Up to index of Isabelle/HOL
theory Orderings(* Title: HOL/Orderings.thy
ID: $Id: Orderings.thy,v 1.14 2005/08/03 12:48:36 avigad Exp $
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson
FIXME: derive more of the min/max laws generically via semilattices
*)
header {* Type classes for $\le$ *}
theory Orderings
imports Lattice_Locales
uses ("antisym_setup.ML")
begin
subsection {* Order signatures and orders *}
axclass
ord < type
syntax
"op <" :: "['a::ord, 'a] => bool" ("op <")
"op <=" :: "['a::ord, 'a] => bool" ("op <=")
global
consts
"op <" :: "['a::ord, 'a] => bool" ("(_/ < _)" [50, 51] 50)
"op <=" :: "['a::ord, 'a] => bool" ("(_/ <= _)" [50, 51] 50)
local
syntax (xsymbols)
"op <=" :: "['a::ord, 'a] => bool" ("op ≤")
"op <=" :: "['a::ord, 'a] => bool" ("(_/ ≤ _)" [50, 51] 50)
syntax (HTML output)
"op <=" :: "['a::ord, 'a] => bool" ("op ≤")
"op <=" :: "['a::ord, 'a] => bool" ("(_/ ≤ _)" [50, 51] 50)
text{* Syntactic sugar: *}
syntax
"_gt" :: "'a::ord => 'a => bool" (infixl ">" 50)
"_ge" :: "'a::ord => 'a => bool" (infixl ">=" 50)
translations
"x > y" => "y < x"
"x >= y" => "y <= x"
syntax (xsymbols)
"_ge" :: "'a::ord => 'a => bool" (infixl "≥" 50)
syntax (HTML output)
"_ge" :: "['a::ord, 'a] => bool" (infixl "≥" 50)
subsection {* Monotonicity *}
locale mono =
fixes f
assumes mono: "A <= B ==> f A <= f B"
lemmas monoI [intro?] = mono.intro
and monoD [dest?] = mono.mono
constdefs
min :: "['a::ord, 'a] => 'a"
"min a b == (if a <= b then a else b)"
max :: "['a::ord, 'a] => 'a"
"max a b == (if a <= b then b else a)"
lemma min_leastL: "(!!x. least <= x) ==> min least x = least"
by (simp add: min_def)
lemma min_of_mono:
"ALL x y. (f x <= f y) = (x <= y) ==> min (f m) (f n) = f (min m n)"
by (simp add: min_def)
lemma max_leastL: "(!!x. least <= x) ==> max least x = x"
by (simp add: max_def)
lemma max_of_mono:
"ALL x y. (f x <= f y) = (x <= y) ==> max (f m) (f n) = f (max m n)"
by (simp add: max_def)
subsection "Orders"
axclass order < ord
order_refl [iff]: "x <= x"
order_trans: "x <= y ==> y <= z ==> x <= z"
order_antisym: "x <= y ==> y <= x ==> x = y"
order_less_le: "(x < y) = (x <= y & x ~= y)"
text{* Connection to locale: *}
interpretation order:
partial_order["op ≤ :: 'a::order => 'a => bool"]
apply(rule partial_order.intro)
apply(rule order_refl, erule (1) order_trans, erule (1) order_antisym)
done
text {* Reflexivity. *}
lemma order_eq_refl: "!!x::'a::order. x = y ==> x <= y"
-- {* This form is useful with the classical reasoner. *}
apply (erule ssubst)
apply (rule order_refl)
done
lemma order_less_irrefl [iff]: "~ x < (x::'a::order)"
by (simp add: order_less_le)
lemma order_le_less: "((x::'a::order) <= y) = (x < y | x = y)"
-- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
apply (simp add: order_less_le, blast)
done
lemmas order_le_imp_less_or_eq = order_le_less [THEN iffD1, standard]
lemma order_less_imp_le: "!!x::'a::order. x < y ==> x <= y"
by (simp add: order_less_le)
text {* Asymmetry. *}
lemma order_less_not_sym: "(x::'a::order) < y ==> ~ (y < x)"
by (simp add: order_less_le order_antisym)
lemma order_less_asym: "x < (y::'a::order) ==> (~P ==> y < x) ==> P"
apply (drule order_less_not_sym)
apply (erule contrapos_np, simp)
done
lemma order_eq_iff: "!!x::'a::order. (x = y) = (x ≤ y & y ≤ x)"
by (blast intro: order_antisym)
lemma order_antisym_conv: "(y::'a::order) <= x ==> (x <= y) = (x = y)"
by(blast intro:order_antisym)
text {* Transitivity. *}
lemma order_less_trans: "!!x::'a::order. [| x < y; y < z |] ==> x < z"
apply (simp add: order_less_le)
apply (blast intro: order_trans order_antisym)
done
lemma order_le_less_trans: "!!x::'a::order. [| x <= y; y < z |] ==> x < z"
apply (simp add: order_less_le)
apply (blast intro: order_trans order_antisym)
done
