(* Title: HOL/IMP/Denotation.thy
ID: $Id: Denotation.thy,v 1.15 2005/06/17 14:13:07 haftmann Exp $
Author: Heiko Loetzbeyer & Robert Sandner, TUM
Copyright 1994 TUM
*)
header "Denotational Semantics of Commands"
theory Denotation imports Natural begin
types com_den = "(state×state)set"
constdefs
Gamma :: "[bexp,com_den] => (com_den => com_den)"
"Gamma b cd == (λphi. {(s,t). (s,t) ∈ (phi O cd) ∧ b s} ∪
{(s,t). s=t ∧ ¬b s})"
consts
C :: "com => com_den"
primrec
C_skip: "C \<SKIP> = Id"
C_assign: "C (x :== a) = {(s,t). t = s[x\<mapsto>a(s)]}"
C_comp: "C (c0;c1) = C(c1) O C(c0)"
C_if: "C (\<IF> b \<THEN> c1 \<ELSE> c2) = {(s,t). (s,t) ∈ C c1 ∧ b s} ∪
{(s,t). (s,t) ∈ C c2 ∧ ¬b s}"
C_while: "C(\<WHILE> b \<DO> c) = lfp (Gamma b (C c))"
(**** mono (Gamma(b,c)) ****)
lemma Gamma_mono: "mono (Gamma b c)"
by (unfold Gamma_def mono_def) fast
lemma C_While_If: "C(\<WHILE> b \<DO> c) = C(\<IF> b \<THEN> c;\<WHILE> b \<DO> c \<ELSE> \<SKIP>)"
apply (simp (no_asm))
apply (subst lfp_unfold [OF Gamma_mono]) --{*lhs only*}
apply (simp add: Gamma_def)
done
(* Operational Semantics implies Denotational Semantics *)
lemma com1: "〈c,s〉 -->c t ==> (s,t) ∈ C(c)"
(* start with rule induction *)
apply (erule evalc.induct)
apply auto
(* while *)
apply (unfold Gamma_def)
apply (subst lfp_unfold[OF Gamma_mono, simplified Gamma_def])
apply fast
apply (subst lfp_unfold[OF Gamma_mono, simplified Gamma_def])
apply fast
done
(* Denotational Semantics implies Operational Semantics *)
lemma com2 [rule_format]: "∀s t. (s,t)∈C(c) --> 〈c,s〉 -->c t"
apply (induct_tac "c")
apply (simp_all (no_asm_use))
apply fast
apply fast
(* while *)
apply (intro strip)
apply (erule lfp_induct [OF _ Gamma_mono])
apply (unfold Gamma_def)
apply fast
done
(**** Proof of Equivalence ****)
lemma denotational_is_natural: "(s,t) ∈ C(c) = (〈c,s〉 -->c t)"
apply (fast elim: com2 dest: com1)
done
end
lemma Gamma_mono:
mono (Gamma b c)
lemma C_While_If:
C (WHILE b DO c) = C (IF b THEN c; WHILE b DO c ELSE SKIP)
lemma com1:
〈c,s〉 -->c t ==> (s, t) ∈ C c
lemma com2:
(s, t) ∈ C c ==> 〈c,s〉 -->c t
lemma denotational_is_natural:
((s, t) ∈ C c) = 〈c,s〉 -->c t