(* Title: HOL/UNITY/Union.thy
ID: $Id: Union.thy,v 1.27 2005/08/01 17:20:31 wenzelm Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
Partly from Misra's Chapter 5: Asynchronous Compositions of Programs
*)
header{*Unions of Programs*}
theory Union imports SubstAx FP begin
constdefs
(*FIXME: conjoin Init F ∩ Init G ≠ {} *)
ok :: "['a program, 'a program] => bool" (infixl "ok" 65)
"F ok G == Acts F ⊆ AllowedActs G &
Acts G ⊆ AllowedActs F"
(*FIXME: conjoin (\<Inter>i ∈ I. Init (F i)) ≠ {} *)
OK :: "['a set, 'a => 'b program] => bool"
"OK I F == (∀i ∈ I. ∀j ∈ I-{i}. Acts (F i) ⊆ AllowedActs (F j))"
JOIN :: "['a set, 'a => 'b program] => 'b program"
"JOIN I F == mk_program (\<Inter>i ∈ I. Init (F i), \<Union>i ∈ I. Acts (F i),
\<Inter>i ∈ I. AllowedActs (F i))"
Join :: "['a program, 'a program] => 'a program" (infixl "Join" 65)
"F Join G == mk_program (Init F ∩ Init G, Acts F ∪ Acts G,
AllowedActs F ∩ AllowedActs G)"
SKIP :: "'a program"
"SKIP == mk_program (UNIV, {}, UNIV)"
(*Characterizes safety properties. Used with specifying Allowed*)
safety_prop :: "'a program set => bool"
"safety_prop X == SKIP: X & (∀G. Acts G ⊆ UNION X Acts --> G ∈ X)"
syntax
"@JOIN1" :: "[pttrns, 'b set] => 'b set" ("(3JN _./ _)" 10)
"@JOIN" :: "[pttrn, 'a set, 'b set] => 'b set" ("(3JN _:_./ _)" 10)
translations
"JN x : A. B" == "JOIN A (%x. B)"
"JN x y. B" == "JN x. JN y. B"
"JN x. B" == "JOIN UNIV (%x. B)"
syntax (xsymbols)
SKIP :: "'a program" ("⊥")
Join :: "['a program, 'a program] => 'a program" (infixl "\<squnion>" 65)
"@JOIN1" :: "[pttrns, 'b set] => 'b set" ("(3\<Squnion> _./ _)" 10)
"@JOIN" :: "[pttrn, 'a set, 'b set] => 'b set" ("(3\<Squnion> _∈_./ _)" 10)
subsection{*SKIP*}
lemma Init_SKIP [simp]: "Init SKIP = UNIV"
by (simp add: SKIP_def)
lemma Acts_SKIP [simp]: "Acts SKIP = {Id}"
by (simp add: SKIP_def)
lemma AllowedActs_SKIP [simp]: "AllowedActs SKIP = UNIV"
by (auto simp add: SKIP_def)
lemma reachable_SKIP [simp]: "reachable SKIP = UNIV"
by (force elim: reachable.induct intro: reachable.intros)
subsection{*SKIP and safety properties*}
lemma SKIP_in_constrains_iff [iff]: "(SKIP ∈ A co B) = (A ⊆ B)"
by (unfold constrains_def, auto)
lemma SKIP_in_Constrains_iff [iff]: "(SKIP ∈ A Co B) = (A ⊆ B)"
by (unfold Constrains_def, auto)
lemma SKIP_in_stable [iff]: "SKIP ∈ stable A"
by (unfold stable_def, auto)
declare SKIP_in_stable [THEN stable_imp_Stable, iff]
subsection{*Join*}
lemma Init_Join [simp]: "Init (F\<squnion>G) = Init F ∩ Init G"
by (simp add: Join_def)
lemma Acts_Join [simp]: "Acts (F\<squnion>G) = Acts F ∪ Acts G"
by (auto simp add: Join_def)
lemma AllowedActs_Join [simp]:
"AllowedActs (F\<squnion>G) = AllowedActs F ∩ AllowedActs G"
by (auto simp add: Join_def)
subsection{*JN*}
lemma JN_empty [simp]: "(\<Squnion>i∈{}. F i) = SKIP"
by (unfold JOIN_def SKIP_def, auto)
lemma JN_insert [simp]: "(\<Squnion>i ∈ insert a I. F i) = (F a)\<squnion>(\<Squnion>i ∈ I. F i)"
apply (rule program_equalityI)
apply (auto simp add: JOIN_def Join_def)
done
lemma Init_JN [simp]: "Init (\<Squnion>i ∈ I. F i) = (\<Inter>i ∈ I. Init (F i))"
by (simp add: JOIN_def)