lemma order_less_le_trans: "!!x::'a::order. [| x < y; y <= z |] ==> x < z"
apply (simp add: order_less_le)
apply (blast intro: order_trans order_antisym)
done
text {* Useful for simplification, but too risky to include by default. *}
lemma order_less_imp_not_less: "(x::'a::order) < y ==> (~ y < x) = True"
by (blast elim: order_less_asym)
lemma order_less_imp_triv: "(x::'a::order) < y ==> (y < x --> P) = True"
by (blast elim: order_less_asym)
lemma order_less_imp_not_eq: "(x::'a::order) < y ==> (x = y) = False"
by auto
lemma order_less_imp_not_eq2: "(x::'a::order) < y ==> (y = x) = False"
by auto
text {* Other operators. *}
lemma min_leastR: "(!!x::'a::order. least <= x) ==> min x least = least"
apply (simp add: min_def)
apply (blast intro: order_antisym)
done
lemma max_leastR: "(!!x::'a::order. least <= x) ==> max x least = x"
apply (simp add: max_def)
apply (blast intro: order_antisym)
done
subsection {* Transitivity rules for calculational reasoning *}
lemma order_neq_le_trans: "a ~= b ==> (a::'a::order) <= b ==> a < b"
by (simp add: order_less_le)
lemma order_le_neq_trans: "(a::'a::order) <= b ==> a ~= b ==> a < b"
by (simp add: order_less_le)
lemma order_less_asym': "(a::'a::order) < b ==> b < a ==> P"
by (rule order_less_asym)
subsection {* Least value operator *}
constdefs
Least :: "('a::ord => bool) => 'a" (binder "LEAST " 10)
"Least P == THE x. P x & (ALL y. P y --> x <= y)"
-- {* We can no longer use LeastM because the latter requires Hilbert-AC. *}
lemma LeastI2_order:
"[| P (x::'a::order);
!!y. P y ==> x <= y;
!!x. [| P x; ALL y. P y --> x ≤ y |] ==> Q x |]
==> Q (Least P)"
apply (unfold Least_def)
apply (rule theI2)
apply (blast intro: order_antisym)+
done
lemma Least_equality:
"[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k"
apply (simp add: Least_def)
apply (rule the_equality)
apply (auto intro!: order_antisym)
done
subsection "Linear / total orders"
axclass linorder < order
linorder_linear: "x <= y | y <= x"
lemma linorder_less_linear: "!!x::'a::linorder. x<y | x=y | y<x"
apply (simp add: order_less_le)
apply (insert linorder_linear, blast)
done
lemma linorder_le_less_linear: "!!x::'a::linorder. x≤y | y<x"
by (simp add: order_le_less linorder_less_linear)
lemma linorder_le_cases [case_names le ge]:
"((x::'a::linorder) ≤ y ==> P) ==> (y ≤ x ==> P) ==> P"
by (insert linorder_linear, blast)
lemma linorder_cases [case_names less equal greater]:
"((x::'a::linorder) < y ==> P) ==> (x = y ==> P) ==> (y < x ==> P) ==> P"
by (insert linorder_less_linear, blast)
lemma linorder_not_less: "!!x::'a::linorder. (~ x < y) = (y <= x)"
apply (simp add: order_less_le)
apply (insert linorder_linear)
apply (blast intro: order_antisym)
done
lemma linorder_not_le: "!!x::'a::linorder. (~ x <= y) = (y < x)"
apply (simp add: order_less_le)
apply (insert linorder_linear)
apply (blast intro: order_antisym)
done
lemma linorder_neq_iff: "!!x::'a::linorder. (x ~= y) = (x<y | y<x)"
by (cut_tac x = x and y = y in linorder_less_linear, auto)
lemma linorder_neqE: "x ~= (y::'a::linorder) ==> (x < y ==> R) ==> (y < x ==> R) ==> R"
by (simp add: linorder_neq_iff, blast)
lemma linorder_antisym_conv1: "~ (x::'a::linorder) < y ==> (x <= y) = (x = y)"
by(blast intro:order_antisym dest:linorder_not_less[THEN iffD1])
lemma linorder_antisym_conv2: "(x::'a::linorder) <= y ==> (~ x < y) = (x = y)"
by(blast intro:order_antisym dest:linorder_not_less[THEN iffD1])
lemma linorder_antisym_conv3: "~ (y::'a::linorder) < x ==> (~ x < y) = (x = y)"
by(blast intro:order_antisym dest:linorder_not_less[THEN iffD1])
text{*Replacing the old Nat.leI*}
lemma leI: "~ x < y ==> y <= (x::'a::linorder)"
by (simp only: linorder_not_less)
lemma leD: "y <= (x::'a::linorder) ==> ~ x < y"
by (simp only: linorder_not_less)
