(* Title: HOL/Induct/QuoDataType
ID: $Id: QuoDataType.thy,v 1.9 2005/06/17 14:13:07 haftmann Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 2004 University of Cambridge
*)
header{*Defining an Initial Algebra by Quotienting a Free Algebra*}
theory QuoDataType imports Main begin
subsection{*Defining the Free Algebra*}
text{*Messages with encryption and decryption as free constructors.*}
datatype
freemsg = NONCE nat
| MPAIR freemsg freemsg
| CRYPT nat freemsg
| DECRYPT nat freemsg
text{*The equivalence relation, which makes encryption and decryption inverses
provided the keys are the same.*}
consts msgrel :: "(freemsg * freemsg) set"
syntax
"_msgrel" :: "[freemsg, freemsg] => bool" (infixl "~~" 50)
syntax (xsymbols)
"_msgrel" :: "[freemsg, freemsg] => bool" (infixl "∼" 50)
syntax (HTML output)
"_msgrel" :: "[freemsg, freemsg] => bool" (infixl "∼" 50)
translations
"X ∼ Y" == "(X,Y) ∈ msgrel"
text{*The first two rules are the desired equations. The next four rules
make the equations applicable to subterms. The last two rules are symmetry
and transitivity.*}
inductive "msgrel"
intros
CD: "CRYPT K (DECRYPT K X) ∼ X"
DC: "DECRYPT K (CRYPT K X) ∼ X"
NONCE: "NONCE N ∼ NONCE N"
MPAIR: "[|X ∼ X'; Y ∼ Y'|] ==> MPAIR X Y ∼ MPAIR X' Y'"
CRYPT: "X ∼ X' ==> CRYPT K X ∼ CRYPT K X'"
DECRYPT: "X ∼ X' ==> DECRYPT K X ∼ DECRYPT K X'"
SYM: "X ∼ Y ==> Y ∼ X"
TRANS: "[|X ∼ Y; Y ∼ Z|] ==> X ∼ Z"
text{*Proving that it is an equivalence relation*}
lemma msgrel_refl: "X ∼ X"
by (induct X, (blast intro: msgrel.intros)+)
theorem equiv_msgrel: "equiv UNIV msgrel"
proof (simp add: equiv_def, intro conjI)
show "reflexive msgrel" by (simp add: refl_def msgrel_refl)
show "sym msgrel" by (simp add: sym_def, blast intro: msgrel.SYM)
show "trans msgrel" by (simp add: trans_def, blast intro: msgrel.TRANS)
qed
subsection{*Some Functions on the Free Algebra*}
subsubsection{*The Set of Nonces*}
text{*A function to return the set of nonces present in a message. It will
be lifted to the initial algrebra, to serve as an example of that process.*}
consts
freenonces :: "freemsg => nat set"
primrec
"freenonces (NONCE N) = {N}"
"freenonces (MPAIR X Y) = freenonces X ∪ freenonces Y"
"freenonces (CRYPT K X) = freenonces X"
"freenonces (DECRYPT K X) = freenonces X"
text{*This theorem lets us prove that the nonces function respects the
equivalence relation. It also helps us prove that Nonce
(the abstract constructor) is injective*}
theorem msgrel_imp_eq_freenonces: "U ∼ V ==> freenonces U = freenonces V"
by (erule msgrel.induct, auto)
subsubsection{*The Left Projection*}
text{*A function to return the left part of the top pair in a message. It will
be lifted to the initial algrebra, to serve as an example of that process.*}
consts freeleft :: "freemsg => freemsg"
primrec
"freeleft (NONCE N) = NONCE N"