lemma Acts_JN [simp]: "Acts (\<Squnion>i ∈ I. F i) = insert Id (\<Union>i ∈ I. Acts (F i))"
by (auto simp add: JOIN_def)
lemma AllowedActs_JN [simp]:
"AllowedActs (\<Squnion>i ∈ I. F i) = (\<Inter>i ∈ I. AllowedActs (F i))"
by (auto simp add: JOIN_def)
lemma JN_cong [cong]:
"[| I=J; !!i. i ∈ J ==> F i = G i |] ==> (\<Squnion>i ∈ I. F i) = (\<Squnion>i ∈ J. G i)"
by (simp add: JOIN_def)
subsection{*Algebraic laws*}
lemma Join_commute: "F\<squnion>G = G\<squnion>F"
by (simp add: Join_def Un_commute Int_commute)
lemma Join_assoc: "(F\<squnion>G)\<squnion>H = F\<squnion>(G\<squnion>H)"
by (simp add: Un_ac Join_def Int_assoc insert_absorb)
lemma Join_left_commute: "A\<squnion>(B\<squnion>C) = B\<squnion>(A\<squnion>C)"
by (simp add: Un_ac Int_ac Join_def insert_absorb)
lemma Join_SKIP_left [simp]: "SKIP\<squnion>F = F"
apply (unfold Join_def SKIP_def)
apply (rule program_equalityI)
apply (simp_all (no_asm) add: insert_absorb)
done
lemma Join_SKIP_right [simp]: "F\<squnion>SKIP = F"
apply (unfold Join_def SKIP_def)
apply (rule program_equalityI)
apply (simp_all (no_asm) add: insert_absorb)
done
lemma Join_absorb [simp]: "F\<squnion>F = F"
apply (unfold Join_def)
apply (rule program_equalityI, auto)
done
lemma Join_left_absorb: "F\<squnion>(F\<squnion>G) = F\<squnion>G"
apply (unfold Join_def)
apply (rule program_equalityI, auto)
done
(*Join is an AC-operator*)
lemmas Join_ac = Join_assoc Join_left_absorb Join_commute Join_left_commute
subsection{*Laws Governing @{text "\<Squnion>"}*}
(*Also follows by JN_insert and insert_absorb, but the proof is longer*)
lemma JN_absorb: "k ∈ I ==> F k\<squnion>(\<Squnion>i ∈ I. F i) = (\<Squnion>i ∈ I. F i)"
by (auto intro!: program_equalityI)
lemma JN_Un: "(\<Squnion>i ∈ I ∪ J. F i) = ((\<Squnion>i ∈ I. F i)\<squnion>(\<Squnion>i ∈ J. F i))"
by (auto intro!: program_equalityI)
lemma JN_constant: "(\<Squnion>i ∈ I. c) = (if I={} then SKIP else c)"
by (rule program_equalityI, auto)
lemma JN_Join_distrib:
"(\<Squnion>i ∈ I. F i\<squnion>G i) = (\<Squnion>i ∈ I. F i) \<squnion> (\<Squnion>i ∈ I. G i)"
by (auto intro!: program_equalityI)
lemma JN_Join_miniscope:
"i ∈ I ==> (\<Squnion>i ∈ I. F i\<squnion>G) = ((\<Squnion>i ∈ I. F i)\<squnion>G)"
by (auto simp add: JN_Join_distrib JN_constant)
(*Used to prove guarantees_JN_I*)
lemma JN_Join_diff: "i ∈ I ==> F i\<squnion>JOIN (I - {i}) F = JOIN I F"
apply (unfold JOIN_def Join_def)
apply (rule program_equalityI, auto)
done
subsection{*Safety: co, stable, FP*}
(*Fails if I={} because it collapses to SKIP ∈ A co B, i.e. to A ⊆ B. So an
alternative precondition is A ⊆ B, but most proofs using this rule require
I to be nonempty for other reasons anyway.*)
lemma JN_constrains:
"i ∈ I ==> (\<Squnion>i ∈ I. F i) ∈ A co B = (∀i ∈ I. F i ∈ A co B)"
by (simp add: constrains_def JOIN_def, blast)
lemma Join_constrains [simp]:
"(F\<squnion>G ∈ A co B) = (F ∈ A co B & G ∈ A co B)"
by (auto simp add: constrains_def Join_def)
lemma Join_unless [simp]:
"(F\<squnion>G ∈ A unless B) = (F ∈ A unless B & G ∈ A unless B)"
by (simp add: Join_constrains unless_def)
(*Analogous weak versions FAIL; see Misra [1994] 5.4.1, Substitution Axiom.
