(* Title: HOL/Lambda/ListOrder.thy
ID: $Id: ListOrder.thy,v 1.10 2005/06/17 14:13:08 haftmann Exp $
Author: Tobias Nipkow
Copyright 1998 TU Muenchen
*)
header {* Lifting an order to lists of elements *}
theory ListOrder imports Accessible_Part begin
text {*
Lifting an order to lists of elements, relating exactly one
element.
*}
constdefs
step1 :: "('a × 'a) set => ('a list × 'a list) set"
"step1 r ==
{(ys, xs). ∃us z z' vs. xs = us @ z # vs ∧ (z', z) ∈ r ∧ ys =
us @ z' # vs}"
lemma step1_converse [simp]: "step1 (r^-1) = (step1 r)^-1"
apply (unfold step1_def)
apply blast
done
lemma in_step1_converse [iff]: "(p ∈ step1 (r^-1)) = (p ∈ (step1 r)^-1)"
apply auto
done
lemma not_Nil_step1 [iff]: "([], xs) ∉ step1 r"
apply (unfold step1_def)
apply blast
done
lemma not_step1_Nil [iff]: "(xs, []) ∉ step1 r"
apply (unfold step1_def)
apply blast
done
lemma Cons_step1_Cons [iff]:
"((y # ys, x # xs) ∈ step1 r) =
((y, x) ∈ r ∧ xs = ys ∨ x = y ∧ (ys, xs) ∈ step1 r)"
apply (unfold step1_def)
apply simp
apply (rule iffI)
apply (erule exE)
apply (rename_tac ts)
apply (case_tac ts)
apply fastsimp
apply force
apply (erule disjE)
apply blast
apply (blast intro: Cons_eq_appendI)
done
lemma append_step1I:
"(ys, xs) ∈ step1 r ∧ vs = us ∨ ys = xs ∧ (vs, us) ∈ step1 r
==> (ys @ vs, xs @ us) : step1 r"
apply (unfold step1_def)
apply auto
apply blast
apply (blast intro: append_eq_appendI)
done
lemma Cons_step1E [rule_format, elim!]:
"[| (ys, x # xs) ∈ step1 r;
∀y. ys = y # xs --> (y, x) ∈ r --> R;
∀zs. ys = x # zs --> (zs, xs) ∈ step1 r --> R
|] ==> R"
apply (case_tac ys)
apply (simp add: step1_def)
apply blast
done
lemma Snoc_step1_SnocD:
"(ys @ [y], xs @ [x]) ∈ step1 r
==> ((ys, xs) ∈ step1 r ∧ y = x ∨ ys = xs ∧ (y, x) ∈ r)"
apply (unfold step1_def)
apply simp
apply (clarify del: disjCI)
apply (rename_tac vs)
apply (rule_tac xs = vs in rev_exhaust)
apply force
apply simp
apply blast
done
lemma Cons_acc_step1I [rule_format, intro!]:
"x ∈ acc r ==> ∀xs. xs ∈ acc (step1 r) --> x # xs ∈ acc (step1 r)"
apply (erule acc_induct)
apply (erule thin_rl)
apply clarify
apply (erule acc_induct)
apply (rule accI)
apply blast
done
lemma lists_accD: "xs ∈ lists (acc r) ==> xs ∈ acc (step1 r)"
apply (erule lists.induct)
apply (rule accI)
apply simp
apply (rule accI)
apply (fast dest: acc_downward)
done
lemma ex_step1I:
"[| x ∈ set xs; (y, x) ∈ r |]
==> ∃ys. (ys, xs) ∈ step1 r ∧ y ∈ set ys"
apply (unfold step1_def)
apply (drule in_set_conv_decomp [THEN iffD1])
apply force
done
lemma lists_accI: "xs ∈ acc (step1 r) ==> xs ∈ lists (acc r)"
apply (erule acc_induct)
apply clarify
apply (rule accI)
apply (drule ex_step1I, assumption)
apply blast
done
end
lemma step1_converse:
step1 (r^-1) = (step1 r)^-1
lemma in_step1_converse:
(p ∈ step1 (r^-1)) = (p ∈ (step1 r)^-1)
lemma not_Nil_step1:
([], xs) ∉ step1 r
lemma not_step1_Nil:
(xs, []) ∉ step1 r
lemma Cons_step1_Cons:
((y # ys, x # xs) ∈ step1 r) = ((y, x) ∈ r ∧ xs = ys ∨ x = y ∧ (ys, xs) ∈ step1 r)
lemma append_step1I:
(ys, xs) ∈ step1 r ∧ vs = us ∨ ys = xs ∧ (vs, us) ∈ step1 r ==> (ys @ vs, xs @ us) ∈ step1 r
lemma Cons_step1E:
[| (ys, x # xs) ∈ step1 r; !!y. [| ys = y # xs; (y, x) ∈ r |] ==> R; !!zs. [| ys = x # zs; (zs, xs) ∈ step1 r |] ==> R |] ==> R
lemma Snoc_step1_SnocD:
(ys @ [y], xs @ [x]) ∈ step1 r ==> (ys, xs) ∈ step1 r ∧ y = x ∨ ys = xs ∧ (y, x) ∈ r
lemma Cons_acc_step1I:
[| x ∈ acc r; xs ∈ acc (step1 r) |] ==> x # xs ∈ acc (step1 r)
lemma lists_accD:
xs ∈ lists (acc r) ==> xs ∈ acc (step1 r)
lemma ex_step1I:
[| x ∈ set xs; (y, x) ∈ r |] ==> ∃ys. (ys, xs) ∈ step1 r ∧ y ∈ set ys
lemma lists_accI:
xs ∈ acc (step1 r) ==> xs ∈ lists (acc r)