Up to index of Isabelle/HOL
theory Transitive_Closure(* Title: HOL/Transitive_Closure.thy
ID: $Id: Transitive_Closure.thy,v 1.34 2005/09/22 21:56:16 nipkow Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
*)
header {* Reflexive and Transitive closure of a relation *}
theory Transitive_Closure
imports Inductive
uses ("../Provers/trancl.ML")
begin
text {*
@{text rtrancl} is reflexive/transitive closure,
@{text trancl} is transitive closure,
@{text reflcl} is reflexive closure.
These postfix operators have \emph{maximum priority}, forcing their
operands to be atomic.
*}
consts
rtrancl :: "('a × 'a) set => ('a × 'a) set" ("(_^*)" [1000] 999)
inductive "r^*"
intros
rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) : r^*"
rtrancl_into_rtrancl [Pure.intro]: "(a, b) : r^* ==> (b, c) : r ==> (a, c) : r^*"
consts
trancl :: "('a × 'a) set => ('a × 'a) set" ("(_^+)" [1000] 999)
inductive "r^+"
intros
r_into_trancl [intro, Pure.intro]: "(a, b) : r ==> (a, b) : r^+"
trancl_into_trancl [Pure.intro]: "(a, b) : r^+ ==> (b, c) : r ==> (a,c) : r^+"
syntax
"_reflcl" :: "('a × 'a) set => ('a × 'a) set" ("(_^=)" [1000] 999)
translations
"r^=" == "r ∪ Id"
syntax (xsymbols)
rtrancl :: "('a × 'a) set => ('a × 'a) set" ("(_*)" [1000] 999)
trancl :: "('a × 'a) set => ('a × 'a) set" ("(_+)" [1000] 999)
"_reflcl" :: "('a × 'a) set => ('a × 'a) set" ("(_=)" [1000] 999)
syntax (HTML output)
rtrancl :: "('a × 'a) set => ('a × 'a) set" ("(_*)" [1000] 999)
trancl :: "('a × 'a) set => ('a × 'a) set" ("(_+)" [1000] 999)
"_reflcl" :: "('a × 'a) set => ('a × 'a) set" ("(_=)" [1000] 999)
subsection {* Reflexive-transitive closure *}
lemma r_into_rtrancl [intro]: "!!p. p ∈ r ==> p ∈ r^*"
-- {* @{text rtrancl} of @{text r} contains @{text r} *}
apply (simp only: split_tupled_all)
apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl])
done
lemma rtrancl_mono: "r ⊆ s ==> r^* ⊆ s^*"
-- {* monotonicity of @{text rtrancl} *}
apply (rule subsetI)
apply (simp only: split_tupled_all)
apply (erule rtrancl.induct)
apply (rule_tac [2] rtrancl_into_rtrancl, blast+)
done
theorem rtrancl_induct [consumes 1, induct set: rtrancl]:
assumes a: "(a, b) : r^*"
and cases: "P a" "!!y z. [| (a, y) : r^*; (y, z) : r; P y |] ==> P z"
shows "P b"
proof -
from a have "a = a --> P b"
by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+
thus ?thesis by iprover
qed
lemmas rtrancl_induct2 =
rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
consumes 1, case_names refl step]
lemma trans_rtrancl: "trans(r^*)"
-- {* transitivity of transitive closure!! -- by induction *}
proof (rule transI)
fix x y z
assume "(x, y) ∈ r*"
assume "(y, z) ∈ r*"
thus "(x, z) ∈ r*" by induct (iprover!)+
qed
lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard]
lemma rtranclE:
"[| (a::'a,b) : r^*; (a = b) ==> P;
!!y.[| (a,y) : r^*; (y,b) : r |] ==> P
|] ==> P"
-- {* elimination of @{text rtrancl} -- by induction on a special formula *}
proof -
assume major: "(a::'a,b) : r^*"
case rule_context
show ?thesis
apply (subgoal_tac "(a::'a) = b | (EX y. (a,y) : r^* & (y,b) : r)")
apply (rule_tac [2] major [THEN rtrancl_induct])
prefer 2 apply (blast!)
prefer 2 apply (blast!)
apply (erule asm_rl exE disjE conjE prems)+
done
qed
lemma converse_rtrancl_into_rtrancl:
"(a, b) ∈ r ==> (b, c) ∈ r* ==> (a, c) ∈ r*"
by (rule rtrancl_trans) iprover+
text {*
\medskip More @{term "r^*"} equations and inclusions.
