(* Title: HOL/UNITY/SubstAx
ID: $Id: SubstAx.thy,v 1.18 2005/06/17 14:13:10 haftmann Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
Weak LeadsTo relation (restricted to the set of reachable states)
*)
header{*Weak Progress*}
theory SubstAx imports WFair Constrains begin
constdefs
Ensures :: "['a set, 'a set] => 'a program set" (infixl "Ensures" 60)
"A Ensures B == {F. F ∈ (reachable F ∩ A) ensures B}"
LeadsTo :: "['a set, 'a set] => 'a program set" (infixl "LeadsTo" 60)
"A LeadsTo B == {F. F ∈ (reachable F ∩ A) leadsTo B}"
syntax (xsymbols)
"op LeadsTo" :: "['a set, 'a set] => 'a program set" (infixl " \<longmapsto>w " 60)
text{*Resembles the previous definition of LeadsTo*}
lemma LeadsTo_eq_leadsTo:
"A LeadsTo B = {F. F ∈ (reachable F ∩ A) leadsTo (reachable F ∩ B)}"
apply (unfold LeadsTo_def)
apply (blast dest: psp_stable2 intro: leadsTo_weaken)
done
subsection{*Specialized laws for handling invariants*}
(** Conjoining an Always property **)
lemma Always_LeadsTo_pre:
"F ∈ Always INV ==> (F ∈ (INV ∩ A) LeadsTo A') = (F ∈ A LeadsTo A')"
by (simp add: LeadsTo_def Always_eq_includes_reachable Int_absorb2
Int_assoc [symmetric])
lemma Always_LeadsTo_post:
"F ∈ Always INV ==> (F ∈ A LeadsTo (INV ∩ A')) = (F ∈ A LeadsTo A')"
by (simp add: LeadsTo_eq_leadsTo Always_eq_includes_reachable Int_absorb2
Int_assoc [symmetric])
(* [| F ∈ Always C; F ∈ (C ∩ A) LeadsTo A' |] ==> F ∈ A LeadsTo A' *)
lemmas Always_LeadsToI = Always_LeadsTo_pre [THEN iffD1, standard]
(* [| F ∈ Always INV; F ∈ A LeadsTo A' |] ==> F ∈ A LeadsTo (INV ∩ A') *)
lemmas Always_LeadsToD = Always_LeadsTo_post [THEN iffD2, standard]
subsection{*Introduction rules: Basis, Trans, Union*}
lemma leadsTo_imp_LeadsTo: "F ∈ A leadsTo B ==> F ∈ A LeadsTo B"
apply (simp add: LeadsTo_def)
apply (blast intro: leadsTo_weaken_L)
done
lemma LeadsTo_Trans:
"[| F ∈ A LeadsTo B; F ∈ B LeadsTo C |] ==> F ∈ A LeadsTo C"
apply (simp add: LeadsTo_eq_leadsTo)
apply (blast intro: leadsTo_Trans)
done
lemma LeadsTo_Union:
"(!!A. A ∈ S ==> F ∈ A LeadsTo B) ==> F ∈ (Union S) LeadsTo B"
apply (simp add: LeadsTo_def)
apply (subst Int_Union)
apply (blast intro: leadsTo_UN)
done
subsection{*Derived rules*}
lemma LeadsTo_UNIV [simp]: "F ∈ A LeadsTo UNIV"
by (simp add: LeadsTo_def)
text{*Useful with cancellation, disjunction*}
lemma LeadsTo_Un_duplicate:
"F ∈ A LeadsTo (A' ∪ A') ==> F ∈ A LeadsTo A'"
by (simp add: Un_ac)
lemma LeadsTo_Un_duplicate2:
"F ∈ A LeadsTo (A' ∪ C ∪ C) ==> F ∈ A LeadsTo (A' ∪ C)"
by (simp add: Un_ac)
lemma LeadsTo_UN:
"(!!i. i ∈ I ==> F ∈ (A i) LeadsTo B) ==> F ∈ (\<Union>i ∈ I. A i) LeadsTo B"
apply (simp only: Union_image_eq [symmetric])
apply (blast intro: LeadsTo_Union)
done
text{*Binary union introduction rule*}
