(* Title: Subst/Subst.thy
ID: $Id: Subst.thy,v 1.11 2005/04/01 19:04:00 paulson Exp $
Author: Martin Coen, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
*)
header{*Substitutions on uterms*}
theory Subst
imports AList UTerm
begin
consts
"=$=" :: "[('a*('a uterm)) list,('a*('a uterm)) list] => bool" (infixr 52)
"<|" :: "'a uterm => ('a * 'a uterm) list => 'a uterm" (infixl 55)
"<>" :: "[('a*('a uterm)) list, ('a*('a uterm)) list]
=> ('a*('a uterm)) list" (infixl 56)
sdom :: "('a*('a uterm)) list => 'a set"
srange :: "('a*('a uterm)) list => 'a set"
syntax (xsymbols)
"op =$=" :: "[('a*('a uterm)) list,('a*('a uterm)) list] => bool"
(infixr "\<doteq>" 52)
"op <|" :: "'a uterm => ('a * 'a uterm) list => 'a uterm" (infixl "\<lhd>" 55)
"op <>" :: "[('a*('a uterm)) list, ('a*('a uterm)) list]
=> ('a*('a uterm)) list" (infixl "◊" 56)
primrec
subst_Var: "(Var v \<lhd> s) = assoc v (Var v) s"
subst_Const: "(Const c \<lhd> s) = Const c"
subst_Comb: "(Comb M N \<lhd> s) = Comb (M \<lhd> s) (N \<lhd> s)"
defs
subst_eq_def: "r =$= s == ALL t. t \<lhd> r = t \<lhd> s"
comp_def: "al ◊ bl == alist_rec al bl (%x y xs g. (x,y \<lhd> bl)#g)"
sdom_def:
"sdom(al) == alist_rec al {}
(%x y xs g. if Var(x)=y then g - {x} else g Un {x})"
srange_def:
"srange(al) == Union({y. ∃x ∈ sdom(al). y = vars_of(Var(x) \<lhd> al)})"
subsection{*Basic Laws*}
lemma subst_Nil [simp]: "t \<lhd> [] = t"
by (induct_tac "t", auto)
lemma subst_mono [rule_format]: "t \<prec> u --> t \<lhd> s \<prec> u \<lhd> s"
by (induct_tac "u", auto)
lemma Var_not_occs [rule_format]:
"~ (Var(v) \<prec> t) --> t \<lhd> (v,t \<lhd> s) # s = t \<lhd> s"
apply (case_tac "t = Var v")
apply (erule_tac [2] rev_mp)
apply (rule_tac [2] P =
"%x. x ≠ Var v --> ~(Var v \<prec> x) --> x \<lhd> (v,t\<lhd>s) #s = x\<lhd>s"
in uterm.induct)
apply auto
done
lemma agreement: "(t\<lhd>r = t\<lhd>s) = (∀v ∈ vars_of t. Var v \<lhd> r = Var v \<lhd> s)"
by (induct_tac "t", auto)
lemma repl_invariance: "~ v: vars_of(t) ==> t \<lhd> (v,u)#s = t \<lhd> s"
by (simp add: agreement)
lemma Var_in_subst [rule_format]:
"v ∈ vars_of(t) --> w ∈ vars_of(t \<lhd> (v,Var(w))#s)"
by (induct_tac "t", auto)
subsection{*Equality between Substitutions*}
lemma subst_eq_iff: "r \<doteq> s = (∀t. t \<lhd> r = t \<lhd> s)"
by (simp add: subst_eq_def)
lemma subst_refl [iff]: "r \<doteq> r"
by (simp add: subst_eq_iff)
lemma subst_sym: "r \<doteq> s ==> s \<doteq> r"
by (simp add: subst_eq_iff)
lemma subst_trans: "[| q \<doteq> r; r \<doteq> s |] ==> q \<doteq> s"
by (simp add: subst_eq_iff)
lemma subst_subst2:
"[| r \<doteq> s; P (t \<lhd> r) (u \<lhd> r) |] ==> P (t \<lhd> s) (u \<lhd> s)"
by (simp add: subst_eq_def)
lemmas ssubst_subst2 = subst_sym [THEN subst_subst2]
subsection{*Composition of Substitutions*}
lemma [simp]:
"[] ◊ bl = bl"
"((a,b)#al) ◊ bl = (a,b \<lhd> bl) # (al ◊ bl)"
"sdom([]) = {}"
"sdom((a,b)#al) = (if Var(a)=b then (sdom al) - {a} else sdom al Un {a})"
by (simp_all add: comp_def sdom_def)
lemma comp_Nil [simp]: "s ◊ [] = s"
by (induct "s", auto)
lemma subst_comp_Nil: "s \<doteq> s ◊ []"
by simp
lemma subst_comp [simp]: "(t \<lhd> r ◊ s) = (t \<lhd> r \<lhd> s)"
apply (induct_tac "t")
apply (simp_all (no_asm_simp))
apply (induct "r", auto)
done
lemma comp_assoc: "(q ◊ r) ◊ s \<doteq> q ◊ (r ◊ s)"
by (simp add: subst_eq_iff)
lemma subst_cong:
"[| theta \<doteq> theta1; sigma \<doteq> sigma1|]
==> (theta ◊ sigma) \<doteq> (theta1 ◊ sigma1)"
by (simp add: subst_eq_def)
lemma Cons_trivial: "(w, Var(w) \<lhd> s) # s \<doteq> s"
apply (simp add: subst_eq_iff)
apply (rule allI)
apply (induct_tac "t", simp_all)
done