reachable (F\<squnion>G) could be much bigger than reachable F, reachable G
*)
lemma Join_constrains_weaken:
"[| F ∈ A co A'; G ∈ B co B' |]
==> F\<squnion>G ∈ (A ∩ B) co (A' ∪ B')"
by (simp, blast intro: constrains_weaken)
(*If I={}, it degenerates to SKIP ∈ UNIV co {}, which is false.*)
lemma JN_constrains_weaken:
"[| ∀i ∈ I. F i ∈ A i co A' i; i ∈ I |]
==> (\<Squnion>i ∈ I. F i) ∈ (\<Inter>i ∈ I. A i) co (\<Union>i ∈ I. A' i)"
apply (simp (no_asm_simp) add: JN_constrains)
apply (blast intro: constrains_weaken)
done
lemma JN_stable: "(\<Squnion>i ∈ I. F i) ∈ stable A = (∀i ∈ I. F i ∈ stable A)"
by (simp add: stable_def constrains_def JOIN_def)
lemma invariant_JN_I:
"[| !!i. i ∈ I ==> F i ∈ invariant A; i ∈ I |]
==> (\<Squnion>i ∈ I. F i) ∈ invariant A"
by (simp add: invariant_def JN_stable, blast)
lemma Join_stable [simp]:
"(F\<squnion>G ∈ stable A) =
(F ∈ stable A & G ∈ stable A)"
by (simp add: stable_def)
lemma Join_increasing [simp]:
"(F\<squnion>G ∈ increasing f) =
(F ∈ increasing f & G ∈ increasing f)"
by (simp add: increasing_def Join_stable, blast)
lemma invariant_JoinI:
"[| F ∈ invariant A; G ∈ invariant A |]
==> F\<squnion>G ∈ invariant A"
by (simp add: invariant_def, blast)
lemma FP_JN: "FP (\<Squnion>i ∈ I. F i) = (\<Inter>i ∈ I. FP (F i))"
by (simp add: FP_def JN_stable INTER_def)
subsection{*Progress: transient, ensures*}
lemma JN_transient:
"i ∈ I ==>
(\<Squnion>i ∈ I. F i) ∈ transient A = (∃i ∈ I. F i ∈ transient A)"
by (auto simp add: transient_def JOIN_def)
lemma Join_transient [simp]:
"F\<squnion>G ∈ transient A =
(F ∈ transient A | G ∈ transient A)"
by (auto simp add: bex_Un transient_def Join_def)
lemma Join_transient_I1: "F ∈ transient A ==> F\<squnion>G ∈ transient A"
by (simp add: Join_transient)
lemma Join_transient_I2: "G ∈ transient A ==> F\<squnion>G ∈ transient A"
by (simp add: Join_transient)
(*If I={} it degenerates to (SKIP ∈ A ensures B) = False, i.e. to ~(A ⊆ B) *)
lemma JN_ensures:
"i ∈ I ==>
(\<Squnion>i ∈ I. F i) ∈ A ensures B =
((∀i ∈ I. F i ∈ (A-B) co (A ∪ B)) & (∃i ∈ I. F i ∈ A ensures B))"
by (auto simp add: ensures_def JN_constrains JN_transient)
lemma Join_ensures:
"F\<squnion>G ∈ A ensures B =
(F ∈ (A-B) co (A ∪ B) & G ∈ (A-B) co (A ∪ B) &
(F ∈ transient (A-B) | G ∈ transient (A-B)))"
by (auto simp add: ensures_def Join_transient)
lemma stable_Join_constrains:
"[| F ∈ stable A; G ∈ A co A' |]
==> F\<squnion>G ∈ A co A'"
apply (unfold stable_def constrains_def Join_def)
apply (simp add: ball_Un, blast)
done
(*Premise for G cannot use Always because F ∈ Stable A is weaker than
G ∈ stable A *)
lemma stable_Join_Always1:
"[| F ∈ stable A; G ∈ invariant A |] ==> F\<squnion>G ∈ Always A"
apply (simp (no_asm_use) add: Always_def invariant_def Stable_eq_stable)