*}
lemma rtrancl_idemp [simp]: "(r^*)^* = r^*"
apply auto
apply (erule rtrancl_induct)
apply (rule rtrancl_refl)
apply (blast intro: rtrancl_trans)
done
lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*"
apply (rule set_ext)
apply (simp only: split_tupled_all)
apply (blast intro: rtrancl_trans)
done
lemma rtrancl_subset_rtrancl: "r ⊆ s^* ==> r^* ⊆ s^*"
by (drule rtrancl_mono, simp)
lemma rtrancl_subset: "R ⊆ S ==> S ⊆ R^* ==> S^* = R^*"
apply (drule rtrancl_mono)
apply (drule rtrancl_mono, simp)
done
lemma rtrancl_Un_rtrancl: "(R^* ∪ S^*)^* = (R ∪ S)^*"
by (blast intro!: rtrancl_subset intro: r_into_rtrancl rtrancl_mono [THEN subsetD])
lemma rtrancl_reflcl [simp]: "(R^=)^* = R^*"
by (blast intro!: rtrancl_subset intro: r_into_rtrancl)
lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*"
apply (rule sym)
apply (rule rtrancl_subset, blast, clarify)
apply (rename_tac a b)
apply (case_tac "a = b", blast)
apply (blast intro!: r_into_rtrancl)
done
theorem rtrancl_converseD:
assumes r: "(x, y) ∈ (r^-1)^*"
shows "(y, x) ∈ r^*"
proof -
from r show ?thesis
by induct (iprover intro: rtrancl_trans dest!: converseD)+
qed
theorem rtrancl_converseI:
assumes r: "(y, x) ∈ r^*"
shows "(x, y) ∈ (r^-1)^*"
proof -
from r show ?thesis
by induct (iprover intro: rtrancl_trans converseI)+
qed
lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1"
by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI)
theorem converse_rtrancl_induct[consumes 1]:
assumes major: "(a, b) : r^*"
and cases: "P b" "!!y z. [| (y, z) : r; (z, b) : r^*; P z |] ==> P y"
shows "P a"
proof -
from rtrancl_converseI [OF major]
show ?thesis
by induct (iprover intro: cases dest!: converseD rtrancl_converseD)+
qed
lemmas converse_rtrancl_induct2 =
converse_rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),
consumes 1, case_names refl step]
lemma converse_rtranclE:
"[| (x,z):r^*;
x=z ==> P;
!!y. [| (x,y):r; (y,z):r^* |] ==> P
|] ==> P"
proof -
assume major: "(x,z):r^*"
case rule_context
show ?thesis
apply (subgoal_tac "x = z | (EX y. (x,y) : r & (y,z) : r^*)")
apply (rule_tac [2] major [THEN converse_rtrancl_induct])
prefer 2 apply iprover
prefer 2 apply iprover
apply (erule asm_rl exE disjE conjE prems)+
done
qed
ML_setup {*
bind_thm ("converse_rtranclE2", split_rule
(read_instantiate [("x","(xa,xb)"), ("z","(za,zb)")] (thm "converse_rtranclE")));
*}
lemma r_comp_rtrancl_eq: "r O r^* = r^* O r"
by (blast elim: rtranclE converse_rtranclE
intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl)
lemma rtrancl_unfold: "r^* = Id Un (r O r^*)"
by (auto intro: rtrancl_into_rtrancl elim: rtranclE)
subsection {* Transitive closure *}
lemma trancl_mono: "!!p. p ∈ r^+ ==> r ⊆ s ==> p ∈ s^+"
apply (simp only: split_tupled_all)
apply (erule trancl.induct)
apply (iprover dest: subsetD)+
done
lemma r_into_trancl': "!!p. p : r ==> p : r^+"
by (simp only: split_tupled_all) (erule r_into_trancl)
text {*
\medskip Conversions between @{text trancl} and @{text rtrancl}.