"freeleft (MPAIR X Y) = X"
"freeleft (CRYPT K X) = freeleft X"
"freeleft (DECRYPT K X) = freeleft X"
text{*This theorem lets us prove that the left function respects the
equivalence relation. It also helps us prove that MPair
(the abstract constructor) is injective*}
theorem msgrel_imp_eqv_freeleft:
"U ∼ V ==> freeleft U ∼ freeleft V"
by (erule msgrel.induct, auto intro: msgrel.intros)
subsubsection{*The Right Projection*}
text{*A function to return the right part of the top pair in a message.*}
consts freeright :: "freemsg => freemsg"
primrec
"freeright (NONCE N) = NONCE N"
"freeright (MPAIR X Y) = Y"
"freeright (CRYPT K X) = freeright X"
"freeright (DECRYPT K X) = freeright X"
text{*This theorem lets us prove that the right function respects the
equivalence relation. It also helps us prove that MPair
(the abstract constructor) is injective*}
theorem msgrel_imp_eqv_freeright:
"U ∼ V ==> freeright U ∼ freeright V"
by (erule msgrel.induct, auto intro: msgrel.intros)
subsubsection{*The Discriminator for Constructors*}
text{*A function to distinguish nonces, mpairs and encryptions*}
consts freediscrim :: "freemsg => int"
primrec
"freediscrim (NONCE N) = 0"
"freediscrim (MPAIR X Y) = 1"
"freediscrim (CRYPT K X) = freediscrim X + 2"
"freediscrim (DECRYPT K X) = freediscrim X - 2"
text{*This theorem helps us prove @{term "Nonce N ≠ MPair X Y"}*}
theorem msgrel_imp_eq_freediscrim:
"U ∼ V ==> freediscrim U = freediscrim V"
by (erule msgrel.induct, auto)
subsection{*The Initial Algebra: A Quotiented Message Type*}
typedef (Msg) msg = "UNIV//msgrel"
by (auto simp add: quotient_def)
text{*The abstract message constructors*}
constdefs
Nonce :: "nat => msg"
"Nonce N == Abs_Msg(msgrel``{NONCE N})"
MPair :: "[msg,msg] => msg"
"MPair X Y ==
Abs_Msg (\<Union>U ∈ Rep_Msg X. \<Union>V ∈ Rep_Msg Y. msgrel``{MPAIR U V})"
Crypt :: "[nat,msg] => msg"
"Crypt K X ==
Abs_Msg (\<Union>U ∈ Rep_Msg X. msgrel``{CRYPT K U})"
Decrypt :: "[nat,msg] => msg"
"Decrypt K X ==
Abs_Msg (\<Union>U ∈ Rep_Msg X. msgrel``{DECRYPT K U})"
text{*Reduces equality of equivalence classes to the @{term msgrel} relation:
@{term "(msgrel `` {x} = msgrel `` {y}) = ((x,y) ∈ msgrel)"} *}
lemmas equiv_msgrel_iff = eq_equiv_class_iff [OF equiv_msgrel UNIV_I UNIV_I]
declare equiv_msgrel_iff [simp]
text{*All equivalence classes belong to set of representatives*}
lemma [simp]: "msgrel``{U} ∈ Msg"
by (auto simp add: Msg_def quotient_def intro: msgrel_refl)
lemma inj_on_Abs_Msg: "inj_on Abs_Msg Msg"
apply (rule inj_on_inverseI)
apply (erule Abs_Msg_inverse)
done
text{*Reduces equality on abstractions to equality on representatives*}
declare inj_on_Abs_Msg [THEN inj_on_iff, simp]
declare Abs_Msg_inverse [simp]
subsubsection{*Characteristic Equations for the Abstract Constructors*}