(*FIXME inappropriate name (or delete altogether)*)
lemma not_leE: "~ y <= (x::'a::linorder) ==> x < y"
by (simp only: linorder_not_le)
use "antisym_setup.ML";
setup antisym_setup
subsection {* Setup of transitivity reasoner as Solver *}
lemma less_imp_neq: "[| (x::'a::order) < y |] ==> x ~= y"
by (erule contrapos_pn, erule subst, rule order_less_irrefl)
lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y"
by (erule subst, erule ssubst, assumption)
ML_setup {*
(* The setting up of Quasi_Tac serves as a demo. Since there is no
class for quasi orders, the tactics Quasi_Tac.trans_tac and
Quasi_Tac.quasi_tac are not of much use. *)
fun decomp_gen sort sign (Trueprop $ t) =
let fun of_sort t = let val T = type_of t in
(* exclude numeric types: linear arithmetic subsumes transitivity *)
T <> HOLogic.natT andalso T <> HOLogic.intT andalso
T <> HOLogic.realT andalso Sign.of_sort sign (T, sort) end
fun dec (Const ("Not", _) $ t) = (
case dec t of
NONE => NONE
| SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2))
| dec (Const ("op =", _) $ t1 $ t2) =
if of_sort t1
then SOME (t1, "=", t2)
else NONE
| dec (Const ("op <=", _) $ t1 $ t2) =
if of_sort t1
then SOME (t1, "<=", t2)
else NONE
| dec (Const ("op <", _) $ t1 $ t2) =
if of_sort t1
then SOME (t1, "<", t2)
else NONE
| dec _ = NONE
in dec t end;
structure Quasi_Tac = Quasi_Tac_Fun (
struct
val le_trans = thm "order_trans";
val le_refl = thm "order_refl";
val eqD1 = thm "order_eq_refl";
val eqD2 = thm "sym" RS thm "order_eq_refl";
val less_reflE = thm "order_less_irrefl" RS thm "notE";
val less_imp_le = thm "order_less_imp_le";
val le_neq_trans = thm "order_le_neq_trans";
val neq_le_trans = thm "order_neq_le_trans";
val less_imp_neq = thm "less_imp_neq";
val decomp_trans = decomp_gen ["Orderings.order"];
val decomp_quasi = decomp_gen ["Orderings.order"];
end); (* struct *)
structure Order_Tac = Order_Tac_Fun (
struct
val less_reflE = thm "order_less_irrefl" RS thm "notE";
val le_refl = thm "order_refl";
val less_imp_le = thm "order_less_imp_le";
val not_lessI = thm "linorder_not_less" RS thm "iffD2";
val not_leI = thm "linorder_not_le" RS thm "iffD2";
val not_lessD = thm "linorder_not_less" RS thm "iffD1";
val not_leD = thm "linorder_not_le" RS thm "iffD1";
val eqI = thm "order_antisym";
val eqD1 = thm "order_eq_refl";
val eqD2 = thm "sym" RS thm "order_eq_refl";
val less_trans = thm "order_less_trans";
val less_le_trans = thm "order_less_le_trans";
val le_less_trans = thm "order_le_less_trans";
val le_trans = thm "order_trans";
val le_neq_trans = thm "order_le_neq_trans";
val neq_le_trans = thm "order_neq_le_trans";
val less_imp_neq = thm "less_imp_neq";
val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq";
val not_sym = thm "not_sym";
val decomp_part = decomp_gen ["Orderings.order"];
val decomp_lin = decomp_gen ["Orderings.linorder"];
end); (* struct *)
simpset_ref() := simpset ()
addSolver (mk_solver "Trans_linear" (fn _ => Order_Tac.linear_tac))
addSolver (mk_solver "Trans_partial" (fn _ => Order_Tac.partial_tac));
(* Adding the transitivity reasoners also as safe solvers showed a slight
speed up, but the reasoning strength appears to be not higher (at least
no breaking of additional proofs in the entire HOL distribution, as
of 5 March 2004, was observed). *)
*}
(* Optional setup of methods *)
(*
method_setup trans_partial =
{* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (Order_Tac.partial_tac)) *}
{* transitivity reasoner for partial orders *}
method_setup trans_linear =
{* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (Order_Tac.linear_tac)) *}
{* transitivity reasoner for linear orders *}
*)
(*
declare order.order_refl [simp del] order_less_irrefl [simp del]
can currently not be removed, abel_cancel relies on it.