lemma LeadsTo_Un:
"[| F ∈ A LeadsTo C; F ∈ B LeadsTo C |] ==> F ∈ (A ∪ B) LeadsTo C"
apply (subst Un_eq_Union)
apply (blast intro: LeadsTo_Union)
done
text{*Lets us look at the starting state*}
lemma single_LeadsTo_I:
"(!!s. s ∈ A ==> F ∈ {s} LeadsTo B) ==> F ∈ A LeadsTo B"
by (subst UN_singleton [symmetric], rule LeadsTo_UN, blast)
lemma subset_imp_LeadsTo: "A ⊆ B ==> F ∈ A LeadsTo B"
apply (simp add: LeadsTo_def)
apply (blast intro: subset_imp_leadsTo)
done
lemmas empty_LeadsTo = empty_subsetI [THEN subset_imp_LeadsTo, standard, simp]
lemma LeadsTo_weaken_R [rule_format]:
"[| F ∈ A LeadsTo A'; A' ⊆ B' |] ==> F ∈ A LeadsTo B'"
apply (simp add: LeadsTo_def)
apply (blast intro: leadsTo_weaken_R)
done
lemma LeadsTo_weaken_L [rule_format]:
"[| F ∈ A LeadsTo A'; B ⊆ A |]
==> F ∈ B LeadsTo A'"
apply (simp add: LeadsTo_def)
apply (blast intro: leadsTo_weaken_L)
done
lemma LeadsTo_weaken:
"[| F ∈ A LeadsTo A';
B ⊆ A; A' ⊆ B' |]
==> F ∈ B LeadsTo B'"
by (blast intro: LeadsTo_weaken_R LeadsTo_weaken_L LeadsTo_Trans)
lemma Always_LeadsTo_weaken:
"[| F ∈ Always C; F ∈ A LeadsTo A';
C ∩ B ⊆ A; C ∩ A' ⊆ B' |]
==> F ∈ B LeadsTo B'"
by (blast dest: Always_LeadsToI intro: LeadsTo_weaken intro: Always_LeadsToD)
(** Two theorems for "proof lattices" **)
lemma LeadsTo_Un_post: "F ∈ A LeadsTo B ==> F ∈ (A ∪ B) LeadsTo B"
by (blast intro: LeadsTo_Un subset_imp_LeadsTo)
lemma LeadsTo_Trans_Un:
"[| F ∈ A LeadsTo B; F ∈ B LeadsTo C |]
==> F ∈ (A ∪ B) LeadsTo C"
by (blast intro: LeadsTo_Un subset_imp_LeadsTo LeadsTo_weaken_L LeadsTo_Trans)
(** Distributive laws **)
lemma LeadsTo_Un_distrib:
"(F ∈ (A ∪ B) LeadsTo C) = (F ∈ A LeadsTo C & F ∈ B LeadsTo C)"
by (blast intro: LeadsTo_Un LeadsTo_weaken_L)
lemma LeadsTo_UN_distrib:
"(F ∈ (\<Union>i ∈ I. A i) LeadsTo B) = (∀i ∈ I. F ∈ (A i) LeadsTo B)"
by (blast intro: LeadsTo_UN LeadsTo_weaken_L)
lemma LeadsTo_Union_distrib:
"(F ∈ (Union S) LeadsTo B) = (∀A ∈ S. F ∈ A LeadsTo B)"
by (blast intro: LeadsTo_Union LeadsTo_weaken_L)
(** More rules using the premise "Always INV" **)
lemma LeadsTo_Basis: "F ∈ A Ensures B ==> F ∈ A LeadsTo B"
by (simp add: Ensures_def LeadsTo_def leadsTo_Basis)
lemma EnsuresI:
"[| F ∈ (A-B) Co (A ∪ B); F ∈ transient (A-B) |]
==> F ∈ A Ensures B"
apply (simp add: Ensures_def Constrains_eq_constrains)
apply (blast intro: ensuresI constrains_weaken transient_strengthen)
done
lemma Always_LeadsTo_Basis:
"[| F ∈ Always INV;
F ∈ (INV ∩ (A-A')) Co (A ∪ A');
F ∈ transient (INV ∩ (A-A')) |]
==> F ∈ A LeadsTo A'"
apply (rule Always_LeadsToI, assumption)
apply (blast intro: EnsuresI LeadsTo_Basis Always_ConstrainsD [THEN Constrains_weaken] transient_strengthen)
done
text{*Set difference: maybe combine with @{text leadsTo_weaken_L}??