*}
lemma trancl_into_rtrancl: "(a, b) ∈ r^+ ==> (a, b) ∈ r^*"
by (erule trancl.induct) iprover+
lemma rtrancl_into_trancl1: assumes r: "(a, b) ∈ r^*"
shows "!!c. (b, c) ∈ r ==> (a, c) ∈ r^+" using r
by induct iprover+
lemma rtrancl_into_trancl2: "[| (a,b) : r; (b,c) : r^* |] ==> (a,c) : r^+"
-- {* intro rule from @{text r} and @{text rtrancl} *}
apply (erule rtranclE, iprover)
apply (rule rtrancl_trans [THEN rtrancl_into_trancl1])
apply (assumption | rule r_into_rtrancl)+
done
lemma trancl_induct [consumes 1, induct set: trancl]:
assumes a: "(a,b) : r^+"
and cases: "!!y. (a, y) : r ==> P y"
"!!y z. (a,y) : r^+ ==> (y, z) : r ==> P y ==> P z"
shows "P b"
-- {* Nice induction rule for @{text trancl} *}
proof -
from a have "a = a --> P b"
by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+
thus ?thesis by iprover
qed
lemma trancl_trans_induct:
"[| (x,y) : r^+;
!!x y. (x,y) : r ==> P x y;
!!x y z. [| (x,y) : r^+; P x y; (y,z) : r^+; P y z |] ==> P x z
|] ==> P x y"
-- {* Another induction rule for trancl, incorporating transitivity *}
proof -
assume major: "(x,y) : r^+"
case rule_context
show ?thesis
by (iprover intro: r_into_trancl major [THEN trancl_induct] prems)
qed
inductive_cases tranclE: "(a, b) : r^+"
lemma trancl_unfold: "r^+ = r Un (r O r^+)"
by (auto intro: trancl_into_trancl elim: tranclE)
lemma trans_trancl: "trans(r^+)"
-- {* Transitivity of @{term "r^+"} *}
proof (rule transI)
fix x y z
assume "(x, y) ∈ r^+"
assume "(y, z) ∈ r^+"
thus "(x, z) ∈ r^+" by induct (iprover!)+
qed
lemmas trancl_trans = trans_trancl [THEN transD, standard]
lemma rtrancl_trancl_trancl: assumes r: "(x, y) ∈ r^*"
shows "!!z. (y, z) ∈ r^+ ==> (x, z) ∈ r^+" using r
by induct (iprover intro: trancl_trans)+
lemma trancl_into_trancl2: "(a, b) ∈ r ==> (b, c) ∈ r^+ ==> (a, c) ∈ r^+"
by (erule transD [OF trans_trancl r_into_trancl])
lemma trancl_insert:
"(insert (y, x) r)^+ = r^+ ∪ {(a, b). (a, y) ∈ r^* ∧ (x, b) ∈ r^*}"
-- {* primitive recursion for @{text trancl} over finite relations *}
apply (rule equalityI)
apply (rule subsetI)
apply (simp only: split_tupled_all)
apply (erule trancl_induct, blast)
apply (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl r_into_trancl trancl_trans)
apply (rule subsetI)
apply (blast intro: trancl_mono rtrancl_mono
[THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2)
done
lemma trancl_converseI: "(x, y) ∈ (r^+)^-1 ==> (x, y) ∈ (r^-1)^+"
apply (drule converseD)
apply (erule trancl.induct)
apply (iprover intro: converseI trancl_trans)+
done
lemma trancl_converseD: "(x, y) ∈ (r^-1)^+ ==> (x, y) ∈ (r^+)^-1"
apply (rule converseI)
apply (erule trancl.induct)
apply (iprover dest: converseD intro: trancl_trans)+
done