apply (force intro: stable_Int)
done
(*As above, but exchanging the roles of F and G*)
lemma stable_Join_Always2:
"[| F ∈ invariant A; G ∈ stable A |] ==> F\<squnion>G ∈ Always A"
apply (subst Join_commute)
apply (blast intro: stable_Join_Always1)
done
lemma stable_Join_ensures1:
"[| F ∈ stable A; G ∈ A ensures B |] ==> F\<squnion>G ∈ A ensures B"
apply (simp (no_asm_simp) add: Join_ensures)
apply (simp add: stable_def ensures_def)
apply (erule constrains_weaken, auto)
done
(*As above, but exchanging the roles of F and G*)
lemma stable_Join_ensures2:
"[| F ∈ A ensures B; G ∈ stable A |] ==> F\<squnion>G ∈ A ensures B"
apply (subst Join_commute)
apply (blast intro: stable_Join_ensures1)
done
subsection{*the ok and OK relations*}
lemma ok_SKIP1 [iff]: "SKIP ok F"
by (simp add: ok_def)
lemma ok_SKIP2 [iff]: "F ok SKIP"
by (simp add: ok_def)
lemma ok_Join_commute:
"(F ok G & (F\<squnion>G) ok H) = (G ok H & F ok (G\<squnion>H))"
by (auto simp add: ok_def)
lemma ok_commute: "(F ok G) = (G ok F)"
by (auto simp add: ok_def)
lemmas ok_sym = ok_commute [THEN iffD1, standard]
lemma ok_iff_OK:
"OK {(0::int,F),(1,G),(2,H)} snd = (F ok G & (F\<squnion>G) ok H)"
apply (simp add: Ball_def conj_disj_distribR ok_def Join_def OK_def insert_absorb
all_conj_distrib)
apply blast
done
lemma ok_Join_iff1 [iff]: "F ok (G\<squnion>H) = (F ok G & F ok H)"
by (auto simp add: ok_def)
lemma ok_Join_iff2 [iff]: "(G\<squnion>H) ok F = (G ok F & H ok F)"
by (auto simp add: ok_def)
(*useful? Not with the previous two around*)
lemma ok_Join_commute_I: "[| F ok G; (F\<squnion>G) ok H |] ==> F ok (G\<squnion>H)"
by (auto simp add: ok_def)
lemma ok_JN_iff1 [iff]: "F ok (JOIN I G) = (∀i ∈ I. F ok G i)"
by (auto simp add: ok_def)
lemma ok_JN_iff2 [iff]: "(JOIN I G) ok F = (∀i ∈ I. G i ok F)"
by (auto simp add: ok_def)
lemma OK_iff_ok: "OK I F = (∀i ∈ I. ∀j ∈ I-{i}. (F i) ok (F j))"
by (auto simp add: ok_def OK_def)
lemma OK_imp_ok: "[| OK I F; i ∈ I; j ∈ I; i ≠ j|] ==> (F i) ok (F j)"
by (auto simp add: OK_iff_ok)
subsection{*Allowed*}
lemma Allowed_SKIP [simp]: "Allowed SKIP = UNIV"
by (auto simp add: Allowed_def)
lemma Allowed_Join [simp]: "Allowed (F\<squnion>G) = Allowed F ∩ Allowed G"
by (auto simp add: Allowed_def)
lemma Allowed_JN [simp]: "Allowed (JOIN I F) = (\<Inter>i ∈ I. Allowed (F i))"
by (auto simp add: Allowed_def)
lemma ok_iff_Allowed: "F ok G = (F ∈ Allowed G & G ∈ Allowed F)"
by (simp add: ok_def Allowed_def)
lemma OK_iff_Allowed: "OK I F = (∀i ∈ I. ∀j ∈ I-{i}. F i ∈ Allowed(F j))"
by (auto simp add: OK_iff_ok ok_iff_Allowed)
subsection{*@{term safety_prop}, for reasoning about
given instances of "ok"*}
lemma safety_prop_Acts_iff:
"safety_prop X ==> (Acts G ⊆ insert Id (UNION X Acts)) = (G ∈ X)"
by (auto simp add: safety_prop_def)
