(* Title: HOL/NanoJava/AxSem.thy
ID: $Id: AxSem.thy,v 1.14 2005/06/17 14:13:09 haftmann Exp $
Author: David von Oheimb
Copyright 2001 Technische Universitaet Muenchen
*)
header "Axiomatic Semantics"
theory AxSem imports State begin
types assn = "state => bool"
vassn = "val => assn"
triple = "assn × stmt × assn"
etriple = "assn × expr × vassn"
translations
"assn" \<leftharpoondown> (type)"state => bool"
"vassn" \<leftharpoondown> (type)"val => assn"
"triple" \<leftharpoondown> (type)"assn × stmt × assn"
"etriple" \<leftharpoondown> (type)"assn × expr × vassn"
consts hoare :: "(triple set × triple set) set"
consts ehoare :: "(triple set × etriple ) set"
syntax (xsymbols)
"@hoare" :: "[triple set, triple set ] => bool" ("_ |\<turnstile>/ _" [61,61] 60)
"@hoare1" :: "[triple set, assn,stmt,assn] => bool"
("_ \<turnstile>/ ({(1_)}/ (_)/ {(1_)})" [61,3,90,3]60)
"@ehoare" :: "[triple set, etriple ] => bool" ("_ |\<turnstile>e/ _"[61,61]60)
"@ehoare1" :: "[triple set, assn,expr,vassn]=> bool"
("_ \<turnstile>e/ ({(1_)}/ (_)/ {(1_)})" [61,3,90,3]60)
syntax
"@hoare" :: "[triple set, triple set ] => bool" ("_ ||-/ _" [61,61] 60)
"@hoare1" :: "[triple set, assn,stmt,assn] => bool"
("_ |-/ ({(1_)}/ (_)/ {(1_)})" [61,3,90,3] 60)
"@ehoare" :: "[triple set, etriple ] => bool" ("_ ||-e/ _"[61,61] 60)
"@ehoare1" :: "[triple set, assn,expr,vassn]=> bool"
("_ |-e/ ({(1_)}/ (_)/ {(1_)})" [61,3,90,3] 60)
translations "A |\<turnstile> C" \<rightleftharpoons> "(A,C) ∈ hoare"
"A \<turnstile> {P}c{Q}" \<rightleftharpoons> "A |\<turnstile> {(P,c,Q)}"
"A |\<turnstile>e t" \<rightleftharpoons> "(A,t) ∈ ehoare"
"A |\<turnstile>e (P,e,Q)" \<rightleftharpoons> "(A,P,e,Q) ∈ ehoare" (* shouldn't be necessary *)
"A \<turnstile>e {P}e{Q}" \<rightleftharpoons> "A |\<turnstile>e (P,e,Q)"
subsection "Hoare Logic Rules"
inductive hoare ehoare
intros
Skip: "A |- {P} Skip {P}"
Comp: "[| A |- {P} c1 {Q}; A |- {Q} c2 {R} |] ==> A |- {P} c1;;c2 {R}"
Cond: "[| A |-e {P} e {Q};
∀v. A |- {Q v} (if v ≠ Null then c1 else c2) {R} |] ==>
A |- {P} If(e) c1 Else c2 {R}"
Loop: "A |- {λs. P s ∧ s<x> ≠ Null} c {P} ==>
A |- {P} While(x) c {λs. P s ∧ s<x> = Null}"
LAcc: "A |-e {λs. P (s<x>) s} LAcc x {P}"
LAss: "A |-e {P} e {λv s. Q (lupd(x\<mapsto>v) s)} ==>
A |- {P} x:==e {Q}"
FAcc: "A |-e {P} e {λv s. ∀a. v=Addr a --> Q (get_field s a f) s} ==>
A |-e {P} e..f {Q}"
FAss: "[| A |-e {P} e1 {λv s. ∀a. v=Addr a --> Q a s};
∀a. A |-e {Q a} e2 {λv s. R (upd_obj a f v s)} |] ==>
A |- {P} e1..f:==e2 {R}"
NewC: "A |-e {λs. ∀a. new_Addr s = Addr a --> P (Addr a) (new_obj a C s)}
new C {P}"
Cast: "A |-e {P} e {λv s. (case v of Null => True
| Addr a => obj_class s a <=C C) --> Q v s} ==>
A |-e {P} Cast C e {Q}"
Call: "[| A |-e {P} e1 {Q}; ∀a. A |-e {Q a} e2 {R a};
