Up to index of Isabelle/HOL/Lambda
theory StrongNorm(* Title: HOL/Lambda/StrongNorm.thy
ID: $Id: StrongNorm.thy,v 1.2 2005/06/17 14:13:08 haftmann Exp $
Author: Stefan Berghofer
Copyright 2000 TU Muenchen
*)
header {* Strong normalization for simply-typed lambda calculus *}
theory StrongNorm imports Type InductTermi begin
text {*
Formalization by Stefan Berghofer. Partly based on a paper proof by
Felix Joachimski and Ralph Matthes \cite{Matthes-Joachimski-AML}.
*}
subsection {* Properties of @{text IT} *}
lemma lift_IT [intro!]: "t ∈ IT ==> (!!i. lift t i ∈ IT)"
apply (induct set: IT)
apply (simp (no_asm))
apply (rule conjI)
apply
(rule impI,
rule IT.Var,
erule lists.induct,
simp (no_asm),
rule lists.Nil,
simp (no_asm),
erule IntE,
rule lists.Cons,
blast,
assumption)+
apply auto
done
lemma lifts_IT: "ts ∈ lists IT ==> map (λt. lift t 0) ts ∈ lists IT"
by (induct ts) auto
lemma subst_Var_IT: "r ∈ IT ==> (!!i j. r[Var i/j] ∈ IT)"
apply (induct set: IT)
txt {* Case @{term Var}: *}
apply (simp (no_asm) add: subst_Var)
apply
((rule conjI impI)+,
rule IT.Var,
erule lists.induct,
simp (no_asm),
rule lists.Nil,
simp (no_asm),
erule IntE,
erule CollectE,
rule lists.Cons,
fast,
assumption)+
txt {* Case @{term Lambda}: *}
apply atomize
apply simp
apply (rule IT.Lambda)
apply fast
txt {* Case @{term Beta}: *}
apply atomize
apply (simp (no_asm_use) add: subst_subst [symmetric])
apply (rule IT.Beta)
apply auto
done
lemma Var_IT: "Var n ∈ IT"
apply (subgoal_tac "Var n °° [] ∈ IT")
apply simp
apply (rule IT.Var)
apply (rule lists.Nil)
done
lemma app_Var_IT: "t ∈ IT ==> t ° Var i ∈ IT"
apply (induct set: IT)
apply (subst app_last)
apply (rule IT.Var)
apply simp
apply (rule lists.Cons)
apply (rule Var_IT)
apply (rule lists.Nil)
apply (rule IT.Beta [where ?ss = "[]", unfolded foldl_Nil [THEN eq_reflection]])
apply (erule subst_Var_IT)
apply (rule Var_IT)
apply (subst app_last)
apply (rule IT.Beta)
apply (subst app_last [symmetric])
apply assumption
apply assumption
done
subsection {* Well-typed substitution preserves termination *}
lemma subst_type_IT:
"!!t e T u i. t ∈ IT ==> e〈i:U〉 \<turnstile> t : T ==>
u ∈ IT ==> e \<turnstile> u : U ==> t[u/i] ∈ IT"
(is "PROP ?P U" is "!!t e T u i. _ ==> PROP ?Q t e T u i U")
proof (induct U)
fix T t
assume MI1: "!!T1 T2. T = T1 => T2 ==> PROP ?P T1"
assume MI2: "!!T1 T2. T = T1 => T2 ==> PROP ?P T2"
assume "t ∈ IT"
thus "!!e T' u i. PROP ?Q t e T' u i T"
proof induct
fix e T' u i
assume uIT: "u ∈ IT"
assume uT: "e \<turnstile> u : T"
{
case (Var n rs e_ T'_ u_ i_)
assume nT: "e〈i:T〉 \<turnstile> Var n °° rs : T'"
let ?ty = "{t. ∃T'. e〈i:T〉 \<turnstile> t : T'}"
let ?R = "λt. ∀e T' u i.
