic)
apply simp_all
apply clarify
apply simp
apply(rule Await)
apply simp_all
apply(clarify)
apply(rule Seq)
prefer 2
apply(rule Basic)
apply simp_all
apply(rule subset_refl)
apply(auto intro!: Basic)
done
subsubsection {* Parameterized *}
lemma Example2_lemma2_aux: "j<n ==>
(∑i=0..<n. (b i::nat)) =
(∑i=0..<j. b i) + b j + (∑i=0..<n-(Suc j) . b (Suc j + i))"
apply(induct n)
apply simp_all
apply(simp add:less_Suc_eq)
apply(auto)
apply(subgoal_tac "n - j = Suc(n- Suc j)")
apply simp
apply arith
done
lemma Example2_lemma2_aux2:
"j≤ s ==> (∑i::nat=0..<j. (b (s:=t)) i) = (∑i=0..<j. b i)"
apply(induct j)
apply (simp_all cong:setsum_cong)
done
lemma Example2_lemma2:
"[|j<n; b j=0|] ==> Suc (∑i::nat=0..<n. b i)=(∑i=0..<n. (b (j := Suc 0)) i)"
apply(frule_tac b="(b (j:=(Suc 0)))" in Example2_lemma2_aux)
apply(erule_tac t="setsum (b(j := (Suc 0))) {0..<n}" in ssubst)
apply(frule_tac b=b in Example2_lemma2_aux)
apply(erule_tac t="setsum b {0..<n}" in ssubst)
apply(subgoal_tac "Suc (setsum b {0..<j} + b j + (∑i=0..<n - Suc j. b (Suc j + i)))=(setsum b {0..<j} + Suc (b j) + (∑i=0..<n - Suc j. b (Suc j + i)))")
apply(rotate_tac -1)
apply(erule ssubst)
apply(subgoal_tac "j≤j")
apply(drule_tac b="b" and t="(Suc 0)" in Example2_lemma2_aux2)
apply(rotate_tac -1)
apply(erule ssubst)
apply simp_all
done
lemma Example2_lemma2_Suc0: "[|j<n; b j=0|] ==>
Suc (∑i::nat=0..< n. b i)=(∑i=0..< n. (b (j:=Suc 0)) i)"
by(simp add:Example2_lemma2)
record Example2_parameterized =
C :: "nat => nat"
y :: nat
lemma Example2_parameterized: "0<n ==>
\<turnstile> COBEGIN SCHEME [0≤i<n]
(〈 ´y:=´y+1;; ´C:=´C (i:=1) 〉,
\<lbrace>´y=(∑i=0..<n. ´C i) ∧ ´C i=0\<rbrace>,
\<lbrace>ºC i = ªC i ∧
(ºy=(∑i=0..<n. ºC i) --> ªy =(∑i=0..<n. ªC i))\<rbrace>,
\<lbrace>(∀j<n. i≠j --> ºC j = ªC j) ∧
(ºy=(∑i=0..<n. ºC i) --> ªy =(∑i=0..<n. ªC i))\<rbrace>,
\<lbrace>´y=(∑i=0..<n. ´C i) ∧ ´C i=1\<rbrace>)
COEND
SAT [\<lbrace>´y=0 ∧ (∑i=0..<n. ´C i)=0 \<rbrace>, \<lbrace>ºC=ªC ∧ ºy=ªy\<rbrace>, \<lbrace>True\<rbrace>, \<lbrace>´y=n\<rbrace>]"
apply(rule Parallel)
apply force
apply force
apply(force)
apply clarify
apply simp
apply(simp cong:setsum_ivl_cong)
apply clarify
apply simp
apply(rule Await)
apply simp_all
apply clarify
apply(rule Seq)
prefer 2
apply(rule Basic)
apply(rule subset_refl)
apply simp+
apply(rule Basic)
apply simp
apply clarify
apply simp
apply(simp add:Example2_lemma2_Suc0 cong:if_cong)
