(* Title: HOL/Induct/Mutil.thy
ID: $Id: Mutil.thy,v 1.17 2005/06/17 14:13:07 haftmann Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1996 University of Cambridge
*)
header {* The Mutilated Chess Board Problem *}
theory Mutil imports Main begin
text {*
The Mutilated Chess Board Problem, formalized inductively.
Originator is Max Black, according to J A Robinson. Popularized as
the Mutilated Checkerboard Problem by J McCarthy.
*}
consts tiling :: "'a set set => 'a set set"
inductive "tiling A"
intros
empty [simp, intro]: "{} ∈ tiling A"
Un [simp, intro]: "[| a ∈ A; t ∈ tiling A; a ∩ t = {} |]
==> a ∪ t ∈ tiling A"
consts domino :: "(nat × nat) set set"
inductive domino
intros
horiz [simp]: "{(i, j), (i, Suc j)} ∈ domino"
vertl [simp]: "{(i, j), (Suc i, j)} ∈ domino"
text {* \medskip Sets of squares of the given colour*}
constdefs
coloured :: "nat => (nat × nat) set"
"coloured b == {(i, j). (i + j) mod 2 = b}"
syntax whites :: "(nat × nat) set"
blacks :: "(nat × nat) set"
translations
"whites" == "coloured 0"
"blacks" == "coloured (Suc 0)"
text {* \medskip The union of two disjoint tilings is a tiling *}
lemma tiling_UnI [intro]:
"[|t ∈ tiling A; u ∈ tiling A; t ∩ u = {} |] ==> t ∪ u ∈ tiling A"
apply (induct set: tiling)
apply (auto simp add: Un_assoc)
done
text {* \medskip Chess boards *}
lemma Sigma_Suc1 [simp]:
"lessThan (Suc n) × B = ({n} × B) ∪ ((lessThan n) × B)"
by (auto simp add: lessThan_def)
lemma Sigma_Suc2 [simp]:
"A × lessThan (Suc n) = (A × {n}) ∪ (A × (lessThan n))"
by (auto simp add: lessThan_def)
lemma sing_Times_lemma: "({i} × {n}) ∪ ({i} × {m}) = {(i, m), (i, n)}"
by auto
lemma dominoes_tile_row [intro!]: "{i} × lessThan (2 * n) ∈ tiling domino"
apply (induct n)
apply (simp_all add: Un_assoc [symmetric])
apply (rule tiling.Un)
apply (auto simp add: sing_Times_lemma)
done
lemma dominoes_tile_matrix: "(lessThan m) × lessThan (2 * n) ∈ tiling domino"
by (induct m, auto)
text {* \medskip @{term coloured} and Dominoes *}
lemma coloured_insert [simp]:
"coloured b ∩ (insert (i, j) t) =
(if (i + j) mod 2 = b then insert (i, j) (coloured b ∩ t)
else coloured b ∩ t)"
by (auto simp add: coloured_def)
lemma domino_singletons:
"d ∈ domino ==>
(∃i j. whites ∩ d = {(i, j)}) ∧
(∃m n. blacks ∩ d = {(m, n)})";
apply (erule domino.cases)
apply (auto simp add: mod_Suc)
done
lemma domino_finite [simp]: "d ∈ domino ==> finite d"
by (erule domino.cases, auto)
text {* \medskip Tilings of dominoes *}
lemma tiling_domino_finite [simp]: "t ∈ tiling domino ==> finite t"
by (induct set: tiling, auto)
declare
Int_Un_distrib [simp]
Diff_Int_distrib [simp]
lemma tiling_domino_0_1:
"t ∈ tiling domino ==> card(whites ∩ t) = card(blacks ∩ t)"
apply (induct set: tiling)
apply (drule_tac [2] domino_singletons)
apply auto
apply (subgoal_tac "∀p C. C ∩ a = {p} --> p ∉ t")
-- {* this lemma tells us that both ``inserts'' are non-trivial *}
apply (simp (no_asm_simp))
apply blast
done
text {* \medskip Final argument is surprisingly complex *}
theorem gen_mutil_not_tiling:
"t ∈ tiling domino ==>
(i + j) mod 2 = 0 ==> (m + n) mod 2 = 0 ==>
{(i, j), (m, n)} ⊆ t
==> (t - {(i, j)} - {(m, n)}) ∉ tiling domino"
apply (rule notI)
apply (subgoal_tac
"card (whites ∩ (t - {(i, j)} - {(m, n)})) <
card (blacks ∩ (t - {(i, j)} - {(m, n)}))")
apply (force simp only: tiling_domino_0_1)
apply (simp add: tiling_domino_0_1 [symmetric])
apply (simp add: coloured_def card_Diff2_less)
done
text {* Apply the general theorem to the well-known case *}
theorem mutil_not_tiling:
"t = lessThan (2 * Suc m) × lessThan (2 * Suc n)
==> t - {(0, 0)} - {(Suc (2 * m), Suc (2 * n))} ∉ tiling domino"
apply (rule gen_mutil_not_tiling)
apply (blast intro!: dominoes_tile_matrix)
apply auto
done
end
lemma tiling_UnI:
[| t ∈ tiling A; u ∈ tiling A; t ∩ u = {} |] ==> t ∪ u ∈ tiling A
lemma Sigma_Suc1:
{..<Suc n} × B = {n} × B ∪ {..<n} × B
lemma Sigma_Suc2:
A × {..<Suc n} = A × {n} ∪ A × {..<n}
lemma sing_Times_lemma:
{i} × {n} ∪ {i} × {m} = {(i, m), (i, n)}
lemma dominoes_tile_row:
{i} × {..<2 * n} ∈ tiling domino
lemma dominoes_tile_matrix:
{..<m} × {..<2 * n} ∈ tiling domino
lemma coloured_insert:
coloured b ∩ insert (i, j) t = (if (i + j) mod 2 = b then insert (i, j) (coloured b ∩ t) else coloured b ∩ t)
lemma domino_singletons:
d ∈ domino ==> (∃i j. whites ∩ d = {(i, j)}) ∧ (∃m n. blacks ∩ d = {(m, n)})
lemma domino_finite:
d ∈ domino ==> finite d
lemma tiling_domino_finite:
t ∈ tiling domino ==> finite t
lemma tiling_domino_0_1:
t ∈ tiling domino ==> card (whites ∩ t) = card (blacks ∩ t)
theorem gen_mutil_not_tiling:
[| t ∈ tiling domino; (i + j) mod 2 = 0; (m + n) mod 2 = 0; {(i, j), (m, n)} ⊆ t |] ==> t - {(i, j)} - {(m, n)} ∉ tiling domino
theorem mutil_not_tiling:
t = {..<2 * Suc m} × {..<2 * Suc n} ==> t - {(0, 0)} - {(Suc (2 * m), Suc (2 * n))} ∉ tiling domino