This is the most useful form of the "disjunction" rule*}
lemma LeadsTo_Diff:
"[| F ∈ (A-B) LeadsTo C; F ∈ (A ∩ B) LeadsTo C |]
==> F ∈ A LeadsTo C"
by (blast intro: LeadsTo_Un LeadsTo_weaken)
lemma LeadsTo_UN_UN:
"(!! i. i ∈ I ==> F ∈ (A i) LeadsTo (A' i))
==> F ∈ (\<Union>i ∈ I. A i) LeadsTo (\<Union>i ∈ I. A' i)"
apply (simp only: Union_image_eq [symmetric])
apply (blast intro: LeadsTo_Union LeadsTo_weaken_R)
done
text{*Version with no index set*}
lemma LeadsTo_UN_UN_noindex:
"(!!i. F ∈ (A i) LeadsTo (A' i)) ==> F ∈ (\<Union>i. A i) LeadsTo (\<Union>i. A' i)"
by (blast intro: LeadsTo_UN_UN)
text{*Version with no index set*}
lemma all_LeadsTo_UN_UN:
"∀i. F ∈ (A i) LeadsTo (A' i)
==> F ∈ (\<Union>i. A i) LeadsTo (\<Union>i. A' i)"
by (blast intro: LeadsTo_UN_UN)
text{*Binary union version*}
lemma LeadsTo_Un_Un:
"[| F ∈ A LeadsTo A'; F ∈ B LeadsTo B' |]
==> F ∈ (A ∪ B) LeadsTo (A' ∪ B')"
by (blast intro: LeadsTo_Un LeadsTo_weaken_R)
(** The cancellation law **)
lemma LeadsTo_cancel2:
"[| F ∈ A LeadsTo (A' ∪ B); F ∈ B LeadsTo B' |]
==> F ∈ A LeadsTo (A' ∪ B')"
by (blast intro: LeadsTo_Un_Un subset_imp_LeadsTo LeadsTo_Trans)
lemma LeadsTo_cancel_Diff2:
"[| F ∈ A LeadsTo (A' ∪ B); F ∈ (B-A') LeadsTo B' |]
==> F ∈ A LeadsTo (A' ∪ B')"
apply (rule LeadsTo_cancel2)
prefer 2 apply assumption
apply (simp_all (no_asm_simp))
done
lemma LeadsTo_cancel1:
"[| F ∈ A LeadsTo (B ∪ A'); F ∈ B LeadsTo B' |]
==> F ∈ A LeadsTo (B' ∪ A')"
apply (simp add: Un_commute)
apply (blast intro!: LeadsTo_cancel2)
done
lemma LeadsTo_cancel_Diff1:
"[| F ∈ A LeadsTo (B ∪ A'); F ∈ (B-A') LeadsTo B' |]
==> F ∈ A LeadsTo (B' ∪ A')"
apply (rule LeadsTo_cancel1)
prefer 2 apply assumption
apply (simp_all (no_asm_simp))
done
text{*The impossibility law*}
text{*The set "A" may be non-empty, but it contains no reachable states*}
lemma LeadsTo_empty: "[|F ∈ A LeadsTo {}; all_total F|] ==> F ∈ Always (-A)"
apply (simp add: LeadsTo_def Always_eq_includes_reachable)
apply (drule leadsTo_empty, auto)
done
subsection{*PSP: Progress-Safety-Progress*}
text{*Special case of PSP: Misra's "stable conjunction"*}
lemma PSP_Stable:
"[| F ∈ A LeadsTo A'; F ∈ Stable B |]
==> F ∈ (A ∩ B) LeadsTo (A' ∩ B)"
apply (simp add: LeadsTo_eq_leadsTo Stable_eq_stable)
apply (drule psp_stable, assumption)
apply (simp add: Int_ac)
done
lemma PSP_Stable2:
"[| F ∈ A LeadsTo A'; F ∈ Stable B |]
==> F ∈ (B ∩ A) LeadsTo (B ∩ A')"