*)
subsection "Min and max on (linear) orders"
text{* Instantiate locales: *}
interpretation min_max:
lower_semilattice["op ≤" "min :: 'a::linorder => 'a => 'a"]
apply(rule lower_semilattice_axioms.intro)
apply(simp add:min_def linorder_not_le order_less_imp_le)
apply(simp add:min_def linorder_not_le order_less_imp_le)
apply(simp add:min_def linorder_not_le order_less_imp_le)
done
interpretation min_max:
upper_semilattice["op ≤" "max :: 'a::linorder => 'a => 'a"]
apply -
apply(rule upper_semilattice_axioms.intro)
apply(simp add: max_def linorder_not_le order_less_imp_le)
apply(simp add: max_def linorder_not_le order_less_imp_le)
apply(simp add: max_def linorder_not_le order_less_imp_le)
done
interpretation min_max:
lattice["op ≤" "min :: 'a::linorder => 'a => 'a" "max"]
.
interpretation min_max:
distrib_lattice["op ≤" "min :: 'a::linorder => 'a => 'a" "max"]
apply(rule distrib_lattice_axioms.intro)
apply(rule_tac x=x and y=y in linorder_le_cases)
apply(rule_tac x=x and y=z in linorder_le_cases)
apply(rule_tac x=y and y=z in linorder_le_cases)
apply(simp add:min_def max_def)
apply(simp add:min_def max_def)
apply(rule_tac x=y and y=z in linorder_le_cases)
apply(simp add:min_def max_def)
apply(simp add:min_def max_def)
apply(rule_tac x=x and y=z in linorder_le_cases)
apply(rule_tac x=y and y=z in linorder_le_cases)
apply(simp add:min_def max_def)
apply(simp add:min_def max_def)
apply(rule_tac x=y and y=z in linorder_le_cases)
apply(simp add:min_def max_def)
apply(simp add:min_def max_def)
done
lemma le_max_iff_disj: "!!z::'a::linorder. (z <= max x y) = (z <= x | z <= y)"
apply(simp add:max_def)
apply (insert linorder_linear)
apply (blast intro: order_trans)
done
lemmas le_maxI1 = min_max.sup_ge1
lemmas le_maxI2 = min_max.sup_ge2
lemma less_max_iff_disj: "!!z::'a::linorder. (z < max x y) = (z < x | z < y)"
apply (simp add: max_def order_le_less)
apply (insert linorder_less_linear)
apply (blast intro: order_less_trans)
done
lemma max_less_iff_conj [simp]:
"!!z::'a::linorder. (max x y < z) = (x < z & y < z)"
apply (simp add: order_le_less max_def)
apply (insert linorder_less_linear)
apply (blast intro: order_less_trans)
done
lemma min_less_iff_conj [simp]:
"!!z::'a::linorder. (z < min x y) = (z < x & z < y)"
apply (simp add: order_le_less min_def)
apply (insert linorder_less_linear)
apply (blast intro: order_less_trans)
done
lemma min_le_iff_disj: "!!z::'a::linorder. (min x y <= z) = (x <= z | y <= z)"
apply (simp add: min_def)
apply (insert linorder_linear)
apply (blast intro: order_trans)
done
lemma min_less_iff_disj: "!!z::'a::linorder. (min x y < z) = (x < z | y < z)"
apply (simp add: min_def order_le_less)
apply (insert linorder_less_linear)
apply (blast intro: order_less_trans)
done
lemmas max_ac = min_max.sup_assoc min_max.sup_commute
mk_left_commute[of max,OF min_max.sup_assoc min_max.sup_commute]
lemmas min_ac = min_max.inf_assoc min_max.inf_commute
mk_left_commute[of min,OF min_max.inf_assoc min_max.inf_commute]
lemma split_min:
"P (min (i::'a::linorder) j) = ((i <= j --> P(i)) & (~ i <= j --> P(j)))"
by (simp add: min_def)
lemma split_max:
"P (max (i::'a::linorder) j) = ((i <= j --> P(j)) & (~ i <= j --> P(i)))"
by (simp add: max_def)
subsection "Bounded quantifiers"
syntax
"_lessAll" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10)
"_lessEx" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10)
"_leAll" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10)
