(* Title: HOL/Lambda/Lambda.thy
ID: $Id: Lambda.thy,v 1.27 2005/06/17 14:13:08 haftmann Exp $
Author: Tobias Nipkow
Copyright 1995 TU Muenchen
*)
header {* Basic definitions of Lambda-calculus *}
theory Lambda imports Main begin
subsection {* Lambda-terms in de Bruijn notation and substitution *}
datatype dB =
Var nat
| App dB dB (infixl "°" 200)
| Abs dB
consts
subst :: "[dB, dB, nat] => dB" ("_[_'/_]" [300, 0, 0] 300)
lift :: "[dB, nat] => dB"
primrec
"lift (Var i) k = (if i < k then Var i else Var (i + 1))"
"lift (s ° t) k = lift s k ° lift t k"
"lift (Abs s) k = Abs (lift s (k + 1))"
primrec (* FIXME base names *)
subst_Var: "(Var i)[s/k] =
(if k < i then Var (i - 1) else if i = k then s else Var i)"
subst_App: "(t ° u)[s/k] = t[s/k] ° u[s/k]"
subst_Abs: "(Abs t)[s/k] = Abs (t[lift s 0 / k+1])"
declare subst_Var [simp del]
text {* Optimized versions of @{term subst} and @{term lift}. *}
consts
substn :: "[dB, dB, nat] => dB"
liftn :: "[nat, dB, nat] => dB"
primrec
"liftn n (Var i) k = (if i < k then Var i else Var (i + n))"
"liftn n (s ° t) k = liftn n s k ° liftn n t k"
"liftn n (Abs s) k = Abs (liftn n s (k + 1))"
primrec
"substn (Var i) s k =
(if k < i then Var (i - 1) else if i = k then liftn k s 0 else Var i)"
"substn (t ° u) s k = substn t s k ° substn u s k"
"substn (Abs t) s k = Abs (substn t s (k + 1))"
subsection {* Beta-reduction *}
consts
beta :: "(dB × dB) set"
syntax
"_beta" :: "[dB, dB] => bool" (infixl "->" 50)
"_beta_rtrancl" :: "[dB, dB] => bool" (infixl "->>" 50)
syntax (latex)
"_beta" :: "[dB, dB] => bool" (infixl "->β" 50)
"_beta_rtrancl" :: "[dB, dB] => bool" (infixl "->β*" 50)
translations
"s ->β t" == "(s, t) ∈ beta"
"s ->β* t" == "(s, t) ∈ beta^*"
inductive beta
intros
beta [simp, intro!]: "Abs s ° t ->β s[t/0]"
appL [simp, intro!]: "s ->β t ==> s ° u ->β t ° u"
appR [simp, intro!]: "s ->β t ==> u ° s ->β u ° t"
abs [simp, intro!]: "s ->β t ==> Abs s ->β Abs t"
inductive_cases beta_cases [elim!]:
"Var i ->β t"
"Abs r ->β s"
"s ° t ->β u"
declare if_not_P [simp] not_less_eq [simp]
-- {* don't add @{text "r_into_rtrancl[intro!]"} *}
subsection {* Congruence rules *}
lemma rtrancl_beta_Abs [intro!]:
"s ->β* s' ==> Abs s ->β* Abs s'"
apply (erule rtrancl_induct)
apply (blast intro: rtrancl_into_rtrancl)+
done
lemma rtrancl_beta_AppL:
"s ->β* s' ==> s ° t ->β* s' ° t"
apply (erule rtrancl_induct)
apply (blast intro: rtrancl_into_rtrancl)+
done
lemma rtrancl_beta_AppR:
"t ->β* t' ==> s ° t ->β* s ° t'"
apply (erule rtrancl_induct)
apply (blast intro: rtrancl_into_rtrancl)+
done
lemma rtrancl_beta_App [intro]:
"[| s ->β* s'; t ->β* t' |] ==> s ° t ->β* s' ° t'"
apply (blast intro!: rtrancl_beta_AppL rtrancl_beta_AppR
intro: rtrancl_trans)
done
subsection {* Substitution-lemmas *}
lemma subst_eq [simp]: "(Var k)[u/k] = u"
apply (simp add: subst_Var)
done
lemma subst_gt [simp]: "i < j ==> (Var j)[u/i] = Var (j - 1)"
apply (simp add: subst_Var)
done
lemma subst_lt [simp]: "j < i ==> (Var j)[u/i] = Var j"
apply (simp add: subst_Var)
done
lemma lift_lift [rule_format]:
"∀i k. i < k + 1 --> lift (lift t i) (Suc k) = lift (lift t k) i"
apply (induct_tac t)
apply auto
done
lemma lift_subst [simp]:
"∀i j s. j < i + 1 --> lift (t[s/j]) i = (lift t (i + 1)) [lift s i / j]"
apply (induct_tac t)
apply (simp_all add: diff_Suc subst_Var lift_lift split: nat.split)
done
lemma lift_subst_lt:
"∀i j s. i < j + 1 --> lift (t[s/j]) i = (lift t i) [lift s i / j + 1]"
apply (induct_tac t)
apply (simp_all add: subst_Var lift_lift)
done