apply simp+
done
subsection {* Find Least Element *}
text {* A previous lemma: *}
lemma mod_aux :"[|i < (n::nat); a mod n = i; j < a + n; j mod n = i; a < j|] ==> False"
apply(subgoal_tac "a=a div n*n + a mod n" )
prefer 2 apply (simp (no_asm_use))
apply(subgoal_tac "j=j div n*n + j mod n")
prefer 2 apply (simp (no_asm_use))
apply simp
apply(subgoal_tac "a div n*n < j div n*n")
prefer 2 apply arith
apply(subgoal_tac "j div n*n < (a div n + 1)*n")
prefer 2 apply simp
apply (simp only:mult_less_cancel2)
apply arith
done
record Example3 =
X :: "nat => nat"
Y :: "nat => nat"
lemma Example3: "m mod n=0 ==>
\<turnstile> COBEGIN
SCHEME [0≤i<n]
(WHILE (∀j<n. ´X i < ´Y j) DO
IF P(B!(´X i)) THEN ´Y:=´Y (i:=´X i)
ELSE ´X:= ´X (i:=(´X i)+ n) FI
OD,
\<lbrace>(´X i) mod n=i ∧ (∀j<´X i. j mod n=i --> ¬P(B!j)) ∧ (´Y i<m --> P(B!(´Y i)) ∧ ´Y i≤ m+i)\<rbrace>,
\<lbrace>(∀j<n. i≠j --> ªY j ≤ ºY j) ∧ ºX i = ªX i ∧
ºY i = ªY i\<rbrace>,
\<lbrace>(∀j<n. i≠j --> ºX j = ªX j ∧ ºY j = ªY j) ∧
ªY i ≤ ºY i\<rbrace>,
\<lbrace>(´X i) mod n=i ∧ (∀j<´X i. j mod n=i --> ¬P(B!j)) ∧ (´Y i<m --> P(B!(´Y i)) ∧ ´Y i≤ m+i) ∧ (∃j<n. ´Y j ≤ ´X i) \<rbrace>)
COEND
SAT [\<lbrace> ∀i<n. ´X i=i ∧ ´Y i=m+i \<rbrace>,\<lbrace>ºX=ªX ∧ ºY=ªY\<rbrace>,\<lbrace>True\<rbrace>,
\<lbrace>∀i<n. (´X i) mod n=i ∧ (∀j<´X i. j mod n=i --> ¬P(B!j)) ∧
(´Y i<m --> P(B!(´Y i)) ∧ ´Y i≤ m+i) ∧ (∃j<n. ´Y j ≤ ´X i)\<rbrace>]"
apply(rule Parallel)
--{*5 subgoals left *}
apply force+
apply clarify
apply simp
apply(rule While)
apply force
apply force
apply force
apply(rule_tac pre'="\<lbrace> ´X i mod n = i ∧ (∀j. j<´X i --> j mod n = i --> ¬P(B!j)) ∧ (´Y i < n * q --> P (B!(´Y i))) ∧ ´X i<´Y i\<rbrace>" in Conseq)
apply force
apply(rule subset_refl)+
apply(rule Cond)
apply force
apply(rule Basic)
apply force
apply fastsimp
apply force
apply force
apply(rule Basic)
apply simp
apply clarify
apply simp
apply(case_tac "X x (j mod n)≤ j")
apply(drule le_imp_less_or_eq)
apply(erule disjE)
apply(drule_tac j=j and n=n and i="j mod n" and a="X x (j mod n)" in mod_aux)
apply assumption+
apply simp+
apply clarsimp
apply fastsimp
apply force+
done
text {* Same but with a list as auxiliary variable: *}
record Example3_list =
X :: "nat list"
Y :: "nat list"
lemma Example3_list: "m mod n=0 ==> \<turnstile> (COBEGIN SCHEME [0≤i<n]
(WHILE (∀j<n. ´X!i < ´Y!j) DO
IF P(B!(´X!i)) THEN ´Y:=´Y[i:=´X!i] ELSE ´X:= ´X[i:=(´X!i)+ n] FI
