(* Title: HOL/Induct/Tree.thy
ID: $Id: Tree.thy,v 1.8 2005/06/17 14:13:07 haftmann Exp $
Author: Stefan Berghofer, TU Muenchen
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
*)
header {* Infinitely branching trees *}
theory Tree imports Main begin
datatype 'a tree =
Atom 'a
| Branch "nat => 'a tree"
consts
map_tree :: "('a => 'b) => 'a tree => 'b tree"
primrec
"map_tree f (Atom a) = Atom (f a)"
"map_tree f (Branch ts) = Branch (λx. map_tree f (ts x))"
lemma tree_map_compose: "map_tree g (map_tree f t) = map_tree (g o f) t"
by (induct t) simp_all
consts
exists_tree :: "('a => bool) => 'a tree => bool"
primrec
"exists_tree P (Atom a) = P a"
"exists_tree P (Branch ts) = (∃x. exists_tree P (ts x))"
lemma exists_map:
"(!!x. P x ==> Q (f x)) ==>
exists_tree P ts ==> exists_tree Q (map_tree f ts)"
by (induct ts) auto
subsection{*The Brouwer ordinals, as in ZF/Induct/Brouwer.thy.*}
datatype brouwer = Zero | Succ "brouwer" | Lim "nat => brouwer"
text{*Addition of ordinals*}
consts
add :: "[brouwer,brouwer] => brouwer"
primrec
"add i Zero = i"
"add i (Succ j) = Succ (add i j)"
"add i (Lim f) = Lim (%n. add i (f n))"
lemma add_assoc: "add (add i j) k = add i (add j k)"
by (induct k, auto)
text{*Multiplication of ordinals*}
consts
mult :: "[brouwer,brouwer] => brouwer"
primrec
"mult i Zero = Zero"
"mult i (Succ j) = add (mult i j) i"
"mult i (Lim f) = Lim (%n. mult i (f n))"
lemma add_mult_distrib: "mult i (add j k) = add (mult i j) (mult i k)"
apply (induct k)
apply (auto simp add: add_assoc)
done
lemma mult_assoc: "mult (mult i j) k = mult i (mult j k)"
apply (induct k)
apply (auto simp add: add_mult_distrib)
done
text{*We could probably instantiate some axiomatic type classes and use
the standard infix operators.*}
subsection{*A WF Ordering for The Brouwer ordinals (Michael Compton)*}
text{*To define recdef style functions we need an ordering on the Brouwer
ordinals. Start with a predecessor relation and form its transitive
closure. *}
constdefs
brouwer_pred :: "(brouwer * brouwer) set"
"brouwer_pred == \<Union>i. {(m,n). n = Succ m ∨ (EX f. n = Lim f & m = f i)}"
brouwer_order :: "(brouwer * brouwer) set"
"brouwer_order == brouwer_pred^+"
lemma wf_brouwer_pred: "wf brouwer_pred"
by(unfold wf_def brouwer_pred_def, clarify, induct_tac x, blast+)
lemma wf_brouwer_order: "wf brouwer_order"
by(unfold brouwer_order_def, rule wf_trancl[OF wf_brouwer_pred])
lemma [simp]: "(j, Succ j) : brouwer_order"
by(auto simp add: brouwer_order_def brouwer_pred_def)
lemma [simp]: "(f n, Lim f) : brouwer_order"
by(auto simp add: brouwer_order_def brouwer_pred_def)
text{*Example of a recdef*}
consts
add2 :: "(brouwer*brouwer) => brouwer"
recdef add2 "inv_image brouwer_order (λ (x,y). y)"
"add2 (i, Zero) = i"
"add2 (i, (Succ j)) = Succ (add2 (i, j))"
"add2 (i, (Lim f)) = Lim (λ n. add2 (i, (f n)))"
(hints recdef_wf: wf_brouwer_order)
lemma add2_assoc: "add2 (add2 (i, j), k) = add2 (i, add2 (j, k))"
by (induct k, auto)
end
lemma tree_map_compose:
map_tree g (map_tree f t) = map_tree (g o f) t
lemma exists_map:
[| !!x. P x ==> Q (f x); exists_tree P ts |] ==> exists_tree Q (map_tree f ts)
lemma add_assoc:
add (add i j) k = add i (add j k)
lemma add_mult_distrib:
mult i (add j k) = add (mult i j) (mult i k)
lemma mult_assoc:
mult (mult i j) k = mult i (mult j k)
lemma wf_brouwer_pred:
wf brouwer_pred
lemma wf_brouwer_order:
wf brouwer_order
lemma
(j, Succ j) ∈ brouwer_order
lemma
(f n, Lim f) ∈ brouwer_order
lemma add2_assoc:
add2 (add2 (i, j), k) = add2 (i, add2 (j, k))