lemma MPair: "MPair (Abs_Msg(msgrel``{U})) (Abs_Msg(msgrel``{V})) =
Abs_Msg (msgrel``{MPAIR U V})"
proof -
have "(λU V. msgrel `` {MPAIR U V}) respects2 msgrel"
by (simp add: congruent2_def msgrel.MPAIR)
thus ?thesis
by (simp add: MPair_def UN_equiv_class2 [OF equiv_msgrel equiv_msgrel])
qed
lemma Crypt: "Crypt K (Abs_Msg(msgrel``{U})) = Abs_Msg (msgrel``{CRYPT K U})"
proof -
have "(λU. msgrel `` {CRYPT K U}) respects msgrel"
by (simp add: congruent_def msgrel.CRYPT)
thus ?thesis
by (simp add: Crypt_def UN_equiv_class [OF equiv_msgrel])
qed
lemma Decrypt:
"Decrypt K (Abs_Msg(msgrel``{U})) = Abs_Msg (msgrel``{DECRYPT K U})"
proof -
have "(λU. msgrel `` {DECRYPT K U}) respects msgrel"
by (simp add: congruent_def msgrel.DECRYPT)
thus ?thesis
by (simp add: Decrypt_def UN_equiv_class [OF equiv_msgrel])
qed
text{*Case analysis on the representation of a msg as an equivalence class.*}
lemma eq_Abs_Msg [case_names Abs_Msg, cases type: msg]:
"(!!U. z = Abs_Msg(msgrel``{U}) ==> P) ==> P"
apply (rule Rep_Msg [of z, unfolded Msg_def, THEN quotientE])
apply (drule arg_cong [where f=Abs_Msg])
apply (auto simp add: Rep_Msg_inverse intro: msgrel_refl)
done
text{*Establishing these two equations is the point of the whole exercise*}
theorem CD_eq [simp]: "Crypt K (Decrypt K X) = X"
by (cases X, simp add: Crypt Decrypt CD)
theorem DC_eq [simp]: "Decrypt K (Crypt K X) = X"
by (cases X, simp add: Crypt Decrypt DC)
subsection{*The Abstract Function to Return the Set of Nonces*}
constdefs
nonces :: "msg => nat set"
"nonces X == \<Union>U ∈ Rep_Msg X. freenonces U"
lemma nonces_congruent: "freenonces respects msgrel"
by (simp add: congruent_def msgrel_imp_eq_freenonces)
text{*Now prove the four equations for @{term nonces}*}
lemma nonces_Nonce [simp]: "nonces (Nonce N) = {N}"
by (simp add: nonces_def Nonce_def
UN_equiv_class [OF equiv_msgrel nonces_congruent])
lemma nonces_MPair [simp]: "nonces (MPair X Y) = nonces X ∪ nonces Y"
apply (cases X, cases Y)
apply (simp add: nonces_def MPair
UN_equiv_class [OF equiv_msgrel nonces_congruent])
done
lemma nonces_Crypt [simp]: "nonces (Crypt K X) = nonces X"
apply (cases X)
apply (simp add: nonces_def Crypt
UN_equiv_class [OF equiv_msgrel nonces_congruent])
done
lemma nonces_Decrypt [simp]: "nonces (Decrypt K X) = nonces X"
apply (cases X)
apply (simp add: nonces_def Decrypt
UN_equiv_class [OF equiv_msgrel nonces_congruent])
done
subsection{*The Abstract Function to Return the Left Part*}
constdefs
left :: "msg => msg"
"left X == Abs_Msg (\<Union>U ∈ Rep_Msg X. msgrel``{freeleft U})"
lemma left_congruent: "(λU. msgrel `` {freeleft U}) respects msgrel"
by (simp add: congruent_def msgrel_imp_eqv_freeleft)
text{*Now prove the four equations for @{term left}*}
lemma left_Nonce [simp]: "left (Nonce N) = Nonce N"
by (simp add: left_def Nonce_def