OD,
\<lbrace>n<length ´X ∧ n<length ´Y ∧ (´X!i) mod n=i ∧ (∀j<´X!i. j mod n=i --> ¬P(B!j)) ∧ (´Y!i<m --> P(B!(´Y!i)) ∧ ´Y!i≤ m+i)\<rbrace>,
\<lbrace>(∀j<n. i≠j --> ªY!j ≤ ºY!j) ∧ ºX!i = ªX!i ∧
ºY!i = ªY!i ∧ length ºX = length ªX ∧ length ºY = length ªY\<rbrace>,
\<lbrace>(∀j<n. i≠j --> ºX!j = ªX!j ∧ ºY!j = ªY!j) ∧
ªY!i ≤ ºY!i ∧ length ºX = length ªX ∧ length ºY = length ªY\<rbrace>,
\<lbrace>(´X!i) mod n=i ∧ (∀j<´X!i. j mod n=i --> ¬P(B!j)) ∧ (´Y!i<m --> P(B!(´Y!i)) ∧ ´Y!i≤ m+i) ∧ (∃j<n. ´Y!j ≤ ´X!i) \<rbrace>) COEND)
SAT [\<lbrace>n<length ´X ∧ n<length ´Y ∧ (∀i<n. ´X!i=i ∧ ´Y!i=m+i) \<rbrace>,
\<lbrace>ºX=ªX ∧ ºY=ªY\<rbrace>,
\<lbrace>True\<rbrace>,
\<lbrace>∀i<n. (´X!i) mod n=i ∧ (∀j<´X!i. j mod n=i --> ¬P(B!j)) ∧
(´Y!i<m --> P(B!(´Y!i)) ∧ ´Y!i≤ m+i) ∧ (∃j<n. ´Y!j ≤ ´X!i)\<rbrace>]"
apply(rule Parallel)
--{* 5 subgoals left *}
apply force+
apply clarify
apply simp
apply(rule While)
apply force
apply force
apply force
apply(rule_tac pre'="\<lbrace>n<length ´X ∧ n<length ´Y ∧ ´X ! i mod n = i ∧ (∀j. j < ´X ! i --> j mod n = i --> ¬ P (B ! j)) ∧ (´Y ! i < n * q --> P (B ! (´Y ! i))) ∧ ´X!i<´Y!i\<rbrace>" in Conseq)
apply force
apply(rule subset_refl)+
apply(rule Cond)
apply force
apply(rule Basic)
apply force
apply force
apply force
apply force
apply(rule Basic)
apply simp
apply clarify
apply simp
apply(rule allI)
apply(rule impI)+
apply(case_tac "X x ! i≤ j")
apply(drule le_imp_less_or_eq)
apply(erule disjE)
apply(drule_tac j=j and n=n and i=i and a="X x ! i" in mod_aux)
apply assumption+
apply simp
apply force+
done
end
lemmas definitions:
stable == %f g. ∀x y. x ∈ f --> (x, y) ∈ g --> y ∈ f
Pre x == fst (snd x)
Rely x == fst (snd (snd x))
Guar x == fst (snd (snd (snd x)))
Post x == snd (snd (snd (snd x)))
Com x == fst x
lemmas definitions:
stable == %f g. ∀x y. x ∈ f --> (x, y) ∈ g --> y ∈ f
Pre x == fst (snd x)
Rely x == fst (snd (snd x))
Guar x == fst (snd (snd (snd x)))
Post x == snd (snd (snd (snd x)))
Com x == fst x
lemma le_less_trans2:
[| j < k; i ≤ j |] ==> i < k
lemma add_le_less_mono:
[| a < c; b ≤ d |] ==> a + b < c + d
lemma Example1:
\<turnstile> (SCHEME [0 ≤ i < n] (´A := ´A[i := 0], .{n < length ´A}., .{length ºA = length ªA ∧ ºA ! i = ªA ! i}., .{length ºA = length ªA ∧ (∀j<n. i ≠ j --> ºA ! j = ªA ! j)}., .{´A ! i = 0}.)) SAT [.{n < length ´A}., .{ºA = ªA}., .{True}., .{∀i<n. ´A ! i = 0}.]