"_leEx" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10)
"_gtAll" :: "[idt, 'a, bool] => bool" ("(3ALL _>_./ _)" [0, 0, 10] 10)
"_gtEx" :: "[idt, 'a, bool] => bool" ("(3EX _>_./ _)" [0, 0, 10] 10)
"_geAll" :: "[idt, 'a, bool] => bool" ("(3ALL _>=_./ _)" [0, 0, 10] 10)
"_geEx" :: "[idt, 'a, bool] => bool" ("(3EX _>=_./ _)" [0, 0, 10] 10)
syntax (xsymbols)
"_lessAll" :: "[idt, 'a, bool] => bool" ("(3∀_<_./ _)" [0, 0, 10] 10)
"_lessEx" :: "[idt, 'a, bool] => bool" ("(3∃_<_./ _)" [0, 0, 10] 10)
"_leAll" :: "[idt, 'a, bool] => bool" ("(3∀_≤_./ _)" [0, 0, 10] 10)
"_leEx" :: "[idt, 'a, bool] => bool" ("(3∃_≤_./ _)" [0, 0, 10] 10)
"_gtAll" :: "[idt, 'a, bool] => bool" ("(3∀_>_./ _)" [0, 0, 10] 10)
"_gtEx" :: "[idt, 'a, bool] => bool" ("(3∃_>_./ _)" [0, 0, 10] 10)
"_geAll" :: "[idt, 'a, bool] => bool" ("(3∀_≥_./ _)" [0, 0, 10] 10)
"_geEx" :: "[idt, 'a, bool] => bool" ("(3∃_≥_./ _)" [0, 0, 10] 10)
syntax (HOL)
"_lessAll" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10)
"_lessEx" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10)
"_leAll" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10)
"_leEx" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10)
syntax (HTML output)
"_lessAll" :: "[idt, 'a, bool] => bool" ("(3∀_<_./ _)" [0, 0, 10] 10)
"_lessEx" :: "[idt, 'a, bool] => bool" ("(3∃_<_./ _)" [0, 0, 10] 10)
"_leAll" :: "[idt, 'a, bool] => bool" ("(3∀_≤_./ _)" [0, 0, 10] 10)
"_leEx" :: "[idt, 'a, bool] => bool" ("(3∃_≤_./ _)" [0, 0, 10] 10)
"_gtAll" :: "[idt, 'a, bool] => bool" ("(3∀_>_./ _)" [0, 0, 10] 10)
"_gtEx" :: "[idt, 'a, bool] => bool" ("(3∃_>_./ _)" [0, 0, 10] 10)
"_geAll" :: "[idt, 'a, bool] => bool" ("(3∀_≥_./ _)" [0, 0, 10] 10)
"_geEx" :: "[idt, 'a, bool] => bool" ("(3∃_≥_./ _)" [0, 0, 10] 10)
translations
"ALL x<y. P" => "ALL x. x < y --> P"
"EX x<y. P" => "EX x. x < y & P"
"ALL x<=y. P" => "ALL x. x <= y --> P"
"EX x<=y. P" => "EX x. x <= y & P"
"ALL x>y. P" => "ALL x. x > y --> P"
"EX x>y. P" => "EX x. x > y & P"
"ALL x>=y. P" => "ALL x. x >= y --> P"
"EX x>=y. P" => "EX x. x >= y & P"
print_translation {*
let
fun mk v v' q n P =
if v=v' andalso not (v mem (map fst (Term.add_frees n [])))
then Syntax.const q $ Syntax.mark_bound v' $ n $ P else raise Match;
fun all_tr' [Const ("_bound",_) $ Free (v,_),
Const("op -->",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] =
mk v v' "_lessAll" n P
| all_tr' [Const ("_bound",_) $ Free (v,_),
Const("op -->",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] =
mk v v' "_leAll" n P
| all_tr' [Const ("_bound",_) $ Free (v,_),
Const("op -->",_) $ (Const ("op <",_) $ n $ (Const ("_bound",_) $ Free (v',_))) $ P] =
mk v v' "_gtAll" n P
| all_tr' [Const ("_bound",_) $ Free (v,_),
Const("op -->",_) $ (Const ("op <=",_) $ n $ (Const ("_bound",_) $ Free (v',_))) $ P] =
mk v v' "_geAll" n P;
fun ex_tr' [Const ("_bound",_) $ Free (v,_),
Const("op &",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] =
mk v v' "_lessEx" n P
| ex_tr' [Const ("_bound",_) $ Free (v,_),
Const("op &",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] =
mk v v' "_leEx" n P
| ex_tr' [Const ("_bound",_) $ Free (v,_),
Const("op &",_) $ (Const ("op <",_) $ n $ (Const ("_bound",_) $ Free (v',_))) $ P] =
mk v v' "_gtEx" n P
| ex_tr' [Const ("_bound",_) $ Free (v,_),
Const("op &",_) $ (Const ("op <=",_) $ n $ (Const ("_bound",_) $ Free (v',_))) $ P] =
mk v v' "_geEx" n P
in