by (simp add: PSP_Stable Int_ac)
lemma PSP:
"[| F ∈ A LeadsTo A'; F ∈ B Co B' |]
==> F ∈ (A ∩ B') LeadsTo ((A' ∩ B) ∪ (B' - B))"
apply (simp add: LeadsTo_def Constrains_eq_constrains)
apply (blast dest: psp intro: leadsTo_weaken)
done
lemma PSP2:
"[| F ∈ A LeadsTo A'; F ∈ B Co B' |]
==> F ∈ (B' ∩ A) LeadsTo ((B ∩ A') ∪ (B' - B))"
by (simp add: PSP Int_ac)
lemma PSP_Unless:
"[| F ∈ A LeadsTo A'; F ∈ B Unless B' |]
==> F ∈ (A ∩ B) LeadsTo ((A' ∩ B) ∪ B')"
apply (unfold Unless_def)
apply (drule PSP, assumption)
apply (blast intro: LeadsTo_Diff LeadsTo_weaken subset_imp_LeadsTo)
done
lemma Stable_transient_Always_LeadsTo:
"[| F ∈ Stable A; F ∈ transient C;
F ∈ Always (-A ∪ B ∪ C) |] ==> F ∈ A LeadsTo B"
apply (erule Always_LeadsTo_weaken)
apply (rule LeadsTo_Diff)
prefer 2
apply (erule
transient_imp_leadsTo [THEN leadsTo_imp_LeadsTo, THEN PSP_Stable2])
apply (blast intro: subset_imp_LeadsTo)+
done
subsection{*Induction rules*}
(** Meta or object quantifier ????? **)
lemma LeadsTo_wf_induct:
"[| wf r;
∀m. F ∈ (A ∩ f-`{m}) LeadsTo
((A ∩ f-`(r^-1 `` {m})) ∪ B) |]
==> F ∈ A LeadsTo B"
apply (simp add: LeadsTo_eq_leadsTo)
apply (erule leadsTo_wf_induct)
apply (blast intro: leadsTo_weaken)
done
lemma Bounded_induct:
"[| wf r;
∀m ∈ I. F ∈ (A ∩ f-`{m}) LeadsTo
((A ∩ f-`(r^-1 `` {m})) ∪ B) |]
==> F ∈ A LeadsTo ((A - (f-`I)) ∪ B)"
apply (erule LeadsTo_wf_induct, safe)
apply (case_tac "m ∈ I")
apply (blast intro: LeadsTo_weaken)
apply (blast intro: subset_imp_LeadsTo)
done
lemma LessThan_induct:
"(!!m::nat. F ∈ (A ∩ f-`{m}) LeadsTo ((A ∩ f-`(lessThan m)) ∪ B))
==> F ∈ A LeadsTo B"
by (rule wf_less_than [THEN LeadsTo_wf_induct], auto)
text{*Integer version. Could generalize from 0 to any lower bound*}
lemma integ_0_le_induct:
"[| F ∈ Always {s. (0::int) ≤ f s};
!! z. F ∈ (A ∩ {s. f s = z}) LeadsTo
((A ∩ {s. f s < z}) ∪ B) |]
==> F ∈ A LeadsTo B"
apply (rule_tac f = "nat o f" in LessThan_induct)
apply (simp add: vimage_def)
apply (rule Always_LeadsTo_weaken, assumption+)
apply (auto simp add: nat_eq_iff nat_less_iff)
done
lemma LessThan_bounded_induct:
"!!l::nat. ∀m ∈ greaterThan l.
F ∈ (A ∩ f-`{m}) LeadsTo ((A ∩ f-`(lessThan m)) ∪ B)
==> F ∈ A LeadsTo ((A ∩ (f-`(atMost l))) ∪ B)"
apply (simp only: Diff_eq [symmetric] vimage_Compl
Compl_greaterThan [symmetric])
apply (rule wf_less_than [THEN Bounded_induct], simp)
done
lemma GreaterThan_bounded_induct:
"!!l::nat. ∀m ∈ lessThan l.
