Up to index of Isabelle/HOL/Induct
theory QuoNestedDataType(* Title: HOL/Induct/QuoNestedDataType
ID: $Id: QuoNestedDataType.thy,v 1.2 2005/06/17 14:13:07 haftmann Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 2004 University of Cambridge
*)
header{*Quotienting a Free Algebra Involving Nested Recursion*}
theory QuoNestedDataType imports Main begin
subsection{*Defining the Free Algebra*}
text{*Messages with encryption and decryption as free constructors.*}
datatype
freeExp = VAR nat
| PLUS freeExp freeExp
| FNCALL nat "freeExp list"
text{*The equivalence relation, which makes PLUS associative.*}
consts exprel :: "(freeExp * freeExp) set"
syntax
"_exprel" :: "[freeExp, freeExp] => bool" (infixl "~~" 50)
syntax (xsymbols)
"_exprel" :: "[freeExp, freeExp] => bool" (infixl "∼" 50)
syntax (HTML output)
"_exprel" :: "[freeExp, freeExp] => bool" (infixl "∼" 50)
translations
"X ∼ Y" == "(X,Y) ∈ exprel"
text{*The first rule is the desired equation. The next three rules
make the equations applicable to subterms. The last two rules are symmetry
and transitivity.*}
inductive "exprel"
intros
ASSOC: "PLUS X (PLUS Y Z) ∼ PLUS (PLUS X Y) Z"
VAR: "VAR N ∼ VAR N"
PLUS: "[|X ∼ X'; Y ∼ Y'|] ==> PLUS X Y ∼ PLUS X' Y'"
FNCALL: "(Xs,Xs') ∈ listrel exprel ==> FNCALL F Xs ∼ FNCALL F Xs'"
SYM: "X ∼ Y ==> Y ∼ X"
TRANS: "[|X ∼ Y; Y ∼ Z|] ==> X ∼ Z"
monos listrel_mono
text{*Proving that it is an equivalence relation*}
lemma exprel_refl_conj: "X ∼ X & (Xs,Xs) ∈ listrel(exprel)"
apply (induct X and Xs)
apply (blast intro: exprel.intros listrel.intros)+
done
lemmas exprel_refl = exprel_refl_conj [THEN conjunct1]
lemmas list_exprel_refl = exprel_refl_conj [THEN conjunct2]
theorem equiv_exprel: "equiv UNIV exprel"
proof (simp add: equiv_def, intro conjI)
show "reflexive exprel" by (simp add: refl_def exprel_refl)
show "sym exprel" by (simp add: sym_def, blast intro: exprel.SYM)
show "trans exprel" by (simp add: trans_def, blast intro: exprel.TRANS)
qed
theorem equiv_list_exprel: "equiv UNIV (listrel exprel)"
by (insert equiv_listrel [OF equiv_exprel], simp)
lemma FNCALL_Nil: "FNCALL F [] ∼ FNCALL F []"
apply (rule exprel.intros)
apply (rule listrel.intros)
done
lemma FNCALL_Cons:
"[|X ∼ X'; (Xs,Xs') ∈ listrel(exprel)|]
==> FNCALL F (X#Xs) ∼ FNCALL F (X'#Xs')"
by (blast intro: exprel.intros listrel.intros)
subsection{*Some Functions on the Free Algebra*}
subsubsection{*The Set of Variables*}
text{*A function to return the set of variables present in a message. It will
be lifted to the initial algrebra, to serve as an example of that process.