lemma comp_subst_subst: "q ◊ r \<doteq> s ==> t \<lhd> q \<lhd> r = t \<lhd> s"
by (simp add: subst_eq_iff)
subsection{*Domain and range of Substitutions*}
lemma sdom_iff: "(v ∈ sdom(s)) = (Var(v) \<lhd> s ~= Var(v))"
apply (induct "s")
apply (case_tac [2] a, auto)
done
lemma srange_iff:
"v ∈ srange(s) = (∃w. w ∈ sdom(s) & v ∈ vars_of(Var(w) \<lhd> s))"
by (auto simp add: srange_def)
lemma empty_iff_all_not: "(A = {}) = (ALL a.~ a:A)"
by (unfold empty_def, blast)
lemma invariance: "(t \<lhd> s = t) = (sdom(s) Int vars_of(t) = {})"
apply (induct_tac "t")
apply (auto simp add: empty_iff_all_not sdom_iff)
done
lemma Var_in_srange [rule_format]:
"v ∈ sdom(s) --> v ∈ vars_of(t \<lhd> s) --> v ∈ srange(s)"
apply (induct_tac "t")
apply (case_tac "a ∈ sdom s")
apply (auto simp add: sdom_iff srange_iff)
done
lemma Var_elim: "[| v ∈ sdom(s); v ∉ srange(s) |] ==> v ∉ vars_of(t \<lhd> s)"
by (blast intro: Var_in_srange)
lemma Var_intro [rule_format]:
"v ∈ vars_of(t \<lhd> s) --> v ∈ srange(s) | v ∈ vars_of(t)"
apply (induct_tac "t")
apply (auto simp add: sdom_iff srange_iff)
apply (rule_tac x=a in exI, auto)
done
lemma srangeD: "v ∈ srange(s) ==> ∃w. w ∈ sdom(s) & v ∈ vars_of(Var(w) \<lhd> s)"
by (simp add: srange_iff)
lemma dom_range_disjoint:
"sdom(s) Int srange(s) = {} = (∀t. sdom(s) Int vars_of(t \<lhd> s) = {})"
apply (simp add: empty_iff_all_not)
apply (force intro: Var_in_srange dest: srangeD)
done
lemma subst_not_empty: "~ u \<lhd> s = u ==> (∃x. x ∈ sdom(s))"
by (auto simp add: empty_iff_all_not invariance)
lemma id_subst_lemma [simp]: "(M \<lhd> [(x, Var x)]) = M"
by (induct_tac "M", auto)
end
lemma subst_Nil:
t <| [] = t
lemma subst_mono:
t <: u ==> t <| s <: u <| s
lemma Var_not_occs:
¬ Var v <: t ==> t <| (v, t <| s) # s = t <| s
lemma agreement:
(t <| r = t <| s) = (∀v∈vars_of t. Var v <| r = Var v <| s)
lemma repl_invariance:
v ∉ vars_of t ==> t <| (v, u) # s = t <| s
lemma Var_in_subst:
v ∈ vars_of t ==> w ∈ vars_of (t <| (v, Var w) # s)
lemma subst_eq_iff:
r =$= s = (∀t. t <| r = t <| s)
lemma subst_refl:
r =$= r
lemma subst_sym:
r =$= s ==> s =$= r
lemma subst_trans:
[| q =$= r; r =$= s |] ==> q =$= s
lemma subst_subst2:
[| r =$= s; P (t <| r) (u <| r) |] ==> P (t <| s) (u <| s)
lemmas ssubst_subst2:
[| s =$= r; P (t <| r) (u <| r) |] ==> P (t <| s) (u <| s)
lemmas ssubst_subst2:
[| s =$= r; P (t <| r) (u <| r) |] ==> P (t <| s) (u <| s)
lemma
[] <> bl = bl
(a, b) # al <> bl = (a, b <| bl) # (al <> bl)
sdom [] = {}
sdom ((a, b) # al) = (if Var a = b then sdom al - {a} else sdom al ∪ {a})
lemma comp_Nil:
s <> [] = s
lemma subst_comp_Nil:
s =$= s <> []
lemma subst_comp:
t <| r <> s = t <| r <| s
lemma comp_assoc:
q <> r <> s =$= q <> (r <> s)
lemma subst_cong:
[| theta =$= theta1.0; sigma =$= sigma1.0 |] ==> theta <> sigma =$= theta1.0 <> sigma1.0
lemma Cons_trivial:
(w, Var w <| s) # s =$= s
lemma comp_subst_subst:
q <> r =$= s ==> t <| q <| r = t <| s
lemma sdom_iff:
(v ∈ sdom s) = (Var v <| s ≠ Var v)
lemma srange_iff:
(v ∈ srange s) = (∃w. w ∈ sdom s ∧ v ∈ vars_of (Var w <| s))
lemma empty_iff_all_not:
(A = {}) = (∀a. a ∉ A)
lemma invariance:
(t <| s = t) = (sdom s ∩ vars_of t = {})
lemma Var_in_srange:
[| v ∈ sdom s; v ∈ vars_of (t <| s) |] ==> v ∈ srange s
lemma Var_elim:
[| v ∈ sdom s; v ∉ srange s |] ==> v ∉ vars_of (t <| s)
lemma Var_intro:
v ∈ vars_of (t <| s) ==> v ∈ srange s ∨ v ∈ vars_of t
lemma srangeD:
v ∈ srange s ==> ∃w. w ∈ sdom s ∧ v ∈ vars_of (Var w <| s)
lemma dom_range_disjoint:
(sdom s ∩ srange s = {}) = (∀t. sdom s ∩ vars_of (t <| s) = {})
lemma subst_not_empty:
u <| s ≠ u ==> ∃x. x ∈ sdom s
lemma id_subst_lemma:
M <| [(x, Var x)] = M