UN_equiv_class [OF equiv_msgrel left_congruent])
lemma left_MPair [simp]: "left (MPair X Y) = X"
apply (cases X, cases Y)
apply (simp add: left_def MPair
UN_equiv_class [OF equiv_msgrel left_congruent])
done
lemma left_Crypt [simp]: "left (Crypt K X) = left X"
apply (cases X)
apply (simp add: left_def Crypt
UN_equiv_class [OF equiv_msgrel left_congruent])
done
lemma left_Decrypt [simp]: "left (Decrypt K X) = left X"
apply (cases X)
apply (simp add: left_def Decrypt
UN_equiv_class [OF equiv_msgrel left_congruent])
done
subsection{*The Abstract Function to Return the Right Part*}
constdefs
right :: "msg => msg"
"right X == Abs_Msg (\<Union>U ∈ Rep_Msg X. msgrel``{freeright U})"
lemma right_congruent: "(λU. msgrel `` {freeright U}) respects msgrel"
by (simp add: congruent_def msgrel_imp_eqv_freeright)
text{*Now prove the four equations for @{term right}*}
lemma right_Nonce [simp]: "right (Nonce N) = Nonce N"
by (simp add: right_def Nonce_def
UN_equiv_class [OF equiv_msgrel right_congruent])
lemma right_MPair [simp]: "right (MPair X Y) = Y"
apply (cases X, cases Y)
apply (simp add: right_def MPair
UN_equiv_class [OF equiv_msgrel right_congruent])
done
lemma right_Crypt [simp]: "right (Crypt K X) = right X"
apply (cases X)
apply (simp add: right_def Crypt
UN_equiv_class [OF equiv_msgrel right_congruent])
done
lemma right_Decrypt [simp]: "right (Decrypt K X) = right X"
apply (cases X)
apply (simp add: right_def Decrypt
UN_equiv_class [OF equiv_msgrel right_congruent])
done
subsection{*Injectivity Properties of Some Constructors*}
lemma NONCE_imp_eq: "NONCE m ∼ NONCE n ==> m = n"
by (drule msgrel_imp_eq_freenonces, simp)
text{*Can also be proved using the function @{term nonces}*}
lemma Nonce_Nonce_eq [iff]: "(Nonce m = Nonce n) = (m = n)"
by (auto simp add: Nonce_def msgrel_refl dest: NONCE_imp_eq)
lemma MPAIR_imp_eqv_left: "MPAIR X Y ∼ MPAIR X' Y' ==> X ∼ X'"
by (drule msgrel_imp_eqv_freeleft, simp)
lemma MPair_imp_eq_left:
assumes eq: "MPair X Y = MPair X' Y'" shows "X = X'"
proof -
from eq
have "left (MPair X Y) = left (MPair X' Y')" by simp
thus ?thesis by simp
qed
lemma MPAIR_imp_eqv_right: "MPAIR X Y ∼ MPAIR X' Y' ==> Y ∼ Y'"
by (drule msgrel_imp_eqv_freeright, simp)
lemma MPair_imp_eq_right: "MPair X Y = MPair X' Y' ==> Y = Y'"
apply (cases X, cases X', cases Y, cases Y')
apply (simp add: MPair)
apply (erule MPAIR_imp_eqv_right)
done
theorem MPair_MPair_eq [iff]: "(MPair X Y = MPair X' Y') = (X=X' & Y=Y')"
by (blast dest: MPair_imp_eq_left MPair_imp_eq_right)
lemma NONCE_neqv_MPAIR: "NONCE m ∼ MPAIR X Y ==> False"
by (drule msgrel_imp_eq_freediscrim, simp)
theorem Nonce_neq_MPair [iff]: "Nonce N ≠ MPair X Y"
apply (cases X, cases Y)
apply (simp add: Nonce_def MPair)
apply (blast dest: NONCE_neqv_MPAIR)
done
text{*Example suggested by a referee*}