lemma subst_lift [simp]:
"∀k s. (lift t k)[s/k] = t"
apply (induct_tac t)
apply simp_all
done
lemma subst_subst [rule_format]:
"∀i j u v. i < j + 1 --> t[lift v i / Suc j][u[v/j]/i] = t[u/i][v/j]"
apply (induct_tac t)
apply (simp_all
add: diff_Suc subst_Var lift_lift [symmetric] lift_subst_lt
split: nat.split)
done
subsection {* Equivalence proof for optimized substitution *}
lemma liftn_0 [simp]: "∀k. liftn 0 t k = t"
apply (induct_tac t)
apply (simp_all add: subst_Var)
done
lemma liftn_lift [simp]:
"∀k. liftn (Suc n) t k = lift (liftn n t k) k"
apply (induct_tac t)
apply (simp_all add: subst_Var)
done
lemma substn_subst_n [simp]:
"∀n. substn t s n = t[liftn n s 0 / n]"
apply (induct_tac t)
apply (simp_all add: subst_Var)
done
theorem substn_subst_0: "substn t s 0 = t[s/0]"
apply simp
done
subsection {* Preservation theorems *}
text {* Not used in Church-Rosser proof, but in Strong
Normalization. \medskip *}
theorem subst_preserves_beta [simp]:
"r ->β s ==> (!!t i. r[t/i] ->β s[t/i])"
apply (induct set: beta)
apply (simp_all add: subst_subst [symmetric])
done
theorem subst_preserves_beta': "r ->β* s ==> r[t/i] ->β* s[t/i]"
apply (erule rtrancl.induct)
apply (rule rtrancl_refl)
apply (erule rtrancl_into_rtrancl)
apply (erule subst_preserves_beta)
done
theorem lift_preserves_beta [simp]:
"r ->β s ==> (!!i. lift r i ->β lift s i)"
by (induct set: beta) auto
theorem lift_preserves_beta': "r ->β* s ==> lift r i ->β* lift s i"
apply (erule rtrancl.induct)
apply (rule rtrancl_refl)
apply (erule rtrancl_into_rtrancl)
apply (erule lift_preserves_beta)
done
theorem subst_preserves_beta2 [simp]:
"!!r s i. r ->β s ==> t[r/i] ->β* t[s/i]"
apply (induct t)
apply (simp add: subst_Var r_into_rtrancl)
apply (simp add: rtrancl_beta_App)
apply (simp add: rtrancl_beta_Abs)
done
theorem subst_preserves_beta2': "r ->β* s ==> t[r/i] ->β* t[s/i]"
apply (erule rtrancl.induct)
apply (rule rtrancl_refl)
apply (erule rtrancl_trans)
apply (erule subst_preserves_beta2)
done
end
lemmas beta_cases:
Var i -> t ==> P
[| Abs r -> s; !!t. [| r -> t; s = Abs t |] ==> P |] ==> P
[| s ° t -> u; !!s. [| u = s[t/0]; s = Abs s |] ==> P; !!t. [| s -> t; u = t ° t |] ==> P; !!t. [| t -> t; u = s ° t |] ==> P |] ==> P
lemma rtrancl_beta_Abs:
s ->> s' ==> Abs s ->> Abs s'
lemma rtrancl_beta_AppL:
s ->> s' ==> s ° t ->> s' ° t
lemma rtrancl_beta_AppR:
t ->> t' ==> s ° t ->> s ° t'
lemma rtrancl_beta_App:
[| s ->> s'; t ->> t' |] ==> s ° t ->> s' ° t'
lemma subst_eq:
Var k[u/k] = u
lemma subst_gt:
i < j ==> Var j[u/i] = Var (j - 1)
lemma subst_lt:
j < i ==> Var j[u/i] = Var j
lemma lift_lift:
i < k + 1 ==> lift (lift t i) (Suc k) = lift (lift t k) i
lemma lift_subst:
∀i j s. j < i + 1 --> lift (t[s/j]) i = lift t (i + 1)[lift s i/j]
lemma lift_subst_lt:
∀i j s. i < j + 1 --> lift (t[s/j]) i = lift t i[lift s i/j + 1]
lemma subst_lift:
∀k s. lift t k[s/k] = t
lemma subst_subst:
i < j + 1 ==> t[lift v i/Suc j][u[v/j]/i] = t[u/i][v/j]
lemma liftn_0:
∀k. liftn 0 t k = t
lemma liftn_lift:
∀k. liftn (Suc n) t k = lift (liftn n t k) k
lemma substn_subst_n:
∀n. substn t s n = t[liftn n s 0/n]
theorem substn_subst_0:
substn t s 0 = t[s/0]
theorem subst_preserves_beta:
r -> s ==> r[t/i] -> s[t/i]
theorem subst_preserves_beta':
r ->> s ==> r[t/i] ->> s[t/i]
theorem lift_preserves_beta:
r -> s ==> lift r i -> lift s i
theorem lift_preserves_beta':
r ->> s ==> lift r i ->> lift s i
theorem subst_preserves_beta2:
r -> s ==> t[r/i] ->> t[s/i]
theorem subst_preserves_beta2':
r ->> s ==> t[r/i] ->> t[s/i]