e〈i:T〉 \<turnstile> t : T' --> u ∈ IT --> e \<turnstile> u : T --> t[u/i] ∈ IT"
show "(Var n °° rs)[u/i] ∈ IT"
proof (cases "n = i")
case True
show ?thesis
proof (cases rs)
case Nil
with uIT True show ?thesis by simp
next
case (Cons a as)
with nT have "e〈i:T〉 \<turnstile> Var n ° a °° as : T'" by simp
then obtain Ts
where headT: "e〈i:T〉 \<turnstile> Var n ° a : Ts \<Rrightarrow> T'"
and argsT: "e〈i:T〉 \<tturnstile> as : Ts"
by (rule list_app_typeE)
from headT obtain T''
where varT: "e〈i:T〉 \<turnstile> Var n : T'' => Ts \<Rrightarrow> T'"
and argT: "e〈i:T〉 \<turnstile> a : T''"
by cases simp_all
from varT True have T: "T = T'' => Ts \<Rrightarrow> T'"
by cases auto
with uT have uT': "e \<turnstile> u : T'' => Ts \<Rrightarrow> T'" by simp
from T have "(Var 0 °° map (λt. lift t 0)
(map (λt. t[u/i]) as))[(u ° a[u/i])/0] ∈ IT"
proof (rule MI2)
from T have "(lift u 0 ° Var 0)[a[u/i]/0] ∈ IT"
proof (rule MI1)
have "lift u 0 ∈ IT" by (rule lift_IT)
thus "lift u 0 ° Var 0 ∈ IT" by (rule app_Var_IT)
show "e〈0:T''〉 \<turnstile> lift u 0 ° Var 0 : Ts \<Rrightarrow> T'"
proof (rule typing.App)
show "e〈0:T''〉 \<turnstile> lift u 0 : T'' => Ts \<Rrightarrow> T'"
by (rule lift_type) (rule uT')
show "e〈0:T''〉 \<turnstile> Var 0 : T''"
by (rule typing.Var) simp
qed
from Var have "?R a" by cases (simp_all add: Cons)
with argT uIT uT show "a[u/i] ∈ IT" by simp
from argT uT show "e \<turnstile> a[u/i] : T''"
by (rule subst_lemma) simp
qed
thus "u ° a[u/i] ∈ IT" by simp
from Var have "as ∈ lists {t. ?R t}"
by cases (simp_all add: Cons)
moreover from argsT have "as ∈ lists ?ty"
by (rule lists_typings)
ultimately have "as ∈ lists ({t. ?R t} ∩ ?ty)"
by (rule lists_IntI)
hence "map (λt. lift t 0) (map (λt. t[u/i]) as) ∈ lists IT"
(is "(?ls as) ∈ _")
proof induct
case Nil
show ?case by fastsimp
next
case (Cons b bs)
hence I: "?R b" by simp
from Cons obtain U where "e〈i:T〉 \<turnstile> b : U" by fast
with uT uIT I have "b[u/i] ∈ IT" by simp
hence "lift (b[u/i]) 0 ∈ IT" by (rule lift_IT)
hence "lift (b[u/i]) 0 # ?ls bs ∈ lists IT"
by (rule lists.Cons) (rule Cons)
thus ?case by simp
qed
thus "Var 0 °° ?ls as ∈ IT" by (rule IT.Var)
have "e〈0:Ts \<Rrightarrow> T'〉 \<turnstile> Var 0 : Ts \<Rrightarrow> T'"
by (rule typing.Var) simp
moreover from uT argsT have "e \<tturnstile> map (λt. t[u/i]) as : Ts"
by (rule substs_lemma)
hence "e〈0:Ts \<Rrightarrow> T'〉 \<tturnstile> ?ls as : Ts"
by (rule lift_types)
ultimately show "e〈0:Ts \<Rrightarrow> T'〉 \<turnstile> Var 0 °° ?ls as : T'"
by (rule list_app_typeI)
from argT uT have "e \<turnstile> a[u/i] : T''"
by (rule subst_lemma) (rule refl)
with uT' show "e \<turnstile> u ° a[u/i] : Ts \<Rrightarrow> T'"
by (rule typing.App)
qed
with Cons True show ?thesis
by (simp add: map_compose [symmetric] o_def)
qed
next
case False
from Var have "rs ∈ lists {t. ?R t}" by simp
moreover from nT obtain Ts where "e〈i:T〉 \<tturnstile> rs : Ts"
by (rule list_app_typeE)
hence "rs ∈ lists ?ty" by (rule lists_typings)