∀a p ls. A |- {λs'. ∃s. R a p s ∧ ls = s ∧
s' = lupd(This\<mapsto>a)(lupd(Par\<mapsto>p)(del_locs s))}
Meth (C,m) {λs. S (s<Res>) (set_locs ls s)} |] ==>
A |-e {P} {C}e1..m(e2) {S}"
Meth: "∀D. A |- {λs'. ∃s a. s<This> = Addr a ∧ D = obj_class s a ∧ D <=C C ∧
P s ∧ s' = init_locs D m s}
Impl (D,m) {Q} ==>
A |- {P} Meth (C,m) {Q}"
--{* @{text "\<Union>Z"} instead of @{text "∀Z"} in the conclusion and\\
Z restricted to type state due to limitations of the inductive package *}
Impl: "∀Z::state. A∪ (\<Union>Z. (λCm. (P Z Cm, Impl Cm, Q Z Cm))`Ms) ||-
(λCm. (P Z Cm, body Cm, Q Z Cm))`Ms ==>
A ||- (λCm. (P Z Cm, Impl Cm, Q Z Cm))`Ms"
--{* structural rules *}
Asm: " a ∈ A ==> A ||- {a}"
ConjI: " ∀c ∈ C. A ||- {c} ==> A ||- C"
ConjE: "[|A ||- C; c ∈ C |] ==> A ||- {c}"
--{* Z restricted to type state due to limitations of the inductive package *}
Conseq:"[| ∀Z::state. A |- {P' Z} c {Q' Z};
∀s t. (∀Z. P' Z s --> Q' Z t) --> (P s --> Q t) |] ==>
A |- {P} c {Q }"
--{* Z restricted to type state due to limitations of the inductive package *}
eConseq:"[| ∀Z::state. A |-e {P' Z} e {Q' Z};
∀s v t. (∀Z. P' Z s --> Q' Z v t) --> (P s --> Q v t) |] ==>
A |-e {P} e {Q }"
subsection "Fully polymorphic variants, required for Example only"
axioms
Conseq:"[| ∀Z. A |- {P' Z} c {Q' Z};
∀s t. (∀Z. P' Z s --> Q' Z t) --> (P s --> Q t) |] ==>
A |- {P} c {Q }"
eConseq:"[| ∀Z. A |-e {P' Z} e {Q' Z};
∀s v t. (∀Z. P' Z s --> Q' Z v t) --> (P s --> Q v t) |] ==>
A |-e {P} e {Q }"
Impl: "∀Z. A∪ (\<Union>Z. (λCm. (P Z Cm, Impl Cm, Q Z Cm))`Ms) ||-
(λCm. (P Z Cm, body Cm, Q Z Cm))`Ms ==>
A ||- (λCm. (P Z Cm, Impl Cm, Q Z Cm))`Ms"
subsection "Derived Rules"
lemma Conseq1: "[|A \<turnstile> {P'} c {Q}; ∀s. P s --> P' s|] ==> A \<turnstile> {P} c {Q}"
apply (rule hoare_ehoare.Conseq)
apply (rule allI, assumption)
apply fast
done
lemma Conseq2: "[|A \<turnstile> {P} c {Q'}; ∀t. Q' t --> Q t|] ==> A \<turnstile> {P} c {Q}"
apply (rule hoare_ehoare.Conseq)
apply (rule allI, assumption)
apply fast
done
lemma eConseq1: "[|A \<turnstile>e {P'} e {Q}; ∀s. P s --> P' s|] ==> A \<turnstile>e {P} e {Q}"
apply (rule hoare_ehoare.eConseq)
apply (rule allI, assumption)
apply fast
done
lemma eConseq2: "[|A \<turnstile>e {P} e {Q'}; ∀v t. Q' v t --> Q v t|] ==> A \<turnstile>e {P} e {Q}"
apply (rule hoare_ehoare.eConseq)
apply (rule allI, assumption)
apply fast
done
lemma Weaken: "[|A |\<turnstile> C'; C ⊆ C'|] ==> A |\<turnstile> C"
apply (rule hoare_ehoare.ConjI)
apply clarify
apply (drule hoare_ehoare.ConjE)
apply fast
apply assumption
done
lemma Thin_lemma:
"(A' |\<turnstile> C --> (∀A. A' ⊆ A --> A |\<turnstile> C )) ∧
(A' \<turnstile>e {P} e {Q} --> (∀A. A' ⊆ A --> A \<turnstile>e {P} e {Q}))"
apply (rule hoare_ehoare.induct)