lemma trancl_converse: "(r^-1)^+ = (r^+)^-1"
by (fastsimp simp add: split_tupled_all
intro!: trancl_converseI trancl_converseD)
lemma converse_trancl_induct:
"[| (a,b) : r^+; !!y. (y,b) : r ==> P(y);
!!y z.[| (y,z) : r; (z,b) : r^+; P(z) |] ==> P(y) |]
==> P(a)"
proof -
assume major: "(a,b) : r^+"
case rule_context
show ?thesis
apply (rule major [THEN converseI, THEN trancl_converseI [THEN trancl_induct]])
apply (rule prems)
apply (erule converseD)
apply (blast intro: prems dest!: trancl_converseD)
done
qed
lemma tranclD: "(x, y) ∈ R^+ ==> EX z. (x, z) ∈ R ∧ (z, y) ∈ R^*"
apply (erule converse_trancl_induct, auto)
apply (blast intro: rtrancl_trans)
done
lemma irrefl_tranclI: "r^-1 ∩ r^* = {} ==> (x, x) ∉ r^+"
by(blast elim: tranclE dest: trancl_into_rtrancl)
lemma irrefl_trancl_rD: "!!X. ALL x. (x, x) ∉ r^+ ==> (x, y) ∈ r ==> x ≠ y"
by (blast dest: r_into_trancl)
lemma trancl_subset_Sigma_aux:
"(a, b) ∈ r^* ==> r ⊆ A × A ==> a = b ∨ a ∈ A"
apply (erule rtrancl_induct, auto)
done
lemma trancl_subset_Sigma: "r ⊆ A × A ==> r^+ ⊆ A × A"
apply (rule subsetI)
apply (simp only: split_tupled_all)
apply (erule tranclE)
apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+
done
lemma reflcl_trancl [simp]: "(r^+)^= = r^*"
apply safe
apply (erule trancl_into_rtrancl)
apply (blast elim: rtranclE dest: rtrancl_into_trancl1)
done
lemma trancl_reflcl [simp]: "(r^=)^+ = r^*"
apply safe
apply (drule trancl_into_rtrancl, simp)
apply (erule rtranclE, safe)
apply (rule r_into_trancl, simp)
apply (rule rtrancl_into_trancl1)
apply (erule rtrancl_reflcl [THEN equalityD2, THEN subsetD], fast)
done
lemma trancl_empty [simp]: "{}^+ = {}"
by (auto elim: trancl_induct)
lemma rtrancl_empty [simp]: "{}^* = Id"
by (rule subst [OF reflcl_trancl]) simp
lemma rtranclD: "(a, b) ∈ R^* ==> a = b ∨ a ≠ b ∧ (a, b) ∈ R^+"
by (force simp add: reflcl_trancl [symmetric] simp del: reflcl_trancl)
lemma rtrancl_eq_or_trancl:
"(x,y) ∈ R* = (x=y ∨ x≠y ∧ (x,y) ∈ R+)"
by (fast elim: trancl_into_rtrancl dest: rtranclD)
text {* @{text Domain} and @{text Range} *}
lemma Domain_rtrancl [simp]: "Domain (R^*) = UNIV"
by blast
lemma Range_rtrancl [simp]: "Range (R^*) = UNIV"
by blast
lemma rtrancl_Un_subset: "(R^* ∪ S^*) ⊆ (R Un S)^*"
by (rule rtrancl_Un_rtrancl [THEN subst]) fast
lemma in_rtrancl_UnI: "x ∈ R^* ∨ x ∈ S^* ==> x ∈ (R ∪ S)^*"
by (blast intro: subsetD [OF rtrancl_Un_subset])
lemma trancl_domain [simp]: "Domain (r^+) = Domain r"
by (unfold Domain_def) (blast dest: tranclD)
lemma trancl_range [simp]: "Range (r^+) = Range r"
by (simp add: Range_def trancl_converse [symmetric])
lemma Not_Domain_rtrancl:
"x ~: Domain R ==> ((x, y) : R^*) = (x = y)"
apply auto
by (erule rev_mp, erule rtrancl_induct, auto)