theorem Crypt_Nonce_neq_Nonce: "Crypt K (Nonce M) ≠ Nonce N"
by (auto simp add: Nonce_def Crypt dest: msgrel_imp_eq_freediscrim)
text{*...and many similar results*}
theorem Crypt2_Nonce_neq_Nonce: "Crypt K (Crypt K' (Nonce M)) ≠ Nonce N"
by (auto simp add: Nonce_def Crypt dest: msgrel_imp_eq_freediscrim)
theorem Crypt_Crypt_eq [iff]: "(Crypt K X = Crypt K X') = (X=X')"
proof
assume "Crypt K X = Crypt K X'"
hence "Decrypt K (Crypt K X) = Decrypt K (Crypt K X')" by simp
thus "X = X'" by simp
next
assume "X = X'"
thus "Crypt K X = Crypt K X'" by simp
qed
theorem Decrypt_Decrypt_eq [iff]: "(Decrypt K X = Decrypt K X') = (X=X')"
proof
assume "Decrypt K X = Decrypt K X'"
hence "Crypt K (Decrypt K X) = Crypt K (Decrypt K X')" by simp
thus "X = X'" by simp
next
assume "X = X'"
thus "Decrypt K X = Decrypt K X'" by simp
qed
lemma msg_induct [case_names Nonce MPair Crypt Decrypt, cases type: msg]:
assumes N: "!!N. P (Nonce N)"
and M: "!!X Y. [|P X; P Y|] ==> P (MPair X Y)"
and C: "!!K X. P X ==> P (Crypt K X)"
and D: "!!K X. P X ==> P (Decrypt K X)"
shows "P msg"
proof (cases msg, erule ssubst)
fix U::freemsg
show "P (Abs_Msg (msgrel `` {U}))"
proof (induct U)
case (NONCE N)
with N show ?case by (simp add: Nonce_def)
next
case (MPAIR X Y)
with M [of "Abs_Msg (msgrel `` {X})" "Abs_Msg (msgrel `` {Y})"]
show ?case by (simp add: MPair)
next
case (CRYPT K X)
with C [of "Abs_Msg (msgrel `` {X})"]
show ?case by (simp add: Crypt)
next
case (DECRYPT K X)
with D [of "Abs_Msg (msgrel `` {X})"]
show ?case by (simp add: Decrypt)
qed
qed
subsection{*The Abstract Discriminator*}
text{*However, as @{text Crypt_Nonce_neq_Nonce} above illustrates, we don't
need this function in order to prove discrimination theorems.*}
constdefs
discrim :: "msg => int"
"discrim X == contents (\<Union>U ∈ Rep_Msg X. {freediscrim U})"
lemma discrim_congruent: "(λU. {freediscrim U}) respects msgrel"
by (simp add: congruent_def msgrel_imp_eq_freediscrim)
text{*Now prove the four equations for @{term discrim}*}
lemma discrim_Nonce [simp]: "discrim (Nonce N) = 0"
by (simp add: discrim_def Nonce_def
UN_equiv_class [OF equiv_msgrel discrim_congruent])
lemma discrim_MPair [simp]: "discrim (MPair X Y) = 1"
apply (cases X, cases Y)
apply (simp add: discrim_def MPair
UN_equiv_class [OF equiv_msgrel discrim_congruent])
done
lemma discrim_Crypt [simp]: "discrim (Crypt K X) = discrim X + 2"
apply (cases X)
apply (simp add: discrim_def Crypt
UN_equiv_class [OF equiv_msgrel discrim_congruent])
done
lemma discrim_Decrypt [simp]: "discrim (Decrypt K X) = discrim X - 2"
apply (cases X)
apply (simp add: discrim_def Decrypt
UN_equiv_class [OF equiv_msgrel discrim_congruent])
done
end
lemma msgrel_refl:
X ∼ X
theorem equiv_msgrel:
equiv UNIV msgrel
theorem msgrel_imp_eq_freenonces:
U ∼ V ==> freenonces U = freenonces V