apply (tactic "ALLGOALS(EVERY'[Clarify_tac, REPEAT o smp_tac 1])")
apply (blast intro: hoare_ehoare.Skip)
apply (blast intro: hoare_ehoare.Comp)
apply (blast intro: hoare_ehoare.Cond)
apply (blast intro: hoare_ehoare.Loop)
apply (blast intro: hoare_ehoare.LAcc)
apply (blast intro: hoare_ehoare.LAss)
apply (blast intro: hoare_ehoare.FAcc)
apply (blast intro: hoare_ehoare.FAss)
apply (blast intro: hoare_ehoare.NewC)
apply (blast intro: hoare_ehoare.Cast)
apply (erule hoare_ehoare.Call)
apply (rule, drule spec, erule conjE, tactic "smp_tac 1 1", assumption)
apply blast
apply (blast intro!: hoare_ehoare.Meth)
apply (blast intro!: hoare_ehoare.Impl)
apply (blast intro!: hoare_ehoare.Asm)
apply (blast intro: hoare_ehoare.ConjI)
apply (blast intro: hoare_ehoare.ConjE)
apply (rule hoare_ehoare.Conseq)
apply (rule, drule spec, erule conjE, tactic "smp_tac 1 1", assumption+)
apply (rule hoare_ehoare.eConseq)
apply (rule, drule spec, erule conjE, tactic "smp_tac 1 1", assumption+)
done
lemma cThin: "[|A' |\<turnstile> C; A' ⊆ A|] ==> A |\<turnstile> C"
by (erule (1) conjunct1 [OF Thin_lemma, rule_format])
lemma eThin: "[|A' \<turnstile>e {P} e {Q}; A' ⊆ A|] ==> A \<turnstile>e {P} e {Q}"
by (erule (1) conjunct2 [OF Thin_lemma, rule_format])
lemma Union: "A |\<turnstile> (\<Union>Z. C Z) = (∀Z. A |\<turnstile> C Z)"
by (auto intro: hoare_ehoare.ConjI hoare_ehoare.ConjE)
lemma Impl1':
"[|∀Z::state. A∪ (\<Union>Z. (λCm. (P Z Cm, Impl Cm, Q Z Cm))`Ms) |\<turnstile>
(λCm. (P Z Cm, body Cm, Q Z Cm))`Ms;
Cm ∈ Ms|] ==>
A \<turnstile> {P Z Cm} Impl Cm {Q Z Cm}"
apply (drule AxSem.Impl)
apply (erule Weaken)
apply (auto del: image_eqI intro: rev_image_eqI)
done
lemmas Impl1 = AxSem.Impl [of _ _ _ "{Cm}", simplified, standard]
end
lemma Conseq1:
[| A |- {P'} c {Q}; ∀s. P s --> P' s |] ==> A |- {P} c {Q}
lemma Conseq2:
[| A |- {P} c {Q'}; ∀t. Q' t --> Q t |] ==> A |- {P} c {Q}
lemma eConseq1:
[| A |-e {P'} e {Q}; ∀s. P s --> P' s |] ==> A |-e {P} e {Q}
lemma eConseq2:
[| A |-e {P} e {Q'}; ∀v t. Q' v t --> Q v t |] ==> A |-e {P} e {Q}
lemma Weaken:
[| A ||- C'; C ⊆ C' |] ==> A ||- C
lemma Thin_lemma:
(A' ||- C --> (∀A≥A'. A ||- C)) ∧ (A' |-e {P} e {Q} --> (∀A≥A'. A |-e {P} e {Q}))
lemma cThin:
[| A' ||- C; A' ⊆ A |] ==> A ||- C
lemma eThin:
[| A' |-e {P} e {Q}; A' ⊆ A |] ==> A |-e {P} e {Q}
lemma Union:
A ||- (UN Z. C Z) = (∀Z. A ||- C Z)
lemma Impl1':
[| ∀Z. A ∪ (UN Z. (%Cm. (P Z Cm, Impl Cm, Q Z Cm)) ` Ms) ||- (%Cm. (P Z Cm, body Cm, Q Z Cm)) ` Ms; Cm ∈ Ms |] ==> A |- {P Z Cm} Impl Cm {Q Z Cm}
lemmas Impl1:
∀Z. A ∪ (UN Z. {(P Z Cm, Impl Cm, Q Z Cm)}) |- {P Z Cm} body Cm {Q Z Cm} ==> A |- {P Z Cm} Impl Cm {Q Z Cm}
lemmas Impl1:
∀Z. A ∪ (UN Z. {(P Z Cm, Impl Cm, Q Z Cm)}) |- {P Z Cm} body Cm {Q Z Cm} ==> A |- {P Z Cm} Impl Cm {Q Z Cm}