(* Title: HOL/Library/List_lexord.thy
ID: $Id: List_lexord.thy,v 1.2 2005/08/31 13:46:37 wenzelm Exp $
Author: Norbert Voelker
*)
header {* Lexicographic order on lists *}
theory List_lexord
imports Main
begin
instance list :: (ord) ord ..
defs (overloaded)
list_le_def: "(xs::('a::ord) list) ≤ ys ≡ (xs < ys ∨ xs = ys)"
list_less_def: "(xs::('a::ord) list) < ys ≡ (xs, ys) ∈ lexord {(u,v). u < v}"
lemmas list_ord_defs = list_less_def list_le_def
instance list :: (order) order
apply (intro_classes, unfold list_ord_defs)
apply (rule disjI2, safe)
apply (blast intro: lexord_trans transI order_less_trans)
apply (rule_tac r1 = "{(a::'a,b). a < b}" in lexord_irreflexive [THEN notE])
apply simp
apply (blast intro: lexord_trans transI order_less_trans)
apply (rule_tac r1 = "{(a::'a,b). a < b}" in lexord_irreflexive [THEN notE])
apply simp
apply assumption
done
instance list::(linorder)linorder
apply (intro_classes, unfold list_le_def list_less_def, safe)
apply (cut_tac x = x and y = y and r = "{(a,b). a < b}" in lexord_linear)
apply force
apply simp
done
lemma not_less_Nil[simp]: "~(x < [])"
by (unfold list_less_def) simp
lemma Nil_less_Cons[simp]: "[] < a # x"
by (unfold list_less_def) simp
lemma Cons_less_Cons[simp]: "(a # x < b # y) = (a < b | a = b & x < y)"
by (unfold list_less_def) simp
lemma le_Nil[simp]: "(x <= []) = (x = [])"
by (unfold list_ord_defs, cases x) auto
lemma Nil_le_Cons [simp]: "([] <= x)"
by (unfold list_ord_defs, cases x) auto
lemma Cons_le_Cons[simp]: "(a # x <= b # y) = (a < b | a = b & x <= y)"
by (unfold list_ord_defs) auto
end
lemmas list_ord_defs:
xs < ys == (xs, ys) ∈ lexord {(u, v). u < v}
xs ≤ ys == xs < ys ∨ xs = ys
lemmas list_ord_defs:
xs < ys == (xs, ys) ∈ lexord {(u, v). u < v}
xs ≤ ys == xs < ys ∨ xs = ys
lemma not_less_Nil:
¬ x < []
lemma Nil_less_Cons:
[] < a # x
lemma Cons_less_Cons:
(a # x < b # y) = (a < b ∨ a = b ∧ x < y)
lemma le_Nil:
(x ≤ []) = (x = [])
lemma Nil_le_Cons:
[] ≤ x
lemma Cons_le_Cons:
(a # x ≤ b # y) = (a < b ∨ a = b ∧ x ≤ y)