Note that the "free" refers to the free datatype rather than to the concept
of a free variable.*}
consts
freevars :: "freeExp => nat set"
freevars_list :: "freeExp list => nat set"
primrec
"freevars (VAR N) = {N}"
"freevars (PLUS X Y) = freevars X ∪ freevars Y"
"freevars (FNCALL F Xs) = freevars_list Xs"
"freevars_list [] = {}"
"freevars_list (X # Xs) = freevars X ∪ freevars_list Xs"
text{*This theorem lets us prove that the vars function respects the
equivalence relation. It also helps us prove that Variable
(the abstract constructor) is injective*}
theorem exprel_imp_eq_freevars: "U ∼ V ==> freevars U = freevars V"
apply (erule exprel.induct)
apply (erule_tac [4] listrel.induct)
apply (simp_all add: Un_assoc)
done
subsubsection{*Functions for Freeness*}
text{*A discriminator function to distinguish vars, sums and function calls*}
consts freediscrim :: "freeExp => int"
primrec
"freediscrim (VAR N) = 0"
"freediscrim (PLUS X Y) = 1"
"freediscrim (FNCALL F Xs) = 2"
theorem exprel_imp_eq_freediscrim:
"U ∼ V ==> freediscrim U = freediscrim V"
by (erule exprel.induct, auto)
text{*This function, which returns the function name, is used to
prove part of the injectivity property for FnCall.*}
consts freefun :: "freeExp => nat"
primrec
"freefun (VAR N) = 0"
"freefun (PLUS X Y) = 0"
"freefun (FNCALL F Xs) = F"
theorem exprel_imp_eq_freefun:
"U ∼ V ==> freefun U = freefun V"
by (erule exprel.induct, simp_all add: listrel.intros)
text{*This function, which returns the list of function arguments, is used to
prove part of the injectivity property for FnCall.*}
consts freeargs :: "freeExp => freeExp list"
primrec
"freeargs (VAR N) = []"
"freeargs (PLUS X Y) = []"
"freeargs (FNCALL F Xs) = Xs"
theorem exprel_imp_eqv_freeargs:
"U ∼ V ==> (freeargs U, freeargs V) ∈ listrel exprel"
apply (erule exprel.induct)
apply (erule_tac [4] listrel.induct)
apply (simp_all add: listrel.intros)
apply (blast intro: symD [OF equiv.sym [OF equiv_list_exprel]])
apply (blast intro: transD [OF equiv.trans [OF equiv_list_exprel]])
done
subsection{*The Initial Algebra: A Quotiented Message Type*}
typedef (Exp) exp = "UNIV//exprel"
by (auto simp add: quotient_def)
text{*The abstract message constructors*}
constdefs
Var :: "nat => exp"
"Var N == Abs_Exp(exprel``{VAR N})"
Plus :: "[exp,exp] => exp"
"Plus X Y ==
Abs_Exp (\<Union>U ∈ Rep_Exp X. \<Union>V ∈ Rep_Exp Y. exprel``{PLUS U V})"
FnCall :: "[nat, exp list] => exp"
"FnCall F Xs ==
Abs_Exp (\<Union>Us ∈ listset (map Rep_Exp Xs). exprel `` {FNCALL F Us})"
text{*Reduces equality of equivalence classes to the @{term exprel} relation:
@{term "(exprel `` {x} = exprel `` {y}) = ((x,y) ∈ exprel)"} *}
lemmas equiv_exprel_iff = eq_equiv_class_iff [OF equiv_exprel UNIV_I UNIV_I]
declare equiv_exprel_iff [simp]
text{*All equivalence classes belong to set of representatives*}
lemma [simp]: "exprel``{U} ∈ Exp"
by (auto simp add: Exp_def quotient_def intro: exprel_refl)