lemma safety_prop_AllowedActs_iff_Allowed:
"safety_prop X ==> (UNION X Acts ⊆ AllowedActs F) = (X ⊆ Allowed F)"
by (auto simp add: Allowed_def safety_prop_Acts_iff [symmetric])
lemma Allowed_eq:
"safety_prop X ==> Allowed (mk_program (init, acts, UNION X Acts)) = X"
by (simp add: Allowed_def safety_prop_Acts_iff)
(*For safety_prop to hold, the property must be satisfiable!*)
lemma safety_prop_constrains [iff]: "safety_prop (A co B) = (A ⊆ B)"
by (simp add: safety_prop_def constrains_def, blast)
lemma safety_prop_stable [iff]: "safety_prop (stable A)"
by (simp add: stable_def)
lemma safety_prop_Int [simp]:
"[| safety_prop X; safety_prop Y |] ==> safety_prop (X ∩ Y)"
by (simp add: safety_prop_def, blast)
lemma safety_prop_INTER1 [simp]:
"(!!i. safety_prop (X i)) ==> safety_prop (\<Inter>i. X i)"
by (auto simp add: safety_prop_def, blast)
lemma safety_prop_INTER [simp]:
"(!!i. i ∈ I ==> safety_prop (X i)) ==> safety_prop (\<Inter>i ∈ I. X i)"
by (auto simp add: safety_prop_def, blast)
lemma def_prg_Allowed:
"[| F == mk_program (init, acts, UNION X Acts) ; safety_prop X |]
==> Allowed F = X"
by (simp add: Allowed_eq)
lemma Allowed_totalize [simp]: "Allowed (totalize F) = Allowed F"
by (simp add: Allowed_def)
lemma def_total_prg_Allowed:
"[| F == mk_total_program (init, acts, UNION X Acts) ; safety_prop X |]
==> Allowed F = X"
by (simp add: mk_total_program_def def_prg_Allowed)
lemma def_UNION_ok_iff:
"[| F == mk_program(init,acts,UNION X Acts); safety_prop X |]
==> F ok G = (G ∈ X & acts ⊆ AllowedActs G)"
by (auto simp add: ok_def safety_prop_Acts_iff)
text{*The union of two total programs is total.*}
lemma totalize_Join: "totalize F\<squnion>totalize G = totalize (F\<squnion>G)"
by (simp add: program_equalityI totalize_def Join_def image_Un)
lemma all_total_Join: "[|all_total F; all_total G|] ==> all_total (F\<squnion>G)"
by (simp add: all_total_def, blast)
lemma totalize_JN: "(\<Squnion>i ∈ I. totalize (F i)) = totalize(\<Squnion>i ∈ I. F i)"
by (simp add: program_equalityI totalize_def JOIN_def image_UN)
lemma all_total_JN: "(!!i. i∈I ==> all_total (F i)) ==> all_total(\<Squnion>i∈I. F i)"
by (simp add: all_total_iff_totalize totalize_JN [symmetric])
end
lemma Init_SKIP:
Init SKIP = UNIV
lemma Acts_SKIP:
Acts SKIP = {Id}
lemma AllowedActs_SKIP:
AllowedActs SKIP = UNIV
lemma reachable_SKIP:
reachable SKIP = UNIV
lemma SKIP_in_constrains_iff:
(SKIP ∈ A co B) = (A ⊆ B)
lemma SKIP_in_Constrains_iff:
(SKIP ∈ A Co B) = (A ⊆ B)
lemma SKIP_in_stable:
SKIP ∈ stable A
lemma Init_Join:
Init (F Join G) = Init F ∩ Init G
lemma Acts_Join:
Acts (F Join G) = Acts F ∪ Acts G
lemma AllowedActs_Join:
AllowedActs (F Join G) = AllowedActs F ∩ AllowedActs G
lemma JN_empty:
JOIN {} F = SKIP
lemma JN_insert:
JOIN (insert a I) F = F a Join JOIN I F