ultimately have "rs ∈ lists ({t. ?R t} ∩ ?ty)"
by (rule lists_IntI)
hence "map (λx. x[u/i]) rs ∈ lists IT"
proof induct
case Nil
show ?case by fastsimp
next
case (Cons a as)
hence I: "?R a" by simp
from Cons obtain U where "e〈i:T〉 \<turnstile> a : U" by fast
with uT uIT I have "a[u/i] ∈ IT" by simp
hence "(a[u/i] # map (λt. t[u/i]) as) ∈ lists IT"
by (rule lists.Cons) (rule Cons)
thus ?case by simp
qed
with False show ?thesis by (auto simp add: subst_Var)
qed
next
case (Lambda r e_ T'_ u_ i_)
assume "e〈i:T〉 \<turnstile> Abs r : T'"
and "!!e T' u i. PROP ?Q r e T' u i T"
with uIT uT show "Abs r[u/i] ∈ IT"
by fastsimp
next
case (Beta r a as e_ T'_ u_ i_)
assume T: "e〈i:T〉 \<turnstile> Abs r ° a °° as : T'"
assume SI1: "!!e T' u i. PROP ?Q (r[a/0] °° as) e T' u i T"
assume SI2: "!!e T' u i. PROP ?Q a e T' u i T"
have "Abs (r[lift u 0/Suc i]) ° a[u/i] °° map (λt. t[u/i]) as ∈ IT"
proof (rule IT.Beta)
have "Abs r ° a °° as ->β r[a/0] °° as"
by (rule apps_preserves_beta) (rule beta.beta)
with T have "e〈i:T〉 \<turnstile> r[a/0] °° as : T'"
by (rule subject_reduction)
hence "(r[a/0] °° as)[u/i] ∈ IT"
by (rule SI1)
thus "r[lift u 0/Suc i][a[u/i]/0] °° map (λt. t[u/i]) as ∈ IT"
by (simp del: subst_map add: subst_subst subst_map [symmetric])
from T obtain U where "e〈i:T〉 \<turnstile> Abs r ° a : U"
by (rule list_app_typeE) fast
then obtain T'' where "e〈i:T〉 \<turnstile> a : T''" by cases simp_all
thus "a[u/i] ∈ IT" by (rule SI2)
qed
thus "(Abs r ° a °° as)[u/i] ∈ IT" by simp
}
qed
qed
subsection {* Well-typed terms are strongly normalizing *}
lemma type_implies_IT: "e \<turnstile> t : T ==> t ∈ IT"
proof -
assume "e \<turnstile> t : T"
thus ?thesis
proof induct
case Var
show ?case by (rule Var_IT)
next
case Abs
show ?case by (rule IT.Lambda)
next
case (App T U e s t)
have "(Var 0 ° lift t 0)[s/0] ∈ IT"
proof (rule subst_type_IT)
have "lift t 0 ∈ IT" by (rule lift_IT)
hence "[lift t 0] ∈ lists IT" by (rule lists.Cons) (rule lists.Nil)
hence "Var 0 °° [lift t 0] ∈ IT" by (rule IT.Var)
also have "Var 0 °° [lift t 0] = Var 0 ° lift t 0" by simp
finally show "… ∈ IT" .
have "e〈0:T => U〉 \<turnstile> Var 0 : T => U"
by (rule typing.Var) simp
moreover have "e〈0:T => U〉 \<turnstile> lift t 0 : T"
by (rule lift_type)
ultimately show "e〈0:T => U〉 \<turnstile> Var 0 ° lift t 0 : U"
by (rule typing.App)
qed
thus ?case by simp
qed
qed
theorem type_implies_termi: "e \<turnstile> t : T ==> t ∈ termi beta"
proof -
assume "e \<turnstile> t : T"
hence "t ∈ IT" by (rule type_implies_IT)
thus ?thesis by (rule IT_implies_termi)
qed
end
lemma lift_IT:
t ∈ IT ==> lift t i ∈ IT
lemma lifts_IT:
ts ∈ lists IT ==> map (%t. lift t 0) ts ∈ lists IT
lemma subst_Var_IT:
r ∈ IT ==> r[Var i/j] ∈ IT
lemma Var_IT:
Var n ∈ IT
lemma app_Var_IT:
t ∈ IT ==> t ° Var i ∈ IT
lemma subst_type_IT:
[| t ∈ IT; e〈i:U〉 |- t : T; u ∈ IT; e |- u : U |] ==> t[u/i] ∈ IT
lemma type_implies_IT:
e |- t : T ==> t ∈ IT
theorem type_implies_termi:
e |- t : T ==> t ∈ termi beta