lemma inj_on_Abs_Exp: "inj_on Abs_Exp Exp"
apply (rule inj_on_inverseI)
apply (erule Abs_Exp_inverse)
done
text{*Reduces equality on abstractions to equality on representatives*}
declare inj_on_Abs_Exp [THEN inj_on_iff, simp]
declare Abs_Exp_inverse [simp]
text{*Case analysis on the representation of a exp as an equivalence class.*}
lemma eq_Abs_Exp [case_names Abs_Exp, cases type: exp]:
"(!!U. z = Abs_Exp(exprel``{U}) ==> P) ==> P"
apply (rule Rep_Exp [of z, unfolded Exp_def, THEN quotientE])
apply (drule arg_cong [where f=Abs_Exp])
apply (auto simp add: Rep_Exp_inverse intro: exprel_refl)
done
subsection{*Every list of abstract expressions can be expressed in terms of a
list of concrete expressions*}
constdefs Abs_ExpList :: "freeExp list => exp list"
"Abs_ExpList Xs == map (%U. Abs_Exp(exprel``{U})) Xs"
lemma Abs_ExpList_Nil [simp]: "Abs_ExpList [] == []"
by (simp add: Abs_ExpList_def)
lemma Abs_ExpList_Cons [simp]:
"Abs_ExpList (X#Xs) == Abs_Exp (exprel``{X}) # Abs_ExpList Xs"
by (simp add: Abs_ExpList_def)
lemma ExpList_rep: "∃Us. z = Abs_ExpList Us"
apply (induct z)
apply (rule_tac [2] z=a in eq_Abs_Exp)
apply (auto simp add: Abs_ExpList_def intro: exprel_refl)
done
lemma eq_Abs_ExpList [case_names Abs_ExpList]:
"(!!Us. z = Abs_ExpList Us ==> P) ==> P"
by (rule exE [OF ExpList_rep], blast)
subsubsection{*Characteristic Equations for the Abstract Constructors*}
lemma Plus: "Plus (Abs_Exp(exprel``{U})) (Abs_Exp(exprel``{V})) =
Abs_Exp (exprel``{PLUS U V})"
proof -
have "(λU V. exprel `` {PLUS U V}) respects2 exprel"
by (simp add: congruent2_def exprel.PLUS)
thus ?thesis
by (simp add: Plus_def UN_equiv_class2 [OF equiv_exprel equiv_exprel])
qed
text{*It is not clear what to do with FnCall: it's argument is an abstraction
of an @{typ "exp list"}. Is it just Nil or Cons? What seems to work best is to
regard an @{typ "exp list"} as a @{term "listrel exprel"} equivalence class*}
text{*This theorem is easily proved but never used. There's no obvious way
even to state the analogous result, @{text FnCall_Cons}.*}
lemma FnCall_Nil: "FnCall F [] = Abs_Exp (exprel``{FNCALL F []})"
by (simp add: FnCall_def)
lemma FnCall_respects:
"(λUs. exprel `` {FNCALL F Us}) respects (listrel exprel)"
by (simp add: congruent_def exprel.FNCALL)
lemma FnCall_sing:
"FnCall F [Abs_Exp(exprel``{U})] = Abs_Exp (exprel``{FNCALL F [U]})"
proof -
have "(λU. exprel `` {FNCALL F [U]}) respects exprel"
by (simp add: congruent_def FNCALL_Cons listrel.intros)
thus ?thesis
by (simp add: FnCall_def UN_equiv_class [OF equiv_exprel])
qed
lemma listset_Rep_Exp_Abs_Exp:
"listset (map Rep_Exp (Abs_ExpList Us)) = listrel exprel `` {Us}";
by (induct_tac Us, simp_all add: listrel_Cons Abs_ExpList_def)
lemma FnCall:
"FnCall F (Abs_ExpList Us) = Abs_Exp (exprel``{FNCALL F Us})"
proof -
have "(λUs. exprel `` {FNCALL F Us}) respects (listrel exprel)"
by (simp add: congruent_def exprel.FNCALL)
