(* Title: HOL/Auth/SET/EventSET
ID: $Id: EventSET.thy,v 1.3 2005/06/17 14:13:10 haftmann Exp $
Authors: Giampaolo Bella, Fabio Massacci, Lawrence C Paulson
*)
header{*Theory of Events for SET*}
theory EventSET imports MessageSET begin
text{*The Root Certification Authority*}
syntax RCA :: agent
translations "RCA" == "CA 0"
text{*Message events*}
datatype
event = Says agent agent msg
| Gets agent msg
| Notes agent msg
text{*compromised agents: keys known, Notes visible*}
consts bad :: "agent set"
text{*Spy has access to his own key for spoof messages, but RCA is secure*}
specification (bad)
Spy_in_bad [iff]: "Spy ∈ bad"
RCA_not_bad [iff]: "RCA ∉ bad"
by (rule exI [of _ "{Spy}"], simp)
subsection{*Agents' Knowledge*}
consts (*Initial states of agents -- parameter of the construction*)
initState :: "agent => msg set"
knows :: "[agent, event list] => msg set"
(* Message reception does not extend spy's knowledge because of
reception invariant enforced by Reception rule in protocol definition*)
primrec
knows_Nil:
"knows A [] = initState A"
knows_Cons:
"knows A (ev # evs) =
(if A = Spy then
(case ev of
Says A' B X => insert X (knows Spy evs)
| Gets A' X => knows Spy evs
| Notes A' X =>
if A' ∈ bad then insert X (knows Spy evs) else knows Spy evs)
else
(case ev of
Says A' B X =>
if A'=A then insert X (knows A evs) else knows A evs
| Gets A' X =>
if A'=A then insert X (knows A evs) else knows A evs
| Notes A' X =>
if A'=A then insert X (knows A evs) else knows A evs))"
subsection{*Used Messages*}
consts
(*Set of items that might be visible to somebody:
complement of the set of fresh items*)
used :: "event list => msg set"
(* As above, message reception does extend used items *)
primrec
used_Nil: "used [] = (UN B. parts (initState B))"
used_Cons: "used (ev # evs) =
(case ev of
Says A B X => parts {X} Un (used evs)
| Gets A X => used evs
| Notes A X => parts {X} Un (used evs))"
(* Inserted by default but later removed. This declaration lets the file
be re-loaded. Addsimps [knows_Cons, used_Nil, *)
(** Simplifying parts (insert X (knows Spy evs))
= parts {X} Un parts (knows Spy evs) -- since general case loops*)
lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs", standard]
lemma knows_Spy_Says [simp]:
"knows Spy (Says A B X # evs) = insert X (knows Spy evs)"
by auto
text{*Letting the Spy see "bad" agents' notes avoids redundant case-splits
on whether @{term "A=Spy"} and whether @{term "A∈bad"}*}
lemma knows_Spy_Notes [simp]:
"knows Spy (Notes A X # evs) =
(if A:bad then insert X (knows Spy evs) else knows Spy evs)"
apply auto
done
lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs"
by auto
lemma initState_subset_knows: "initState A <= knows A evs"
apply (induct_tac "evs")
apply (auto split: event.split)
done
lemma knows_Spy_subset_knows_Spy_Says:
"knows Spy evs <= knows Spy (Says A B X # evs)"
by auto
lemma knows_Spy_subset_knows_Spy_Notes:
"knows Spy evs <= knows Spy (Notes A X # evs)"
by auto
lemma knows_Spy_subset_knows_Spy_Gets:
"knows Spy evs <= knows Spy (Gets A X # evs)"
by auto
(*Spy sees what is sent on the traffic*)
lemma Says_imp_knows_Spy [rule_format]:
"Says A B X ∈ set evs --> X ∈ knows Spy evs"
apply (induct_tac "evs")
apply (auto split: event.split)
done
(*Use with addSEs to derive contradictions from old Says events containing
items known to be fresh*)
lemmas knows_Spy_partsEs =
Says_imp_knows_Spy [THEN parts.Inj, THEN revcut_rl, standard]
parts.Body [THEN revcut_rl, standard]
subsection{*The Function @{term used}*}
lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) <= used evs"
apply (induct_tac "evs")
apply (auto simp add: parts_insert_knows_A split: event.split)
done
lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro]
lemma initState_subset_used: "parts (initState B) <= used evs"
apply (induct_tac "evs")