F ∈ (A ∩ f-`{m}) LeadsTo ((A ∩ f-`(greaterThan m)) ∪ B)
==> F ∈ A LeadsTo ((A ∩ (f-`(atLeast l))) ∪ B)"
apply (rule_tac f = f and f1 = "%k. l - k"
in wf_less_than [THEN wf_inv_image, THEN LeadsTo_wf_induct])
apply (simp add: inv_image_def Image_singleton, clarify)
apply (case_tac "m<l")
apply (blast intro: LeadsTo_weaken_R diff_less_mono2)
apply (blast intro: not_leE subset_imp_LeadsTo)
done
subsection{*Completion: Binary and General Finite versions*}
lemma Completion:
"[| F ∈ A LeadsTo (A' ∪ C); F ∈ A' Co (A' ∪ C);
F ∈ B LeadsTo (B' ∪ C); F ∈ B' Co (B' ∪ C) |]
==> F ∈ (A ∩ B) LeadsTo ((A' ∩ B') ∪ C)"
apply (simp add: LeadsTo_eq_leadsTo Constrains_eq_constrains Int_Un_distrib)
apply (blast intro: completion leadsTo_weaken)
done
lemma Finite_completion_lemma:
"finite I
==> (∀i ∈ I. F ∈ (A i) LeadsTo (A' i ∪ C)) -->
(∀i ∈ I. F ∈ (A' i) Co (A' i ∪ C)) -->
F ∈ (\<Inter>i ∈ I. A i) LeadsTo ((\<Inter>i ∈ I. A' i) ∪ C)"
apply (erule finite_induct, auto)
apply (rule Completion)
prefer 4
apply (simp only: INT_simps [symmetric])
apply (rule Constrains_INT, auto)
done
lemma Finite_completion:
"[| finite I;
!!i. i ∈ I ==> F ∈ (A i) LeadsTo (A' i ∪ C);
!!i. i ∈ I ==> F ∈ (A' i) Co (A' i ∪ C) |]
==> F ∈ (\<Inter>i ∈ I. A i) LeadsTo ((\<Inter>i ∈ I. A' i) ∪ C)"
by (blast intro: Finite_completion_lemma [THEN mp, THEN mp])
lemma Stable_completion:
"[| F ∈ A LeadsTo A'; F ∈ Stable A';
F ∈ B LeadsTo B'; F ∈ Stable B' |]
==> F ∈ (A ∩ B) LeadsTo (A' ∩ B')"
apply (unfold Stable_def)
apply (rule_tac C1 = "{}" in Completion [THEN LeadsTo_weaken_R])
apply (force+)
done
lemma Finite_stable_completion:
"[| finite I;
!!i. i ∈ I ==> F ∈ (A i) LeadsTo (A' i);
!!i. i ∈ I ==> F ∈ Stable (A' i) |]
==> F ∈ (\<Inter>i ∈ I. A i) LeadsTo (\<Inter>i ∈ I. A' i)"
apply (unfold Stable_def)
apply (rule_tac C1 = "{}" in Finite_completion [THEN LeadsTo_weaken_R])
apply (simp_all, blast+)
done
end
lemma LeadsTo_eq_leadsTo:
A LeadsTo B = {F. F ∈ reachable F ∩ A leadsTo reachable F ∩ B}
lemma Always_LeadsTo_pre:
F ∈ Always INV ==> (F ∈ INV ∩ A LeadsTo A') = (F ∈ A LeadsTo A')
lemma Always_LeadsTo_post:
F ∈ Always INV ==> (F ∈ A LeadsTo INV ∩ A') = (F ∈ A LeadsTo A')
lemmas Always_LeadsToI:
[| F ∈ Always INV; F ∈ INV ∩ A LeadsTo A' |] ==> F ∈ A LeadsTo A'
lemmas Always_LeadsToI:
[| F ∈ Always INV; F ∈ INV ∩ A LeadsTo A' |] ==> F ∈ A LeadsTo A'
lemmas Always_LeadsToD:
[| F ∈ Always INV; F ∈ A LeadsTo A' |] ==> F ∈ A LeadsTo INV ∩ A'