lemma Init_JN:
Init (JOIN I F) = (INT i:I. Init (F i))
lemma Acts_JN:
Acts (JOIN I F) = insert Id (UN i:I. Acts (F i))
lemma AllowedActs_JN:
AllowedActs (JOIN I F) = (INT i:I. AllowedActs (F i))
lemma JN_cong:
[| I = J; !!i. i ∈ J ==> F i = G i |] ==> JOIN I F = JOIN J G
lemma Join_commute:
F Join G = G Join F
lemma Join_assoc:
F Join G Join H = F Join (G Join H)
lemma Join_left_commute:
A Join (B Join C) = B Join (A Join C)
lemma Join_SKIP_left:
SKIP Join F = F
lemma Join_SKIP_right:
F Join SKIP = F
lemma Join_absorb:
F Join F = F
lemma Join_left_absorb:
F Join (F Join G) = F Join G
lemmas Join_ac:
F Join G Join H = F Join (G Join H)
F Join (F Join G) = F Join G
F Join G = G Join F
A Join (B Join C) = B Join (A Join C)
lemmas Join_ac:
F Join G Join H = F Join (G Join H)
F Join (F Join G) = F Join G
F Join G = G Join F
A Join (B Join C) = B Join (A Join C)
lemma JN_absorb:
k ∈ I ==> F k Join JOIN I F = JOIN I F
lemma JN_Un:
JOIN (I ∪ J) F = JOIN I F Join JOIN J F
lemma JN_constant:
(JN i:I. c) = (if I = {} then SKIP else c)
lemma JN_Join_distrib:
(JN i:I. F i Join G i) = JOIN I F Join JOIN I G
lemma JN_Join_miniscope:
i ∈ I ==> (JN i:I. F i Join G) = JOIN I F Join G
lemma JN_Join_diff:
i ∈ I ==> F i Join JOIN (I - {i}) F = JOIN I F
lemma JN_constrains:
i ∈ I ==> (JOIN I F ∈ A co B) = (∀i∈I. F i ∈ A co B)
lemma Join_constrains:
(F Join G ∈ A co B) = (F ∈ A co B ∧ G ∈ A co B)
lemma Join_unless:
(F Join G ∈ A unless B) = (F ∈ A unless B ∧ G ∈ A unless B)
lemma Join_constrains_weaken:
[| F ∈ A co A'; G ∈ B co B' |] ==> F Join G ∈ A ∩ B co A' ∪ B'
lemma JN_constrains_weaken:
[| ∀i∈I. F i ∈ A i co A' i; i ∈ I |] ==> JOIN I F ∈ (INT i:I. A i) co (UN i:I. A' i)
lemma JN_stable:
(JOIN I F ∈ stable A) = (∀i∈I. F i ∈ stable A)
lemma invariant_JN_I:
[| !!i. i ∈ I ==> F i ∈ invariant A; i ∈ I |] ==> JOIN I F ∈ invariant A
lemma Join_stable:
(F Join G ∈ stable A) = (F ∈ stable A ∧ G ∈ stable A)
lemma Join_increasing:
(F Join G ∈ increasing f) = (F ∈ increasing f ∧ G ∈ increasing f)
lemma invariant_JoinI:
[| F ∈ invariant A; G ∈ invariant A |] ==> F Join G ∈ invariant A
lemma FP_JN:
FP (JOIN I F) = (INT i:I. FP (F i))
lemma JN_transient:
i ∈ I ==> (JOIN I F ∈ transient A) = (∃i∈I. F i ∈ transient A)
lemma Join_transient:
(F Join G ∈ transient A) = (F ∈ transient A ∨ G ∈ transient A)
lemma Join_transient_I1:
F ∈ transient A ==> F Join G ∈ transient A
lemma Join_transient_I2:
G ∈ transient A ==> F Join G ∈ transient A
lemma JN_ensures:
i ∈ I ==> (JOIN I F ∈ A ensures B) = ((∀i∈I. F i ∈ A - B co A ∪ B) ∧ (∃i∈I. F i ∈ A ensures B))
lemma Join_ensures:
(F Join G ∈ A ensures B) = (F ∈ A - B co A ∪ B ∧ G ∈ A - B co A ∪ B ∧ (F ∈ transient (A - B) ∨ G ∈ transient (A - B)))
lemma stable_Join_constrains:
[| F ∈ stable A; G ∈ A co A' |] ==> F Join G ∈ A co A'
lemma stable_Join_Always1:
[| F ∈ stable A; G ∈ invariant A |] ==> F Join G ∈ Always A
lemma stable_Join_Always2:
[| F ∈ invariant A; G ∈ stable A |] ==> F Join G ∈ Always A
lemma stable_Join_ensures1:
[| F ∈ stable A; G ∈ A ensures B |] ==> F Join G ∈ A ensures B
lemma stable_Join_ensures2:
[| F ∈ A ensures B; G ∈ stable A |] ==> F Join G ∈ A ensures B
lemma ok_SKIP1:
SKIP ok F
lemma ok_SKIP2:
F ok SKIP
lemma ok_Join_commute:
(F ok G ∧ F Join G ok H) = (G ok H ∧ F ok (G Join H))
lemma ok_commute:
F ok G = G ok F
lemmas ok_sym:
F ok G ==> G ok F
lemmas ok_sym:
F ok G ==> G ok F
lemma ok_iff_OK:
OK {(0, F), (1, G), (2, H)} snd = (F ok G ∧ F Join G ok H)
lemma ok_Join_iff1:
F ok (G Join H) = (F ok G ∧ F ok H)
lemma ok_Join_iff2:
G Join H ok F = (G ok F ∧ H ok F)
lemma ok_Join_commute_I:
[| F ok G; F Join G ok H |] ==> F ok (G Join H)
lemma ok_JN_iff1:
F ok JOIN I G = (∀i∈I. F ok G i)
lemma ok_JN_iff2:
JOIN I G ok F = (∀i∈I. G i ok F)
lemma OK_iff_ok:
OK I F = (∀i∈I. ∀j∈I - {i}. F i ok F j)
lemma OK_imp_ok:
[| OK I F; i ∈ I; j ∈ I; i ≠ j |] ==> F i ok F j
lemma Allowed_SKIP:
Allowed SKIP = UNIV
lemma Allowed_Join:
Allowed (F Join G) = Allowed F ∩ Allowed G
lemma Allowed_JN:
Allowed (JOIN I F) = (INT i:I. Allowed (F i))
lemma ok_iff_Allowed:
F ok G = (F ∈ Allowed G ∧ G ∈ Allowed F)
lemma OK_iff_Allowed:
OK I F = (∀i∈I. ∀j∈I - {i}. F i ∈ Allowed (F j))
lemma safety_prop_Acts_iff:
safety_prop X ==> (Acts G ⊆ insert Id (UNION X Acts)) = (G ∈ X)
lemma safety_prop_AllowedActs_iff_Allowed:
safety_prop X ==> (UNION X Acts ⊆ AllowedActs F) = (X ⊆ Allowed F)
lemma Allowed_eq:
safety_prop X ==> Allowed (mk_program (init, acts, UNION X Acts)) = X
lemma safety_prop_constrains:
safety_prop (A co B) = (A ⊆ B)
lemma safety_prop_stable:
safety_prop (stable A)
lemma safety_prop_Int:
[| safety_prop X; safety_prop Y |] ==> safety_prop (X ∩ Y)
lemma safety_prop_INTER1:
(!!i. safety_prop (X i)) ==> safety_prop (INT i. X i)
lemma safety_prop_INTER:
(!!i. i ∈ I ==> safety_prop (X i)) ==> safety_prop (INT i:I. X i)
lemma def_prg_Allowed:
[| F == mk_program (init, acts, UNION X Acts); safety_prop X |] ==> Allowed F = X
lemma Allowed_totalize:
Allowed (totalize F) = Allowed F
lemma def_total_prg_Allowed:
[| F == mk_total_program (init, acts, UNION X Acts); safety_prop X |] ==> Allowed F = X
lemma def_UNION_ok_iff:
[| F == mk_program (init, acts, UNION X Acts); safety_prop X |] ==> F ok G = (G ∈ X ∧ acts ⊆ AllowedActs G)
lemma totalize_Join:
totalize F Join totalize G = totalize (F Join G)
lemma all_total_Join:
[| all_total F; all_total G |] ==> all_total (F Join G)
lemma totalize_JN:
(JN i:I. totalize (F i)) = totalize (JOIN I F)
lemma all_total_JN:
(!!i. i ∈ I ==> all_total (F i)) ==> all_total (JOIN I F)