apply (auto split: event.split)
done
lemmas initState_into_used = initState_subset_used [THEN subsetD]
lemma used_Says [simp]: "used (Says A B X # evs) = parts{X} Un used evs"
by auto
lemma used_Notes [simp]: "used (Notes A X # evs) = parts{X} Un used evs"
by auto
lemma used_Gets [simp]: "used (Gets A X # evs) = used evs"
by auto
lemma Notes_imp_parts_subset_used [rule_format]:
"Notes A X ∈ set evs --> parts {X} <= used evs"
apply (induct_tac "evs")
apply (induct_tac [2] "a", auto)
done
text{*NOTE REMOVAL--laws above are cleaner, as they don't involve "case"*}
declare knows_Cons [simp del]
used_Nil [simp del] used_Cons [simp del]
text{*For proving theorems of the form @{term "X ∉ analz (knows Spy evs) --> P"}
New events added by induction to "evs" are discarded. Provided
this information isn't needed, the proof will be much shorter, since
it will omit complicated reasoning about @{term analz}.*}
lemmas analz_mono_contra =
knows_Spy_subset_knows_Spy_Says [THEN analz_mono, THEN contra_subsetD]
knows_Spy_subset_knows_Spy_Notes [THEN analz_mono, THEN contra_subsetD]
knows_Spy_subset_knows_Spy_Gets [THEN analz_mono, THEN contra_subsetD]
ML
{*
val analz_mono_contra_tac =
let val analz_impI = inst "P" "?Y ∉ analz (knows Spy ?evs)" impI
in rtac analz_impI THEN'
REPEAT1 o (dresolve_tac (thms"analz_mono_contra")) THEN'
mp_tac
end
*}
method_setup analz_mono_contra = {*
Method.no_args
(Method.METHOD (fn facts => REPEAT_FIRST analz_mono_contra_tac)) *}
"for proving theorems of the form X ∉ analz (knows Spy evs) --> P"
end
lemmas parts_insert_knows_A:
parts (insert X (knows A evs)) = parts {X} ∪ parts (knows A evs)
lemmas parts_insert_knows_A:
parts (insert X (knows A evs)) = parts {X} ∪ parts (knows A evs)
lemma knows_Spy_Says:
knows Spy (Says A B X # evs) = insert X (knows Spy evs)
lemma knows_Spy_Notes:
knows Spy (Notes A X # evs) = (if A ∈ bad then insert X (knows Spy evs) else knows Spy evs)
lemma knows_Spy_Gets:
knows Spy (Gets A X # evs) = knows Spy evs
lemma initState_subset_knows:
initState A ⊆ knows A evs
lemma knows_Spy_subset_knows_Spy_Says:
knows Spy evs ⊆ knows Spy (Says A B X # evs)
lemma knows_Spy_subset_knows_Spy_Notes:
knows Spy evs ⊆ knows Spy (Notes A X # evs)
lemma knows_Spy_subset_knows_Spy_Gets:
knows Spy evs ⊆ knows Spy (Gets A X # evs)
lemma Says_imp_knows_Spy:
Says A B X ∈ set evs ==> X ∈ knows Spy evs
lemmas knows_Spy_partsEs:
[| Says A B X ∈ set evs; X ∈ parts (knows Spy evs) ==> PROP W |] ==> PROP W
[| Crypt K X ∈ parts H; X ∈ parts H ==> PROP W |] ==> PROP W
lemmas knows_Spy_partsEs:
[| Says A B X ∈ set evs; X ∈ parts (knows Spy evs) ==> PROP W |] ==> PROP W
[| Crypt K X ∈ parts H; X ∈ parts H ==> PROP W |] ==> PROP W
lemma parts_knows_Spy_subset_used:
parts (knows Spy evs) ⊆ used evs
lemmas usedI:
c ∈ parts (knows Spy evs1) ==> c ∈ used evs1
lemmas usedI:
c ∈ parts (knows Spy evs1) ==> c ∈ used evs1
lemma initState_subset_used:
parts (initState B) ⊆ used evs
lemmas initState_into_used:
c ∈ parts (initState B1) ==> c ∈ used evs1
lemmas initState_into_used:
c ∈ parts (initState B1) ==> c ∈ used evs1
lemma used_Says:
used (Says A B X # evs) = parts {X} ∪ used evs
lemma used_Notes:
used (Notes A X # evs) = parts {X} ∪ used evs
lemma used_Gets:
used (Gets A X # evs) = used evs
lemma Notes_imp_parts_subset_used:
Notes A X ∈ set evs ==> parts {X} ⊆ used evs
lemmas analz_mono_contra:
c ∉ analz (knows Spy (Says A2 B2 X2 # evs2)) ==> c ∉ analz (knows Spy evs2)
c ∉ analz (knows Spy (Notes A2 X2 # evs2)) ==> c ∉ analz (knows Spy evs2)
c ∉ analz (knows Spy (Gets A2 X2 # evs2)) ==> c ∉ analz (knows Spy evs2)
lemmas analz_mono_contra:
c ∉ analz (knows Spy (Says A2 B2 X2 # evs2)) ==> c ∉ analz (knows Spy evs2)
c ∉ analz (knows Spy (Notes A2 X2 # evs2)) ==> c ∉ analz (knows Spy evs2)
c ∉ analz (knows Spy (Gets A2 X2 # evs2)) ==> c ∉ analz (knows Spy evs2)