lemma Example1_parameterized:
k < t ==> \<turnstile> (SCHEME [k * n ≤ i < Suc k * n] (´A := ´A[i := 0], .{t * n < length ´A}., .{t * n < length ºA ∧ length ºA = length ªA ∧ ºA ! i = ªA ! i}., .{t * n < length ºA ∧ length ºA = length ªA ∧ (∀j<length ºA. i ≠ j --> ºA ! j = ªA ! j)}., .{´A ! i = 0}.)) SAT [.{t * n < length ´A}., .{t * n < length ºA ∧ length ºA = length ªA ∧ (∀i<n. ºA ! (k * n + i) = ªA ! (k * n + i))}., .{t * n < length ºA ∧ length ºA = length ªA ∧ (∀i<length ºA. (i < k * n --> ºA ! i = ªA ! i) ∧ (Suc k * n ≤ i --> ºA ! i = ªA ! i))}., .{∀i<n. ´A ! (k * n + i) = 0}.]
lemma Example2:
\<turnstile> [(〈´x := ´x + 1;; ´c_0 := ´c_0 + 1〉,
.{´x = ´c_0 + ´c_1 ∧ ´c_0 = 0}.,
.{ºc_0 = ªc_0 ∧ (ºx = ºc_0 + ºc_1 --> ªx = ªc_0 + ªc_1)}.,
.{ºc_1 = ªc_1 ∧ (ºx = ºc_0 + ºc_1 --> ªx = ªc_0 + ªc_1)}.,
.{´x = ´c_0 + ´c_1 ∧ ´c_0 = 1}.),
(〈´x := ´x + 1;; ´c_1 := ´c_1 + 1〉,
.{´x = ´c_0 + ´c_1 ∧ ´c_1 = 0}.,
.{ºc_1 = ªc_1 ∧ (ºx = ºc_0 + ºc_1 --> ªx = ªc_0 + ªc_1)}.,
.{ºc_0 = ªc_0 ∧ (ºx = ºc_0 + ºc_1 --> ªx = ªc_0 + ªc_1)}.,
.{´x = ´c_0 + ´c_1 ∧
´c_1 =
1}.)] SAT [.{´x = 0 ∧
´c_0 = 0 ∧
´c_1 =
0}., .{ºx = ªx ∧
ºc_0 = ªc_0 ∧
ºc_1 = ªc_1}., .{True}., .{´x = 2}.]
lemma Example2_lemma2_aux:
j < n ==> setsum b {0..<n} = setsum b {0..<j} + b j + (∑i = 0..<n - Suc j. b (Suc j + i))
lemma Example2_lemma2_aux2:
j ≤ s ==> setsum (b(s := t)) {0..<j} = setsum b {0..<j}
lemma Example2_lemma2:
[| j < n; b j = 0 |] ==> Suc (setsum b {0..<n}) = setsum (b(j := Suc 0)) {0..<n}
lemma Example2_lemma2_Suc0:
[| j < n; b j = 0 |] ==> Suc (setsum b {0..<n}) = setsum (b(j := Suc 0)) {0..<n}
lemma Example2_parameterized:
0 < n ==> \<turnstile> (SCHEME [0 ≤ i < n] (〈´y := ´y + 1;; ´C := ´C(i := 1)〉, .{´y = setsum ´C {0..<n} ∧ ´C i = 0}., .{ºC i = ªC i ∧ (ºy = setsum ºC {0..<n} --> ªy = setsum ªC {0..<n})}., .{(∀j<n. i ≠ j --> ºC j = ªC j) ∧ (ºy = setsum ºC {0..<n} --> ªy = setsum ªC {0..<n})}., .{´y = setsum ´C {0..<n} ∧ ´C i = 1}.)) SAT [.{´y = 0 ∧ setsum ´C {0..<n} = 0}., .{ºC = ªC ∧ ºy = ªy}., .{True}., .{´y = n}.]