lemmas Always_LeadsToD:
[| F ∈ Always INV; F ∈ A LeadsTo A' |] ==> F ∈ A LeadsTo INV ∩ A'
lemma leadsTo_imp_LeadsTo:
F ∈ A leadsTo B ==> F ∈ A LeadsTo B
lemma LeadsTo_Trans:
[| F ∈ A LeadsTo B; F ∈ B LeadsTo C |] ==> F ∈ A LeadsTo C
lemma LeadsTo_Union:
(!!A. A ∈ S ==> F ∈ A LeadsTo B) ==> F ∈ Union S LeadsTo B
lemma LeadsTo_UNIV:
F ∈ A LeadsTo UNIV
lemma LeadsTo_Un_duplicate:
F ∈ A LeadsTo A' ∪ A' ==> F ∈ A LeadsTo A'
lemma LeadsTo_Un_duplicate2:
F ∈ A LeadsTo A' ∪ C ∪ C ==> F ∈ A LeadsTo A' ∪ C
lemma LeadsTo_UN:
(!!i. i ∈ I ==> F ∈ A i LeadsTo B) ==> F ∈ (UN i:I. A i) LeadsTo B
lemma LeadsTo_Un:
[| F ∈ A LeadsTo C; F ∈ B LeadsTo C |] ==> F ∈ A ∪ B LeadsTo C
lemma single_LeadsTo_I:
(!!s. s ∈ A ==> F ∈ {s} LeadsTo B) ==> F ∈ A LeadsTo B
lemma subset_imp_LeadsTo:
A ⊆ B ==> F ∈ A LeadsTo B
lemmas empty_LeadsTo:
F ∈ {} LeadsTo B
lemmas empty_LeadsTo:
F ∈ {} LeadsTo B
lemma LeadsTo_weaken_R:
[| F ∈ A LeadsTo A'; A' ⊆ B' |] ==> F ∈ A LeadsTo B'
lemma LeadsTo_weaken_L:
[| F ∈ A LeadsTo A'; B ⊆ A |] ==> F ∈ B LeadsTo A'
lemma LeadsTo_weaken:
[| F ∈ A LeadsTo A'; B ⊆ A; A' ⊆ B' |] ==> F ∈ B LeadsTo B'
lemma Always_LeadsTo_weaken:
[| F ∈ Always C; F ∈ A LeadsTo A'; C ∩ B ⊆ A; C ∩ A' ⊆ B' |] ==> F ∈ B LeadsTo B'
lemma LeadsTo_Un_post:
F ∈ A LeadsTo B ==> F ∈ A ∪ B LeadsTo B
lemma LeadsTo_Trans_Un:
[| F ∈ A LeadsTo B; F ∈ B LeadsTo C |] ==> F ∈ A ∪ B LeadsTo C
lemma LeadsTo_Un_distrib:
(F ∈ A ∪ B LeadsTo C) = (F ∈ A LeadsTo C ∧ F ∈ B LeadsTo C)
lemma LeadsTo_UN_distrib:
(F ∈ (UN i:I. A i) LeadsTo B) = (∀i∈I. F ∈ A i LeadsTo B)
lemma LeadsTo_Union_distrib:
(F ∈ Union S LeadsTo B) = (∀A∈S. F ∈ A LeadsTo B)
lemma LeadsTo_Basis:
F ∈ A Ensures B ==> F ∈ A LeadsTo B
lemma EnsuresI:
[| F ∈ A - B Co A ∪ B; F ∈ transient (A - B) |] ==> F ∈ A Ensures B
lemma Always_LeadsTo_Basis:
[| F ∈ Always INV; F ∈ INV ∩ (A - A') Co A ∪ A'; F ∈ transient (INV ∩ (A - A')) |] ==> F ∈ A LeadsTo A'
lemma LeadsTo_Diff:
[| F ∈ A - B LeadsTo C; F ∈ A ∩ B LeadsTo C |] ==> F ∈ A LeadsTo C
lemma LeadsTo_UN_UN:
(!!i. i ∈ I ==> F ∈ A i LeadsTo A' i) ==> F ∈ (UN i:I. A i) LeadsTo (UN i:I. A' i)
lemma LeadsTo_UN_UN_noindex:
(!!i. F ∈ A i LeadsTo A' i) ==> F ∈ (UN i. A i) LeadsTo (UN i. A' i)
lemma all_LeadsTo_UN_UN:
∀i. F ∈ A i LeadsTo A' i ==> F ∈ (UN i. A i) LeadsTo (UN i. A' i)
lemma LeadsTo_Un_Un:
[| F ∈ A LeadsTo A'; F ∈ B LeadsTo B' |] ==> F ∈ A ∪ B LeadsTo A' ∪ B'
lemma LeadsTo_cancel2:
[| F ∈ A LeadsTo A' ∪ B; F ∈ B LeadsTo B' |] ==> F ∈ A LeadsTo A' ∪ B'