[("ALL ", all_tr'), ("EX ", ex_tr')]
end
*}
subsection {* Extra transitivity rules *}
text {* These support proving chains of decreasing inequalities
a >= b >= c ... in Isar proofs. *}
lemma xt1: "a = b ==> b > c ==> a > c"
by simp
lemma xt2: "a > b ==> b = c ==> a > c"
by simp
lemma xt3: "a = b ==> b >= c ==> a >= c"
by simp
lemma xt4: "a >= b ==> b = c ==> a >= c"
by simp
lemma xt5: "(x::'a::order) >= y ==> y >= x ==> x = y"
by simp
lemma xt6: "(x::'a::order) >= y ==> y >= z ==> x >= z"
by simp
lemma xt7: "(x::'a::order) > y ==> y >= z ==> x > z"
by simp
lemma xt8: "(x::'a::order) >= y ==> y > z ==> x > z"
by simp
lemma xt9: "(a::'a::order) > b ==> b > a ==> ?P"
by simp
lemma xt10: "(x::'a::order) > y ==> y > z ==> x > z"
by simp
lemma xt11: "(a::'a::order) >= b ==> a ~= b ==> a > b"
by simp
lemma xt12: "(a::'a::order) ~= b ==> a >= b ==> a > b"
by simp
lemma xt13: "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==>
a > f c"
by simp
lemma xt14: "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==>
f a > c"
by auto
lemma xt15: "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==>
a >= f c"
by simp
lemma xt16: "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==>
f a >= c"
by auto
lemma xt17: "(a::'a::order) >= f b ==> b >= c ==>
(!!x y. x >= y ==> f x >= f y) ==> a >= f c"
by (subgoal_tac "f b >= f c", force, force)
lemma xt18: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==>
(!!x y. x >= y ==> f x >= f y) ==> f a >= c"
by (subgoal_tac "f a >= f b", force, force)
lemma xt19: "(a::'a::order) > f b ==> (b::'b::order) >= c ==>
(!!x y. x >= y ==> f x >= f y) ==> a > f c"
by (subgoal_tac "f b >= f c", force, force)
lemma xt20: "(a::'a::order) > b ==> (f b::'b::order) >= c==>
(!!x y. x > y ==> f x > f y) ==> f a > c"
by (subgoal_tac "f a > f b", force, force)
lemma xt21: "(a::'a::order) >= f b ==> b > c ==>
(!!x y. x > y ==> f x > f y) ==> a > f c"
by (subgoal_tac "f b > f c", force, force)
lemma xt22: "(a::'a::order) >= b ==> (f b::'b::order) > c ==>
(!!x y. x >= y ==> f x >= f y) ==> f a > c"
by (subgoal_tac "f a >= f b", force, force)
lemma xt23: "(a::'a::order) > f b ==> (b::'b::order) > c ==>
(!!x y. x > y ==> f x > f y) ==> a > f c"
by (subgoal_tac "f b > f c", force, force)
lemma xt24: "(a::'a::order) > b ==> (f b::'b::order) > c ==>
(!!x y. x > y ==> f x > f y) ==> f a > c"
by (subgoal_tac "f a > f b", force, force)
lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 xt11 xt12
xt13 xt14 xt15 xt15 xt17 xt18 xt19 xt20 xt21 xt22 xt23 xt24
(*
Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands
for the wrong thing in an Isar proof.
The extra transitivity rules can be used as follows:
lemma "(a::'a::order) > z"
proof -
have "a >= b" (is "_ >= ?rhs")
sorry
also have "?rhs >= c" (is "_ >= ?rhs")
sorry
also (xtrans) have "?rhs = d" (is "_ = ?rhs")
sorry
also (xtrans) have "?rhs >= e" (is "_ >= ?rhs")
sorry
also (xtrans) have "?rhs > f" (is "_ > ?rhs")
sorry
also (xtrans) have "?rhs > z"
sorry
finally (xtrans) show ?thesis .
qed
Alternatively, one can use "declare xtrans [trans]" and then
leave out the "(xtrans)" above.
*)
end
lemmas monoI:
(!!A B. A ≤ B ==> f A ≤ f B) ==> mono f
and monoD:
[| mono f; A ≤ B |] ==> f A ≤ f B
lemmas monoI:
(!!A B. A ≤ B ==> f A ≤ f B) ==> mono f
and monoD:
[| mono f; A ≤ B |] ==> f A ≤ f B
lemma min_leastL:
(!!x. least ≤ x) ==> min least x = least
lemma min_of_mono:
∀x y. (f x ≤ f y) = (x ≤ y) ==> min (f m) (f n) = f (min m n)