lemma mod_aux:
[| i < n; a mod n = i; j < a + n; j mod n = i; a < j |] ==> False
lemma Example3:
m mod n = 0 ==> \<turnstile> (SCHEME [0 ≤ i < n] (_While_inv (∀j<n. ´X i < ´Y j) (IF P (B ! ´X i) THEN ´Y := ´Y(i := ´X i) ELSE ´X := ´X(i := ´X i + n)FI), .{´X i mod n = i ∧ (∀j<´X i. j mod n = i --> ¬ P (B ! j)) ∧ (´Y i < m --> P (B ! ´Y i) ∧ ´Y i ≤ m + i)}., .{(∀j<n. i ≠ j --> ªY j ≤ ºY j) ∧ ºX i = ªX i ∧ ºY i = ªY i}., .{(∀j<n. i ≠ j --> ºX j = ªX j ∧ ºY j = ªY j) ∧ ªY i ≤ ºY i}., .{´X i mod n = i ∧ (∀j<´X i. j mod n = i --> ¬ P (B ! j)) ∧ (´Y i < m --> P (B ! ´Y i) ∧ ´Y i ≤ m + i) ∧ (∃j<n. ´Y j ≤ ´X i)}.)) SAT [.{∀i<n. ´X i = i ∧ ´Y i = m + i}., .{ºX = ªX ∧ ºY = ªY}., .{True}., .{∀i<n. ´X i mod n = i ∧ (∀j<´X i. j mod n = i --> ¬ P (B ! j)) ∧ (´Y i < m --> P (B ! ´Y i) ∧ ´Y i ≤ m + i) ∧ (∃j<n. ´Y j ≤ ´X i)}.]
lemma Example3_list:
m mod n = 0 ==> \<turnstile> (SCHEME [0 ≤ i < n] (_While_inv (∀j<n. ´Example3_list.X ! i < ´Example3_list.Y ! j) (IF P (B ! (´Example3_list.X ! i)) THEN ´Example3_list.Y := ´Example3_list.Y[i := ´Example3_list.X ! i] ELSE ´Example3_list.X := ´Example3_list.X[i := ´Example3_list.X ! i + n]FI), .{n < length ´Example3_list.X ∧ n < length ´Example3_list.Y ∧ ´Example3_list.X ! i mod n = i ∧ (∀j<´Example3_list.X ! i. j mod n = i --> ¬ P (B ! j)) ∧ (´Example3_list.Y ! i < m --> P (B ! (´Example3_list.Y ! i)) ∧ ´Example3_list.Y ! i ≤ m + i)}., .{(∀j<n. i ≠ j --> ªExample3_list.Y ! j ≤ ºExample3_list.Y ! j) ∧ ºExample3_list.X ! i = ªExample3_list.X ! i ∧ ºExample3_list.Y ! i = ªExample3_list.Y ! i ∧ length ºExample3_list.X = length ªExample3_list.X ∧ length ºExample3_list.Y = length ªExample3_list.Y}., .{(∀j<n. i ≠ j --> ºExample3_list.X ! j = ªExample3_list.X ! j ∧ ºExample3_list.Y ! j = ªExample3_list.Y ! j) ∧ ªExample3_list.Y ! i ≤ ºExample3_list.Y ! i ∧ length ºExample3_list.X = length ªExample3_list.X ∧ length ºExample3_list.Y = length ªExample3_list.Y}., .{´Example3_list.X ! i mod n = i ∧ (∀j<´Example3_list.X ! i. j mod n = i --> ¬ P (B ! j)) ∧ (´Example3_list.Y ! i < m --> P (B ! (´Example3_list.Y ! i)) ∧ ´Example3_list.Y ! i ≤ m + i) ∧ (∃j<n. ´Example3_list.Y ! j ≤ ´Example3_list.X ! i)}.)) SAT [.{n < length ´Example3_list.X ∧ n < length ´Example3_list.Y ∧ (∀i<n. ´Example3_list.X ! i = i ∧ ´Example3_list.Y ! i = m + i)}., .{ºExample3_list.X = ªExample3_list.X ∧ ºExample3_list.Y = ªExample3_list.Y}., .{True}., .{∀i<n. ´Example3_list.X ! i mod n = i ∧ (∀j<´Example3_list.X ! i. j mod n = i --> ¬ P (B ! j)) ∧ (´Example3_list.Y ! i < m --> P (B ! (´Example3_list.Y ! i)) ∧ ´Example3_list.Y ! i ≤ m + i) ∧ (∃j<n. ´Example3_list.Y ! j ≤ ´Example3_list.X ! i)}.]