lemma LeadsTo_cancel_Diff2:
[| F ∈ A LeadsTo A' ∪ B; F ∈ B - A' LeadsTo B' |] ==> F ∈ A LeadsTo A' ∪ B'
lemma LeadsTo_cancel1:
[| F ∈ A LeadsTo B ∪ A'; F ∈ B LeadsTo B' |] ==> F ∈ A LeadsTo B' ∪ A'
lemma LeadsTo_cancel_Diff1:
[| F ∈ A LeadsTo B ∪ A'; F ∈ B - A' LeadsTo B' |] ==> F ∈ A LeadsTo B' ∪ A'
lemma LeadsTo_empty:
[| F ∈ A LeadsTo {}; all_total F |] ==> F ∈ Always (- A)
lemma PSP_Stable:
[| F ∈ A LeadsTo A'; F ∈ Stable B |] ==> F ∈ A ∩ B LeadsTo A' ∩ B
lemma PSP_Stable2:
[| F ∈ A LeadsTo A'; F ∈ Stable B |] ==> F ∈ B ∩ A LeadsTo B ∩ A'
lemma PSP:
[| F ∈ A LeadsTo A'; F ∈ B Co B' |] ==> F ∈ A ∩ B' LeadsTo A' ∩ B ∪ (B' - B)
lemma PSP2:
[| F ∈ A LeadsTo A'; F ∈ B Co B' |] ==> F ∈ B' ∩ A LeadsTo B ∩ A' ∪ (B' - B)
lemma PSP_Unless:
[| F ∈ A LeadsTo A'; F ∈ B Unless B' |] ==> F ∈ A ∩ B LeadsTo A' ∩ B ∪ B'
lemma Stable_transient_Always_LeadsTo:
[| F ∈ Stable A; F ∈ transient C; F ∈ Always (- A ∪ B ∪ C) |] ==> F ∈ A LeadsTo B
lemma LeadsTo_wf_induct:
[| wf r; ∀m. F ∈ A ∩ f -` {m} LeadsTo A ∩ f -` r^-1 `` {m} ∪ B |] ==> F ∈ A LeadsTo B
lemma Bounded_induct:
[| wf r; ∀m∈I. F ∈ A ∩ f -` {m} LeadsTo A ∩ f -` r^-1 `` {m} ∪ B |] ==> F ∈ A LeadsTo A - f -` I ∪ B
lemma LessThan_induct:
(!!m. F ∈ A ∩ f -` {m} LeadsTo A ∩ f -` {..<m} ∪ B) ==> F ∈ A LeadsTo B
lemma integ_0_le_induct:
[| F ∈ Always {s. 0 ≤ f s}; !!z. F ∈ A ∩ {s. f s = z} LeadsTo A ∩ {s. f s < z} ∪ B |] ==> F ∈ A LeadsTo B
lemma LessThan_bounded_induct:
∀m∈{l<..}. F ∈ A ∩ f -` {m} LeadsTo A ∩ f -` {..<m} ∪ B ==> F ∈ A LeadsTo A ∩ f -` {..l} ∪ B
lemma GreaterThan_bounded_induct:
∀m∈{..<l}. F ∈ A ∩ f -` {m} LeadsTo A ∩ f -` {m<..} ∪ B ==> F ∈ A LeadsTo A ∩ f -` {l..} ∪ B
lemma Completion:
[| F ∈ A LeadsTo A' ∪ C; F ∈ A' Co A' ∪ C; F ∈ B LeadsTo B' ∪ C; F ∈ B' Co B' ∪ C |] ==> F ∈ A ∩ B LeadsTo A' ∩ B' ∪ C
lemma Finite_completion_lemma:
finite I ==> (∀i∈I. F ∈ A i LeadsTo A' i ∪ C) --> (∀i∈I. F ∈ A' i Co A' i ∪ C) --> F ∈ (INT i:I. A i) LeadsTo (INT i:I. A' i) ∪ C
lemma Finite_completion:
[| finite I; !!i. i ∈ I ==> F ∈ A i LeadsTo A' i ∪ C; !!i. i ∈ I ==> F ∈ A' i Co A' i ∪ C |] ==> F ∈ (INT i:I. A i) LeadsTo (INT i:I. A' i) ∪ C
lemma Stable_completion:
[| F ∈ A LeadsTo A'; F ∈ Stable A'; F ∈ B LeadsTo B'; F ∈ Stable B' |] ==> F ∈ A ∩ B LeadsTo A' ∩ B'
lemma Finite_stable_completion:
[| finite I; !!i. i ∈ I ==> F ∈ A i LeadsTo A' i; !!i. i ∈ I ==> F ∈ Stable (A' i) |] ==> F ∈ (INT i:I. A i) LeadsTo (INT i:I. A' i)