thus ?thesis
by (simp add: FnCall_def UN_equiv_class [OF equiv_list_exprel]
listset_Rep_Exp_Abs_Exp)
qed
text{*Establishing this equation is the point of the whole exercise*}
theorem Plus_assoc: "Plus X (Plus Y Z) = Plus (Plus X Y) Z"
by (cases X, cases Y, cases Z, simp add: Plus exprel.ASSOC)
subsection{*The Abstract Function to Return the Set of Variables*}
constdefs
vars :: "exp => nat set"
"vars X == \<Union>U ∈ Rep_Exp X. freevars U"
lemma vars_respects: "freevars respects exprel"
by (simp add: congruent_def exprel_imp_eq_freevars)
text{*The extension of the function @{term vars} to lists*}
consts vars_list :: "exp list => nat set"
primrec
"vars_list [] = {}"
"vars_list(E#Es) = vars E ∪ vars_list Es"
text{*Now prove the three equations for @{term vars}*}
lemma vars_Variable [simp]: "vars (Var N) = {N}"
by (simp add: vars_def Var_def
UN_equiv_class [OF equiv_exprel vars_respects])
lemma vars_Plus [simp]: "vars (Plus X Y) = vars X ∪ vars Y"
apply (cases X, cases Y)
apply (simp add: vars_def Plus
UN_equiv_class [OF equiv_exprel vars_respects])
done
lemma vars_FnCall [simp]: "vars (FnCall F Xs) = vars_list Xs"
apply (cases Xs rule: eq_Abs_ExpList)
apply (simp add: FnCall)
apply (induct_tac Us)
apply (simp_all add: vars_def UN_equiv_class [OF equiv_exprel vars_respects])
done
lemma vars_FnCall_Nil: "vars (FnCall F Nil) = {}"
by simp
lemma vars_FnCall_Cons: "vars (FnCall F (X#Xs)) = vars X ∪ vars_list Xs"
by simp
subsection{*Injectivity Properties of Some Constructors*}
lemma VAR_imp_eq: "VAR m ∼ VAR n ==> m = n"
by (drule exprel_imp_eq_freevars, simp)
text{*Can also be proved using the function @{term vars}*}
lemma Var_Var_eq [iff]: "(Var m = Var n) = (m = n)"
by (auto simp add: Var_def exprel_refl dest: VAR_imp_eq)
lemma VAR_neqv_PLUS: "VAR m ∼ PLUS X Y ==> False"
by (drule exprel_imp_eq_freediscrim, simp)
theorem Var_neq_Plus [iff]: "Var N ≠ Plus X Y"
apply (cases X, cases Y)
apply (simp add: Var_def Plus)
apply (blast dest: VAR_neqv_PLUS)
done
theorem Var_neq_FnCall [iff]: "Var N ≠ FnCall F Xs"
apply (cases Xs rule: eq_Abs_ExpList)
apply (auto simp add: FnCall Var_def)
apply (drule exprel_imp_eq_freediscrim, simp)
done
subsection{*Injectivity of @{term FnCall}*}
constdefs
fun :: "exp => nat"
"fun X == contents (\<Union>U ∈ Rep_Exp X. {freefun U})"
lemma fun_respects: "(%U. {freefun U}) respects exprel"
by (simp add: congruent_def exprel_imp_eq_freefun)
lemma fun_FnCall [simp]: "fun (FnCall F Xs) = F"
apply (cases Xs rule: eq_Abs_ExpList)
apply (simp add: FnCall fun_def UN_equiv_class [OF equiv_exprel fun_respects])
done
constdefs
args :: "exp => exp list"
"args X == contents (\<Union>U ∈ Rep_Exp X. {Abs_ExpList (freeargs U)})"
text{*This result can probably be generalized to arbitrary equivalence
relations, but with little benefit here.*}
lemma Abs_ExpList_eq:
"(y, z) ∈ listrel exprel ==> Abs_ExpList (y) = Abs_ExpList (z)"
