Up to index of Isabelle/HOL/Lambda
theory ListBeta(* Title: HOL/Lambda/ListBeta.thy
ID: $Id: ListBeta.thy,v 1.13 2005/06/17 14:13:08 haftmann Exp $
Author: Tobias Nipkow
Copyright 1998 TU Muenchen
*)
header {* Lifting beta-reduction to lists *}
theory ListBeta imports ListApplication ListOrder begin
text {*
Lifting beta-reduction to lists of terms, reducing exactly one element.
*}
syntax
"_list_beta" :: "dB => dB => bool" (infixl "=>" 50)
translations
"rs => ss" == "(rs, ss) : step1 beta"
lemma head_Var_reduction_aux:
"v -> v' ==> ∀rs. v = Var n °° rs --> (∃ss. rs => ss ∧ v' = Var n °° ss)"
apply (erule beta.induct)
apply simp
apply (rule allI)
apply (rule_tac xs = rs in rev_exhaust)
apply simp
apply (force intro: append_step1I)
apply (rule allI)
apply (rule_tac xs = rs in rev_exhaust)
apply simp
apply (auto 0 3 intro: disjI2 [THEN append_step1I])
done
lemma head_Var_reduction:
"Var n °° rs -> v ==> (∃ss. rs => ss ∧ v = Var n °° ss)"
apply (drule head_Var_reduction_aux)
apply blast
done
lemma apps_betasE_aux:
"u -> u' ==> ∀r rs. u = r °° rs -->
((∃r'. r -> r' ∧ u' = r' °° rs) ∨
(∃rs'. rs => rs' ∧ u' = r °° rs') ∨
(∃s t ts. r = Abs s ∧ rs = t # ts ∧ u' = s[t/0] °° ts))"
apply (erule beta.induct)
apply (clarify del: disjCI)
apply (case_tac r)
apply simp
apply (simp add: App_eq_foldl_conv)
apply (split split_if_asm)
apply simp
apply blast
apply simp
apply (simp add: App_eq_foldl_conv)
apply (split split_if_asm)
apply simp
apply simp
apply (clarify del: disjCI)
apply (drule App_eq_foldl_conv [THEN iffD1])
apply (split split_if_asm)
apply simp
apply blast
apply (force intro!: disjI1 [THEN append_step1I])
apply (clarify del: disjCI)
apply (drule App_eq_foldl_conv [THEN iffD1])
apply (split split_if_asm)
apply simp
apply blast
apply (clarify, auto 0 3 intro!: exI intro: append_step1I)
done
lemma apps_betasE [elim!]:
"[| r °° rs -> s; !!r'. [| r -> r'; s = r' °° rs |] ==> R;
!!rs'. [| rs => rs'; s = r °° rs' |] ==> R;
!!t u us. [| r = Abs t; rs = u # us; s = t[u/0] °° us |] ==> R |]
==> R"
proof -
assume major: "r °° rs -> s"
case rule_context
show ?thesis
apply (cut_tac major [THEN apps_betasE_aux, THEN spec, THEN spec])
apply (assumption | rule refl | erule prems exE conjE impE disjE)+
done
qed
lemma apps_preserves_beta [simp]:
"r -> s ==> r °° ss -> s °° ss"
apply (induct_tac ss rule: rev_induct)
apply auto
done
lemma apps_preserves_beta2 [simp]:
"r ->> s ==> r °° ss ->> s °° ss"
apply (erule rtrancl_induct)
apply blast
apply (blast intro: apps_preserves_beta rtrancl_into_rtrancl)
done
lemma apps_preserves_betas [rule_format, simp]:
"∀ss. rs => ss --> r °° rs -> r °° ss"
apply (induct_tac rs rule: rev_induct)
apply simp
apply simp
apply clarify
apply (rule_tac xs = ss in rev_exhaust)
apply simp
apply simp
apply (drule Snoc_step1_SnocD)
apply blast
done
end
lemma head_Var_reduction_aux:
v -> v' ==> ∀rs. v = Var n °° rs --> (∃ss. rs => ss ∧ v' = Var n °° ss)
lemma head_Var_reduction:
Var n °° rs -> v ==> ∃ss. rs => ss ∧ v = Var n °° ss
lemma apps_betasE_aux:
u -> u' ==> ∀r rs. u = r °° rs --> (∃r'. r -> r' ∧ u' = r' °° rs) ∨ (∃rs'. rs => rs' ∧ u' = r °° rs') ∨ (∃s t ts. r = Abs s ∧ rs = t # ts ∧ u' = s[t/0] °° ts)
lemma apps_betasE:
[| r °° rs -> s; !!r'. [| r -> r'; s = r' °° rs |] ==> R; !!rs'. [| rs => rs'; s = r °° rs' |] ==> R; !!t u us. [| r = Abs t; rs = u # us; s = t[u/0] °° us |] ==> R |] ==> R
lemma apps_preserves_beta:
r -> s ==> r °° ss -> s °° ss
lemma apps_preserves_beta2:
r ->> s ==> r °° ss ->> s °° ss
lemma apps_preserves_betas:
rs => ss ==> r °° rs -> r °° ss