lemma max_leastL:
(!!x. least ≤ x) ==> max least x = x
lemma max_of_mono:
∀x y. (f x ≤ f y) = (x ≤ y) ==> max (f m) (f n) = f (max m n)
lemma order_eq_refl:
x = y ==> x ≤ y
lemma order_less_irrefl:
¬ x < x
lemma order_le_less:
(x ≤ y) = (x < y ∨ x = y)
lemmas order_le_imp_less_or_eq:
x ≤ y ==> x < y ∨ x = y
lemmas order_le_imp_less_or_eq:
x ≤ y ==> x < y ∨ x = y
lemma order_less_imp_le:
x < y ==> x ≤ y
lemma order_less_not_sym:
x < y ==> ¬ y < x
lemma order_less_asym:
[| x < y; ¬ P ==> y < x |] ==> P
lemma order_eq_iff:
(x = y) = (x ≤ y ∧ y ≤ x)
lemma order_antisym_conv:
y ≤ x ==> (x ≤ y) = (x = y)
lemma order_less_trans:
[| x < y; y < z |] ==> x < z
lemma order_le_less_trans:
[| x ≤ y; y < z |] ==> x < z
lemma order_less_le_trans:
[| x < y; y ≤ z |] ==> x < z
lemma order_less_imp_not_less:
x < y ==> (¬ y < x) = True
lemma order_less_imp_triv:
x < y ==> (y < x --> P) = True
lemma order_less_imp_not_eq:
x < y ==> (x = y) = False
lemma order_less_imp_not_eq2:
x < y ==> (y = x) = False
lemma min_leastR:
(!!x. least ≤ x) ==> min x least = least
lemma max_leastR:
(!!x. least ≤ x) ==> max x least = x
lemma order_neq_le_trans:
[| a ≠ b; a ≤ b |] ==> a < b
lemma order_le_neq_trans:
[| a ≤ b; a ≠ b |] ==> a < b
lemma order_less_asym':
[| a < b; b < a |] ==> P
lemma LeastI2_order:
[| P x; !!y. P y ==> x ≤ y; !!x. [| P x; ∀y. P y --> x ≤ y |] ==> Q x |] ==> Q (Least P)
lemma Least_equality:
[| P k; !!x. P x ==> k ≤ x |] ==> (LEAST x. P x) = k
lemma linorder_less_linear:
x < y ∨ x = y ∨ y < x
lemma linorder_le_less_linear:
x ≤ y ∨ y < x
lemma linorder_le_cases:
[| x ≤ y ==> P; y ≤ x ==> P |] ==> P
lemma linorder_cases:
[| x < y ==> P; x = y ==> P; y < x ==> P |] ==> P
lemma linorder_not_less:
(¬ x < y) = (y ≤ x)
lemma linorder_not_le:
(¬ x ≤ y) = (y < x)
lemma linorder_neq_iff:
(x ≠ y) = (x < y ∨ y < x)
lemma linorder_neqE:
[| x ≠ y; x < y ==> R; y < x ==> R |] ==> R
lemma linorder_antisym_conv1:
¬ x < y ==> (x ≤ y) = (x = y)
lemma linorder_antisym_conv2:
x ≤ y ==> (¬ x < y) = (x = y)
lemma linorder_antisym_conv3:
¬ y < x ==> (¬ x < y) = (x = y)
lemma leI:
¬ x < y ==> y ≤ x
lemma leD:
y ≤ x ==> ¬ x < y
lemma not_leE:
¬ y ≤ x ==> x < y
lemma less_imp_neq:
x < y ==> x ≠ y
lemma eq_neq_eq_imp_neq:
[| x = a; a ≠ b; b = y |] ==> x ≠ y
lemma le_max_iff_disj:
(z ≤ max x y) = (z ≤ x ∨ z ≤ y)
lemmas le_maxI1:
x ≤ max x y
lemmas le_maxI1:
x ≤ max x y
lemmas le_maxI2:
y ≤ max x y
lemmas le_maxI2:
y ≤ max x y
lemma less_max_iff_disj:
(z < max x y) = (z < x ∨ z < y)
lemma max_less_iff_conj:
(max x y < z) = (x < z ∧ y < z)
lemma min_less_iff_conj:
(z < min x y) = (z < x ∧ z < y)
lemma min_le_iff_disj:
(min x y ≤ z) = (x ≤ z ∨ y ≤ z)
lemma min_less_iff_disj:
(min x y < z) = (x < z ∨ y < z)
lemmas max_ac:
max (max x y) z = max x (max y z)
max x y = max y x
max x (max y z) = max y (max x z)
lemmas max_ac:
max (max x y) z = max x (max y z)
max x y = max y x
max x (max y z) = max y (max x z)
lemmas min_ac:
min (min x y) z = min x (min y z)
min x y = min y x
min x (min y z) = min y (min x z)
lemmas min_ac:
min (min x y) z = min x (min y z)
min x y = min y x
min x (min y z) = min y (min x z)
lemma split_min:
P (min i j) = ((i ≤ j --> P i) ∧ (¬ i ≤ j --> P j))
lemma split_max:
P (max i j) = ((i ≤ j --> P j) ∧ (¬ i ≤ j --> P i))
lemma xt1:
[| a = b; c < b |] ==> c < a
lemma xt2:
[| b < a; b = c |] ==> c < a
lemma xt3:
[| a = b; c ≤ b |] ==> c ≤ a
lemma xt4:
[| b ≤ a; b = c |] ==> c ≤ a
lemma xt5:
[| y ≤ x; x ≤ y |] ==> x = y
lemma xt6:
[| y ≤ x; z ≤ y |] ==> z ≤ x
lemma xt7:
[| y < x; z ≤ y |] ==> z < x
lemma xt8:
[| y ≤ x; z < y |] ==> z < x
lemma xt9:
[| b < a; a < b |] ==> True
lemma xt10:
[| y < x; z < y |] ==> z < x
lemma xt11:
[| b ≤ a; a ≠ b |] ==> b < a
lemma xt12:
[| a ≠ b; b ≤ a |] ==> b < a
lemma xt13:
[| a = f b; c < b; !!x y. y < x ==> f y < f x |] ==> f c < a
lemma xt14:
[| b < a; f b = c; !!x y. y < x ==> f y < f x |] ==> c < f a
lemma xt15:
[| a = f b; c ≤ b; !!x y. y ≤ x ==> f y ≤ f x |] ==> f c ≤ a
lemma xt16:
[| b ≤ a; f b = c; !!x y. y ≤ x ==> f y ≤ f x |] ==> c ≤ f a
lemma xt17:
[| f b ≤ a; c ≤ b; !!x y. y ≤ x ==> f y ≤ f x |] ==> f c ≤ a
lemma xt18:
[| b ≤ a; c ≤ f b; !!x y. y ≤ x ==> f y ≤ f x |] ==> c ≤ f a
lemma xt19:
[| f b < a; c ≤ b; !!x y. y ≤ x ==> f y ≤ f x |] ==> f c < a
lemma xt20:
[| b < a; c ≤ f b; !!x y. y < x ==> f y < f x |] ==> c < f a
lemma xt21:
[| f b ≤ a; c < b; !!x y. y < x ==> f y < f x |] ==> f c < a
lemma xt22:
[| b ≤ a; c < f b; !!x y. y ≤ x ==> f y ≤ f x |] ==> c < f a
lemma xt23:
[| f b < a; c < b; !!x y. y < x ==> f y < f x |] ==> f c < a
lemma xt24:
[| b < a; c < f b; !!x y. y < x ==> f y < f x |] ==> c < f a
lemmas xtrans:
[| a = b; c < b |] ==> c < a
[| b < a; b = c |] ==> c < a
[| a = b; c ≤ b |] ==> c ≤ a
[| b ≤ a; b = c |] ==> c ≤ a
[| y ≤ x; x ≤ y |] ==> x = y
[| y ≤ x; z ≤ y |] ==> z ≤ x
[| y < x; z ≤ y |] ==> z < x
[| y ≤ x; z < y |] ==> z < x
[| b < a; a < b |] ==> True
[| y < x; z < y |] ==> z < x
[| b ≤ a; a ≠ b |] ==> b < a
[| a ≠ b; b ≤ a |] ==> b < a
[| a = f b; c < b; !!x y. y < x ==> f y < f x |] ==> f c < a
[| b < a; f b = c; !!x y. y < x ==> f y < f x |] ==> c < f a
[| a = f b; c ≤ b; !!x y. y ≤ x ==> f y ≤ f x |] ==> f c ≤ a
[| a = f b; c ≤ b; !!x y. y ≤ x ==> f y ≤ f x |] ==> f c ≤ a
[| f b ≤ a; c ≤ b; !!x y. y ≤ x ==> f y ≤ f x |] ==> f c ≤ a
[| b ≤ a; c ≤ f b; !!x y. y ≤ x ==> f y ≤ f x |] ==> c ≤ f a
[| f b < a; c ≤ b; !!x y. y ≤ x ==> f y ≤ f x |] ==> f c < a
[| b < a; c ≤ f b; !!x y. y < x ==> f y < f x |] ==> c < f a
[| f b ≤ a; c < b; !!x y. y < x ==> f y < f x |] ==> f c < a
[| b ≤ a; c < f b; !!x y. y ≤ x ==> f y ≤ f x |] ==> c < f a
[| f b < a; c < b; !!x y. y < x ==> f y < f x |] ==> f c < a
[| b < a; c < f b; !!x y. y < x ==> f y < f x |] ==> c < f a
lemmas xtrans:
[| a = b; c < b |] ==> c < a
[| b < a; b = c |] ==> c < a
[| a = b; c ≤ b |] ==> c ≤ a
[| b ≤ a; b = c |] ==> c ≤ a
[| y ≤ x; x ≤ y |] ==> x = y
[| y ≤ x; z ≤ y |] ==> z ≤ x
[| y < x; z ≤ y |] ==> z < x
[| y ≤ x; z < y |] ==> z < x
[| b < a; a < b |] ==> True
[| y < x; z < y |] ==> z < x
[| b ≤ a; a ≠ b |] ==> b < a
[| a ≠ b; b ≤ a |] ==> b < a
[| a = f b; c < b; !!x y. y < x ==> f y < f x |] ==> f c < a
[| b < a; f b = c; !!x y. y < x ==> f y < f x |] ==> c < f a
[| a = f b; c ≤ b; !!x y. y ≤ x ==> f y ≤ f x |] ==> f c ≤ a
[| a = f b; c ≤ b; !!x y. y ≤ x ==> f y ≤ f x |] ==> f c ≤ a
[| f b ≤ a; c ≤ b; !!x y. y ≤ x ==> f y ≤ f x |] ==> f c ≤ a
[| b ≤ a; c ≤ f b; !!x y. y ≤ x ==> f y ≤ f x |] ==> c ≤ f a
[| f b < a; c ≤ b; !!x y. y ≤ x ==> f y ≤ f x |] ==> f c < a
[| b < a; c ≤ f b; !!x y. y < x ==> f y < f x |] ==> c < f a
[| f b ≤ a; c < b; !!x y. y < x ==> f y < f x |] ==> f c < a
[| b ≤ a; c < f b; !!x y. y ≤ x ==> f y ≤ f x |] ==> c < f a
[| f b < a; c < b; !!x y. y < x ==> f y < f x |] ==> f c < a
[| b < a; c < f b; !!x y. y < x ==> f y < f x |] ==> c < f a