by (erule listrel.induct, simp_all)
lemma args_respects: "(%U. {Abs_ExpList (freeargs U)}) respects exprel"
by (simp add: congruent_def Abs_ExpList_eq exprel_imp_eqv_freeargs)
lemma args_FnCall [simp]: "args (FnCall F Xs) = Xs"
apply (cases Xs rule: eq_Abs_ExpList)
apply (simp add: FnCall args_def UN_equiv_class [OF equiv_exprel args_respects])
done
lemma FnCall_FnCall_eq [iff]:
"(FnCall F Xs = FnCall F' Xs') = (F=F' & Xs=Xs')"
proof
assume "FnCall F Xs = FnCall F' Xs'"
hence "fun (FnCall F Xs) = fun (FnCall F' Xs')"
and "args (FnCall F Xs) = args (FnCall F' Xs')" by auto
thus "F=F' & Xs=Xs'" by simp
next
assume "F=F' & Xs=Xs'" thus "FnCall F Xs = FnCall F' Xs'" by simp
qed
subsection{*The Abstract Discriminator*}
text{*However, as @{text FnCall_Var_neq_Var} illustrates, we don't need this
function in order to prove discrimination theorems.*}
constdefs
discrim :: "exp => int"
"discrim X == contents (\<Union>U ∈ Rep_Exp X. {freediscrim U})"
lemma discrim_respects: "(λU. {freediscrim U}) respects exprel"
by (simp add: congruent_def exprel_imp_eq_freediscrim)
text{*Now prove the four equations for @{term discrim}*}
lemma discrim_Var [simp]: "discrim (Var N) = 0"
by (simp add: discrim_def Var_def
UN_equiv_class [OF equiv_exprel discrim_respects])
lemma discrim_Plus [simp]: "discrim (Plus X Y) = 1"
apply (cases X, cases Y)
apply (simp add: discrim_def Plus
UN_equiv_class [OF equiv_exprel discrim_respects])
done
lemma discrim_FnCall [simp]: "discrim (FnCall F Xs) = 2"
apply (rule_tac z=Xs in eq_Abs_ExpList)
apply (simp add: discrim_def FnCall
UN_equiv_class [OF equiv_exprel discrim_respects])
done
text{*The structural induction rule for the abstract type*}
theorem exp_induct:
assumes V: "!!nat. P1 (Var nat)"
and P: "!!exp1 exp2. [|P1 exp1; P1 exp2|] ==> P1 (Plus exp1 exp2)"
and F: "!!nat list. P2 list ==> P1 (FnCall nat list)"
and Nil: "P2 []"
and Cons: "!!exp list. [|P1 exp; P2 list|] ==> P2 (exp # list)"
shows "P1 exp & P2 list"
proof (cases exp, rule eq_Abs_ExpList [of list], clarify)
fix U Us
show "P1 (Abs_Exp (exprel `` {U})) ∧
P2 (Abs_ExpList Us)"
proof (induct U and Us)
case (VAR nat)
with V show ?case by (simp add: Var_def)
next
case (PLUS X Y)
with P [of "Abs_Exp (exprel `` {X})" "Abs_Exp (exprel `` {Y})"]
show ?case by (simp add: Plus)
next
case (FNCALL nat list)
with F [of "Abs_ExpList list"]
show ?case by (simp add: FnCall)
next
case Nil_freeExp
with Nil show ?case by simp
next
case Cons_freeExp
with Cons
show ?case by simp
qed
qed
end
lemma exprel_refl_conj:
X ∼ X ∧ (Xs, Xs) ∈ listrel exprel
lemmas exprel_refl:
X1 ∼ X1
lemmas exprel_refl:
X1 ∼ X1
lemmas list_exprel_refl:
(Xs1, Xs1) ∈ listrel exprel
lemmas list_exprel_refl:
(Xs1, Xs1) ∈ listrel exprel
theorem equiv_exprel:
equiv UNIV exprel
theorem equiv_list_exprel:
equiv UNIV (listrel exprel)
lemma FNCALL_Nil:
FNCALL F [] ∼ FNCALL F []
lemma FNCALL_Cons:
[| X ∼ X'; (Xs, Xs') ∈ listrel exprel |] ==> FNCALL F (X # Xs) ∼ FNCALL F (X' # Xs')