text {* More about converse @{text rtrancl} and @{text trancl}, should
be merged with main body. *}
lemma single_valued_confluent:
"[| single_valued r; (x,y) ∈ r^*; (x,z) ∈ r^* |]
==> (y,z) ∈ r^* ∨ (z,y) ∈ r^*"
apply(erule rtrancl_induct)
apply simp
apply(erule disjE)
apply(blast elim:converse_rtranclE dest:single_valuedD)
apply(blast intro:rtrancl_trans)
done
lemma r_r_into_trancl: "(a, b) ∈ R ==> (b, c) ∈ R ==> (a, c) ∈ R^+"
by (fast intro: trancl_trans)
lemma trancl_into_trancl [rule_format]:
"(a, b) ∈ r+ ==> (b, c) ∈ r --> (a,c) ∈ r+"
apply (erule trancl_induct)
apply (fast intro: r_r_into_trancl)
apply (fast intro: r_r_into_trancl trancl_trans)
done
lemma trancl_rtrancl_trancl:
"(a, b) ∈ r+ ==> (b, c) ∈ r* ==> (a, c) ∈ r+"
apply (drule tranclD)
apply (erule exE, erule conjE)
apply (drule rtrancl_trans, assumption)
apply (drule rtrancl_into_trancl2, assumption, assumption)
done
lemmas transitive_closure_trans [trans] =
r_r_into_trancl trancl_trans rtrancl_trans
trancl_into_trancl trancl_into_trancl2
rtrancl_into_rtrancl converse_rtrancl_into_rtrancl
rtrancl_trancl_trancl trancl_rtrancl_trancl
declare trancl_into_rtrancl [elim]
declare rtranclE [cases set: rtrancl]
declare tranclE [cases set: trancl]
subsection {* Setup of transitivity reasoner *}
use "../Provers/trancl.ML";
ML_setup {*
structure Trancl_Tac = Trancl_Tac_Fun (
struct
val r_into_trancl = thm "r_into_trancl";
val trancl_trans = thm "trancl_trans";
val rtrancl_refl = thm "rtrancl_refl";
val r_into_rtrancl = thm "r_into_rtrancl";
val trancl_into_rtrancl = thm "trancl_into_rtrancl";
val rtrancl_trancl_trancl = thm "rtrancl_trancl_trancl";
val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl";
val rtrancl_trans = thm "rtrancl_trans";
fun decomp (Trueprop $ t) =
let fun dec (Const ("op :", _) $ (Const ("Pair", _) $ a $ b) $ rel ) =
let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
| decr (Const ("Transitive_Closure.trancl", _ ) $ r) = (r,"r+")
| decr r = (r,"r");
val (rel,r) = decr rel;
in SOME (a,b,rel,r) end
| dec _ = NONE
in dec t end;
end); (* struct *)
simpset_ref() := simpset ()
addSolver (mk_solver "Trancl" (fn _ => Trancl_Tac.trancl_tac))
addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac));
*}
(* Optional methods
method_setup trancl =
{* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (trancl_tac)) *}
{* simple transitivity reasoner *}
method_setup rtrancl =
{* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (rtrancl_tac)) *}
{* simple transitivity reasoner *}
*)
end
lemma r_into_rtrancl:
p ∈ r ==> p ∈ r*
lemma rtrancl_mono:
r ⊆ s ==> r* ⊆ s*
theorem rtrancl_induct:
[| (a, b) ∈ r*; P a; !!y z. [| (a, y) ∈ r*; (y, z) ∈ r; P y |] ==> P z |] ==> P b
lemmas rtrancl_induct2:
