(* Title: HOL/IOA/Solve.thy
ID: $Id: Solve.thy,v 1.3 2005/09/06 17:03:39 wenzelm Exp $
Author: Tobias Nipkow & Konrad Slind
Copyright 1994 TU Muenchen
*)
header {* Weak possibilities mapping (abstraction) *}
theory Solve
imports IOA
begin
constdefs
is_weak_pmap :: "['c => 'a, ('action,'c)ioa,('action,'a)ioa] => bool"
"is_weak_pmap f C A ==
(!s:starts_of(C). f(s):starts_of(A)) &
(!s t a. reachable C s &
(s,a,t):trans_of(C)
--> (if a:externals(asig_of(C)) then
(f(s),a,f(t)):trans_of(A)
else f(s)=f(t)))"
ML {* use_legacy_bindings (the_context ()) *}
end
theorem trace_inclusion:
[| IOA C; IOA A; externals (asig_of C) = externals (asig_of A); is_weak_pmap f C A |] ==> traces C ⊆ traces A
theorem comp1_reachable:
reachable (C1.0 || C2.0) s ==> reachable C1.0 (fst s)
theorem comp2_reachable:
reachable (C1.0 || C2.0) s ==> reachable C2.0 (snd s)
theorem fxg_is_weak_pmap_of_product_IOA:
[| is_weak_pmap f C1.0 A1.0; externals (asig_of A1.0) = externals (asig_of C1.0); is_weak_pmap g C2.0 A2.0; externals (asig_of A2.0) = externals (asig_of C2.0); compat_ioas C1.0 C2.0; compat_ioas A1.0 A2.0 |] ==> is_weak_pmap (%p. (f (fst p), g (snd p))) (C1.0 || C2.0) (A1.0 || A2.0)
theorem reachable_rename_ioa:
reachable (rename C g) s ==> reachable C s
theorem rename_through_pmap:
is_weak_pmap f C A ==> is_weak_pmap f (rename C g) (rename A g)