theorem exprel_imp_eq_freevars:
U ∼ V ==> freevars U = freevars V
theorem exprel_imp_eq_freediscrim:
U ∼ V ==> freediscrim U = freediscrim V
theorem exprel_imp_eq_freefun:
U ∼ V ==> freefun U = freefun V
theorem exprel_imp_eqv_freeargs:
U ∼ V ==> (freeargs U, freeargs V) ∈ listrel exprel
lemmas equiv_exprel_iff:
(exprel `` {x} = exprel `` {y}) = (x ∼ y)
lemmas equiv_exprel_iff:
(exprel `` {x} = exprel `` {y}) = (x ∼ y)
lemma
exprel `` {U} ∈ Exp
lemma inj_on_Abs_Exp:
inj_on Abs_Exp Exp
lemma eq_Abs_Exp:
(!!U. z = Abs_Exp (exprel `` {U}) ==> P) ==> P
lemma Abs_ExpList_Nil:
Abs_ExpList [] == []
lemma Abs_ExpList_Cons:
Abs_ExpList (X # Xs) == Abs_Exp (exprel `` {X}) # Abs_ExpList Xs
lemma ExpList_rep:
∃Us. z = Abs_ExpList Us
lemma eq_Abs_ExpList:
(!!Us. z = Abs_ExpList Us ==> P) ==> P
lemma Plus:
QuoNestedDataType.Plus (Abs_Exp (exprel `` {U})) (Abs_Exp (exprel `` {V})) =
Abs_Exp (exprel `` {PLUS U V})
lemma FnCall_Nil:
FnCall F [] = Abs_Exp (exprel `` {FNCALL F []})
lemma FnCall_respects:
(%Us. exprel `` {FNCALL F Us}) respects listrel exprel
lemma FnCall_sing:
FnCall F [Abs_Exp (exprel `` {U})] = Abs_Exp (exprel `` {FNCALL F [U]})
lemma listset_Rep_Exp_Abs_Exp:
listset (map Rep_Exp (Abs_ExpList Us)) = listrel exprel `` {Us}
lemma FnCall:
FnCall F (Abs_ExpList Us) = Abs_Exp (exprel `` {FNCALL F Us})
theorem Plus_assoc:
QuoNestedDataType.Plus X (QuoNestedDataType.Plus Y Z) = QuoNestedDataType.Plus (QuoNestedDataType.Plus X Y) Z
lemma vars_respects:
freevars respects exprel
lemma vars_Variable:
vars (Var N) = {N}
lemma vars_Plus:
vars (QuoNestedDataType.Plus X Y) = vars X ∪ vars Y
lemma vars_FnCall:
vars (FnCall F Xs) = vars_list Xs
lemma vars_FnCall_Nil:
vars (FnCall F []) = {}
lemma vars_FnCall_Cons:
vars (FnCall F (X # Xs)) = vars X ∪ vars_list Xs
lemma VAR_imp_eq:
VAR m ∼ VAR n ==> m = n
lemma Var_Var_eq:
(Var m = Var n) = (m = n)
lemma VAR_neqv_PLUS:
VAR m ∼ PLUS X Y ==> False
theorem Var_neq_Plus:
Var N ≠ QuoNestedDataType.Plus X Y
theorem Var_neq_FnCall:
Var N ≠ FnCall F Xs
lemma fun_respects:
(%U. {freefun U}) respects exprel
lemma fun_FnCall:
fun (FnCall F Xs) = F
lemma Abs_ExpList_eq:
(y, z) ∈ listrel exprel ==> Abs_ExpList y = Abs_ExpList z
lemma args_respects:
(%U. {Abs_ExpList (freeargs U)}) respects exprel
lemma args_FnCall:
args (FnCall F Xs) = Xs
lemma FnCall_FnCall_eq:
(FnCall F Xs = FnCall F' Xs') = (F = F' ∧ Xs = Xs')
lemma discrim_respects:
(%U. {freediscrim U}) respects exprel
lemma discrim_Var:
discrim (Var N) = 0
lemma discrim_Plus:
discrim (QuoNestedDataType.Plus X Y) = 1
lemma discrim_FnCall:
discrim (FnCall F Xs) = 2
theorem exp_induct:
[| !!nat. P1.0 (Var nat); !!exp1 exp2. [| P1.0 exp1; P1.0 exp2 |] ==> P1.0 (QuoNestedDataType.Plus exp1 exp2); !!nat list. P2.0 list ==> P1.0 (FnCall nat list); P2.0 []; !!exp list. [| P1.0 exp; P2.0 list |] ==> P2.0 (exp # list) |] ==> P1.0 exp ∧ P2.0 list