[| ((ax, ay), bx, by) ∈ r*; P ax ay; !!a b aa ba. [| ((ax, ay), a, b) ∈ r*; ((a, b), aa, ba) ∈ r; P a b |] ==> P aa ba |] ==> P bx by
lemmas rtrancl_induct2:
[| ((ax, ay), bx, by) ∈ r*; P ax ay; !!a b aa ba. [| ((ax, ay), a, b) ∈ r*; ((a, b), aa, ba) ∈ r; P a b |] ==> P aa ba |] ==> P bx by
lemma trans_rtrancl:
trans (r*)
lemmas rtrancl_trans:
[| (a, b) ∈ r*; (b, c) ∈ r* |] ==> (a, c) ∈ r*
lemmas rtrancl_trans:
[| (a, b) ∈ r*; (b, c) ∈ r* |] ==> (a, c) ∈ r*
lemma rtranclE:
[| (a, b) ∈ r*; a = b ==> P; !!y. [| (a, y) ∈ r*; (y, b) ∈ r |] ==> P |] ==> P
lemma converse_rtrancl_into_rtrancl:
[| (a, b) ∈ r; (b, c) ∈ r* |] ==> (a, c) ∈ r*
lemma rtrancl_idemp:
(r*)* = r*
lemma rtrancl_idemp_self_comp:
R* O R* = R*
lemma rtrancl_subset_rtrancl:
r ⊆ s* ==> r* ⊆ s*
lemma rtrancl_subset:
[| R ⊆ S; S ⊆ R* |] ==> S* = R*
lemma rtrancl_Un_rtrancl:
(R* ∪ S*)* = (R ∪ S)*
lemma rtrancl_reflcl:
(R=)* = R*
lemma rtrancl_r_diff_Id:
(r - Id)* = r*
theorem rtrancl_converseD:
(x, y) ∈ (r^-1)* ==> (y, x) ∈ r*
theorem rtrancl_converseI:
(y, x) ∈ r* ==> (x, y) ∈ (r^-1)*
lemma rtrancl_converse:
(r^-1)* = (r*)^-1
theorem converse_rtrancl_induct:
[| (a, b) ∈ r*; P b; !!y z. [| (y, z) ∈ r; (z, b) ∈ r*; P z |] ==> P y |] ==> P a
lemmas converse_rtrancl_induct2:
[| ((ax, ay), bx, by) ∈ r*; P bx by; !!a b aa ba. [| ((a, b), aa, ba) ∈ r; ((aa, ba), bx, by) ∈ r*; P aa ba |] ==> P a b |] ==> P ax ay
lemmas converse_rtrancl_induct2:
[| ((ax, ay), bx, by) ∈ r*; P bx by; !!a b aa ba. [| ((a, b), aa, ba) ∈ r; ((aa, ba), bx, by) ∈ r*; P aa ba |] ==> P a b |] ==> P ax ay
lemma converse_rtranclE:
[| (x, z) ∈ r*; x = z ==> P; !!y. [| (x, y) ∈ r; (y, z) ∈ r* |] ==> P |] ==> P
theorem converse_rtranclE2:
[| ((xa, xb), za, zb) ∈ r*; (xa, xb) = (za, zb) ==> P; !!a b. [| ((xa, xb), a, b) ∈ r; ((a, b), za, zb) ∈ r* |] ==> P |] ==> P
lemma r_comp_rtrancl_eq:
r O r* = r* O r
lemma rtrancl_unfold:
r* = Id ∪ (r O r*)
lemma trancl_mono:
[| p ∈ r+; r ⊆ s |] ==> p ∈ s+
lemma r_into_trancl':
p ∈ r ==> p ∈ r+
lemma trancl_into_rtrancl:
(a, b) ∈ r+ ==> (a, b) ∈ r*
lemma rtrancl_into_trancl1:
[| (a, b) ∈ r*; (b, c) ∈ r |] ==> (a, c) ∈ r+
lemma rtrancl_into_trancl2:
[| (a, b) ∈ r; (b, c) ∈ r* |] ==> (a, c) ∈ r+
lemma trancl_induct:
[| (a, b) ∈ r+; !!y. (a, y) ∈ r ==> P y; !!y z. [| (a, y) ∈ r+; (y, z) ∈ r; P y |] ==> P z |] ==> P b
lemma trancl_trans_induct:
[| (x, y) ∈ r+; !!x y. (x, y) ∈ r ==> P x y; !!x y z. [| (x, y) ∈ r+; P x y; (y, z) ∈ r+; P y z |] ==> P x z |] ==> P x y
lemmas tranclE:
[| (a, b) ∈ r+; (a, b) ∈ r ==> P; !!b. [| (a, b) ∈ r+; (b, b) ∈ r |] ==> P |] ==> P
lemma trancl_unfold:
r+ = r ∪ (r O r+)
lemma trans_trancl:
trans (r+)
lemmas trancl_trans:
[| (a, b) ∈ r+; (b, c) ∈ r+ |] ==> (a, c) ∈ r+
lemmas trancl_trans:
[| (a, b) ∈ r+; (b, c) ∈ r+ |] ==> (a, c) ∈ r+
lemma rtrancl_trancl_trancl:
[| (x, y) ∈ r*; (y, z) ∈ r+ |] ==> (x, z) ∈ r+
lemma trancl_into_trancl2:
[| (a, b) ∈ r; (b, c) ∈ r+ |] ==> (a, c) ∈ r+
lemma trancl_insert:
(insert (y, x) r)+ = r+ ∪ {(a, b). (a, y) ∈ r* ∧ (x, b) ∈ r*}
lemma trancl_converseI:
(x, y) ∈ (r+)^-1 ==> (x, y) ∈ (r^-1)+
lemma trancl_converseD:
(x, y) ∈ (r^-1)+ ==> (x, y) ∈ (r+)^-1
lemma trancl_converse:
(r^-1)+ = (r+)^-1
lemma converse_trancl_induct:
[| (a, b) ∈ r+; !!y. (y, b) ∈ r ==> P y; !!y z. [| (y, z) ∈ r; (z, b) ∈ r+; P z |] ==> P y |] ==> P a
lemma tranclD:
(x, y) ∈ R+ ==> ∃z. (x, z) ∈ R ∧ (z, y) ∈ R*
lemma irrefl_tranclI:
r^-1 ∩ r* = {} ==> (x, x) ∉ r+
lemma irrefl_trancl_rD:
[| ∀x. (x, x) ∉ r+; (x, y) ∈ r |] ==> x ≠ y
lemma trancl_subset_Sigma_aux:
[| (a, b) ∈ r*; r ⊆ A × A |] ==> a = b ∨ a ∈ A
lemma trancl_subset_Sigma:
r ⊆ A × A ==> r+ ⊆ A × A
lemma reflcl_trancl:
(r+)= = r*
lemma trancl_reflcl:
(r=)+ = r*
lemma trancl_empty:
{}+ = {}
lemma rtrancl_empty:
{}* = Id
lemma rtranclD:
(a, b) ∈ R* ==> a = b ∨ a ≠ b ∧ (a, b) ∈ R+
lemma rtrancl_eq_or_trancl:
((x, y) ∈ R*) = (x = y ∨ x ≠ y ∧ (x, y) ∈ R+)
lemma Domain_rtrancl:
Domain (R*) = UNIV
lemma Range_rtrancl:
Range (R*) = UNIV
lemma rtrancl_Un_subset:
R* ∪ S* ⊆ (R ∪ S)*
lemma in_rtrancl_UnI:
x ∈ R* ∨ x ∈ S* ==> x ∈ (R ∪ S)*
lemma trancl_domain:
Domain (r+) = Domain r
lemma trancl_range:
Range (r+) = Range r
lemma Not_Domain_rtrancl:
x ∉ Domain R ==> ((x, y) ∈ R*) = (x = y)
lemma single_valued_confluent:
[| single_valued r; (x, y) ∈ r*; (x, z) ∈ r* |] ==> (y, z) ∈ r* ∨ (z, y) ∈ r*
lemma r_r_into_trancl:
[| (a, b) ∈ R; (b, c) ∈ R |] ==> (a, c) ∈ R+
lemma trancl_into_trancl:
[| (a, b) ∈ r+; (b, c) ∈ r |] ==> (a, c) ∈ r+
lemma trancl_rtrancl_trancl:
[| (a, b) ∈ r+; (b, c) ∈ r* |] ==> (a, c) ∈ r+
lemmas transitive_closure_trans:
[| (a, b) ∈ R; (b, c) ∈ R |] ==> (a, c) ∈ R+
[| (a, b) ∈ r+; (b, c) ∈ r+ |] ==> (a, c) ∈ r+
[| (a, b) ∈ r*; (b, c) ∈ r* |] ==> (a, c) ∈ r*
[| (a, b) ∈ r+; (b, c) ∈ r |] ==> (a, c) ∈ r+
[| (a, b) ∈ r; (b, c) ∈ r+ |] ==> (a, c) ∈ r+
[| (a, b) ∈ r*; (b, c) ∈ r |] ==> (a, c) ∈ r*
[| (a, b) ∈ r; (b, c) ∈ r* |] ==> (a, c) ∈ r*
[| (x, y) ∈ r*; (y, z) ∈ r+ |] ==> (x, z) ∈ r+
[| (a, b) ∈ r+; (b, c) ∈ r* |] ==> (a, c) ∈ r+
lemmas transitive_closure_trans:
[| (a, b) ∈ R; (b, c) ∈ R |] ==> (a, c) ∈ R+
[| (a, b) ∈ r+; (b, c) ∈ r+ |] ==> (a, c) ∈ r+
[| (a, b) ∈ r*; (b, c) ∈ r* |] ==> (a, c) ∈ r*
[| (a, b) ∈ r+; (b, c) ∈ r |] ==> (a, c) ∈ r+
[| (a, b) ∈ r; (b, c) ∈ r+ |] ==> (a, c) ∈ r+
[| (a, b) ∈ r*; (b, c) ∈ r |] ==> (a, c) ∈ r*
[| (a, b) ∈ r; (b, c) ∈ r* |] ==> (a, c) ∈ r*
[| (x, y) ∈ r*; (y, z) ∈ r+ |] ==> (x, z) ∈ r+
[| (a, b) ∈ r+; (b, c) ∈ r* |] ==> (a, c) ∈ r+