theorem msgrel_imp_eqv_freeleft:
U ∼ V ==> freeleft U ∼ freeleft V
theorem msgrel_imp_eqv_freeright:
U ∼ V ==> freeright U ∼ freeright V
theorem msgrel_imp_eq_freediscrim:
U ∼ V ==> freediscrim U = freediscrim V
lemmas equiv_msgrel_iff:
(msgrel `` {x} = msgrel `` {y}) = (x ∼ y)
lemmas equiv_msgrel_iff:
(msgrel `` {x} = msgrel `` {y}) = (x ∼ y)
lemma
msgrel `` {U} ∈ Msg
lemma inj_on_Abs_Msg:
inj_on Abs_Msg Msg
lemma MPair:
MPair (Abs_Msg (msgrel `` {U})) (Abs_Msg (msgrel `` {V})) =
Abs_Msg (msgrel `` {MPAIR U V})
lemma Crypt:
Crypt K (Abs_Msg (msgrel `` {U})) = Abs_Msg (msgrel `` {CRYPT K U})
lemma Decrypt:
Decrypt K (Abs_Msg (msgrel `` {U})) = Abs_Msg (msgrel `` {DECRYPT K U})
lemma eq_Abs_Msg:
(!!U. z = Abs_Msg (msgrel `` {U}) ==> P) ==> P
theorem CD_eq:
Crypt K (Decrypt K X) = X
theorem DC_eq:
Decrypt K (Crypt K X) = X
lemma nonces_congruent:
freenonces respects msgrel
lemma nonces_Nonce:
nonces (Nonce N) = {N}
lemma nonces_MPair:
nonces (MPair X Y) = nonces X ∪ nonces Y
lemma nonces_Crypt:
nonces (Crypt K X) = nonces X
lemma nonces_Decrypt:
nonces (Decrypt K X) = nonces X
lemma left_congruent:
(%U. msgrel `` {freeleft U}) respects msgrel
lemma left_Nonce:
left (Nonce N) = Nonce N
lemma left_MPair:
left (MPair X Y) = X
lemma left_Crypt:
left (Crypt K X) = left X
lemma left_Decrypt:
left (Decrypt K X) = left X
lemma right_congruent:
(%U. msgrel `` {freeright U}) respects msgrel
lemma right_Nonce:
right (Nonce N) = Nonce N
lemma right_MPair:
right (MPair X Y) = Y
lemma right_Crypt:
right (Crypt K X) = right X
lemma right_Decrypt:
right (Decrypt K X) = right X
lemma NONCE_imp_eq:
NONCE m ∼ NONCE n ==> m = n
lemma Nonce_Nonce_eq:
(Nonce m = Nonce n) = (m = n)
lemma MPAIR_imp_eqv_left:
MPAIR X Y ∼ MPAIR X' Y' ==> X ∼ X'
lemma MPair_imp_eq_left:
MPair X Y = MPair X' Y' ==> X = X'
lemma MPAIR_imp_eqv_right:
MPAIR X Y ∼ MPAIR X' Y' ==> Y ∼ Y'
lemma MPair_imp_eq_right:
MPair X Y = MPair X' Y' ==> Y = Y'
theorem MPair_MPair_eq:
(MPair X Y = MPair X' Y') = (X = X' ∧ Y = Y')
lemma NONCE_neqv_MPAIR:
NONCE m ∼ MPAIR X Y ==> False
theorem Nonce_neq_MPair:
Nonce N ≠ MPair X Y
theorem Crypt_Nonce_neq_Nonce:
Crypt K (Nonce M) ≠ Nonce N
theorem Crypt2_Nonce_neq_Nonce:
Crypt K (Crypt K' (Nonce M)) ≠ Nonce N
theorem Crypt_Crypt_eq:
(Crypt K X = Crypt K X') = (X = X')
theorem Decrypt_Decrypt_eq:
(Decrypt K X = Decrypt K X') = (X = X')
lemma msg_induct:
[| !!N. P (Nonce N); !!X Y. [| P X; P Y |] ==> P (MPair X Y); !!K X. P X ==> P (Crypt K X); !!K X. P X ==> P (Decrypt K X) |] ==> P msg
lemma discrim_congruent:
(%U. {freediscrim U}) respects msgrel
lemma discrim_Nonce:
discrim (Nonce N) = 0
lemma discrim_MPair:
discrim (MPair X Y) = 1
lemma discrim_Crypt:
discrim (Crypt K X) = discrim X + 2
lemma discrim_Decrypt:
discrim (Decrypt K X) = discrim X - 2