(* Title: HOL/W0/W0.thy
ID: $Id: W0.thy,v 1.9 2004/10/11 05:42:23 nipkow Exp $
Author: Dieter Nazareth, Tobias Nipkow, Thomas Stauner, Markus Wenzel
*)
theory W0
imports Main
begin
section {* Universal error monad *}
datatype 'a maybe = Ok 'a | Fail
constdefs
bind :: "'a maybe => ('a => 'b maybe) => 'b maybe" (infixl "\<bind>" 60)
"m \<bind> f ≡ case m of Ok r => f r | Fail => Fail"
syntax
"_bind" :: "patterns => 'a maybe => 'b => 'c" ("(_ := _;//_)" 0)
translations
"P := E; F" == "E \<bind> (λP. F)"
lemma bind_Ok [simp]: "(Ok s) \<bind> f = (f s)"
by (simp add: bind_def)
lemma bind_Fail [simp]: "Fail \<bind> f = Fail"
by (simp add: bind_def)
lemma split_bind:
"P (res \<bind> f) = ((res = Fail --> P Fail) ∧ (∀s. res = Ok s --> P (f s)))"
by (induct res) simp_all
lemma split_bind_asm:
"P (res \<bind> f) = (¬ (res = Fail ∧ ¬ P Fail ∨ (∃s. res = Ok s ∧ ¬ P (f s))))"
by (simp split: split_bind)
lemmas bind_splits = split_bind split_bind_asm
lemma bind_eq_Fail [simp]:
"((m \<bind> f) = Fail) = ((m = Fail) ∨ (∃p. m = Ok p ∧ f p = Fail))"
by (simp split: split_bind)
lemma rotate_Ok: "(y = Ok x) = (Ok x = y)"
by (rule eq_sym_conv)
section {* MiniML-types and type substitutions *}
axclass type_struct ⊆ type
-- {* new class for structures containing type variables *}
datatype "typ" = TVar nat | TFun "typ" "typ" (infixr "->" 70)
-- {* type expressions *}
types subst = "nat => typ"
-- {* type variable substitution *}
instance "typ" :: type_struct ..
instance list :: (type_struct) type_struct ..
instance fun :: (type, type_struct) type_struct ..
subsection {* Substitutions *}
consts
app_subst :: "subst => 'a::type_struct => 'a::type_struct" ("$")
-- {* extension of substitution to type structures *}
primrec (app_subst_typ)
app_subst_TVar: "$s (TVar n) = s n"
app_subst_Fun: "$s (t1 -> t2) = $s t1 -> $s t2"
defs (overloaded)
app_subst_list: "$s ≡ map ($s)"
consts
free_tv :: "'a::type_struct => nat set"
-- {* @{text "free_tv s"}: the type variables occuring freely in the type structure @{text s} *}
primrec (free_tv_typ)
"free_tv (TVar m) = {m}"
"free_tv (t1 -> t2) = free_tv t1 ∪ free_tv t2"
primrec (free_tv_list)
"free_tv [] = {}"
"free_tv (x # xs) = free_tv x ∪ free_tv xs"
constdefs
dom :: "subst => nat set"
"dom s ≡ {n. s n ≠ TVar n}"
-- {* domain of a substitution *}
cod :: "subst => nat set"
"cod s ≡ \<Union>m ∈ dom s. free_tv (s m)"
-- {* codomain of a substitutions: the introduced variables *}
defs
free_tv_subst: "free_tv s ≡ dom s ∪ cod s"
text {*
@{text "new_tv s n"} checks whether @{text n} is a new type variable
wrt.\ a type structure @{text s}, i.e.\ whether @{text n} is greater
than any type variable occuring in the type structure.
*}
constdefs
new_tv :: "nat => 'a::type_struct => bool"
"new_tv n ts ≡ ∀m. m ∈ free_tv ts --> m < n"
subsubsection {* Identity substitution *}
constdefs
id_subst :: subst
"id_subst ≡ λn. TVar n"
lemma app_subst_id_te [simp]:
"$id_subst = (λt::typ. t)"
-- {* application of @{text id_subst} does not change type expression *}
proof
fix t :: "typ"
show "$id_subst t = t"
by (induct t) (simp_all add: id_subst_def)
qed
lemma app_subst_id_tel [simp]: "$id_subst = (λts::typ list. ts)"
-- {* application of @{text id_subst} does not change list of type expressions *}
proof
fix ts :: "typ list"
show "$id_subst ts = ts"
by (induct ts) (simp_all add: app_subst_list)
qed
lemma o_id_subst [simp]: "$s o id_subst = s"
by (rule ext) (simp add: id_subst_def)
lemma dom_id_subst [simp]: "dom id_subst = {}"
by (simp add: dom_def id_subst_def)
lemma cod_id_subst [simp]: "cod id_subst = {}"
by (simp add: cod_def)
lemma free_tv_id_subst [simp]: "free_tv id_subst = {}"
by (simp add: free_tv_subst)
lemma cod_app_subst [simp]:
assumes free: "v ∈ free_tv (s n)"
and neq: "v ≠ n"
shows "v ∈ cod s"
proof -
have "s n ≠ TVar n"
proof
assume "s n = TVar n"
with free have "v = n" by simp
with neq show False ..
qed
with free show ?thesis
by (auto simp add: dom_def cod_def)
qed
lemma subst_comp_te: "$g ($f t :: typ) = $(λx. $g (f x)) t"
-- {* composition of substitutions *}
by (induct t) simp_all
lemma subst_comp_tel: "$g ($f ts :: typ list) = $(λx. $g (f x)) ts"
by (induct ts) (simp_all add: app_subst_list subst_comp_te)
lemma app_subst_Nil [simp]: "$s [] = []"
by (simp add: app_subst_list)
lemma app_subst_Cons [simp]: "$s (t # ts) = ($s t) # ($s ts)"
by (simp add: app_subst_list)
lemma new_tv_TVar [simp]: "new_tv n (TVar m) = (m < n)"
by (simp add: new_tv_def)
lemma new_tv_Fun [simp]:
"new_tv n (t1 -> t2) = (new_tv n t1 ∧ new_tv n t2)"
by (auto simp add: new_tv_def)
lemma new_tv_Nil [simp]: "new_tv n []"
by (simp add: new_tv_def)
lemma new_tv_Cons [simp]: "new_tv n (t # ts) = (new_tv n t ∧ new_tv n ts)"
by (auto simp add: new_tv_def)
lemma new_tv_id_subst [simp]: "new_tv n id_subst"
by (simp add: id_subst_def new_tv_def free_tv_subst dom_def cod_def)
lemma new_tv_subst:
"new_tv n s =
((∀m. n ≤ m --> s m = TVar m) ∧
(∀l. l < n --> new_tv n (s l)))"
apply (unfold new_tv_def)
apply (tactic "safe_tac HOL_cs")
-- {* @{text ==>} *}
apply (tactic {* fast_tac (HOL_cs addDs [leD] addss (simpset()
addsimps [thm "free_tv_subst", thm "dom_def"])) 1 *})
apply (subgoal_tac "m ∈ cod s ∨ s l = TVar l")
apply (tactic "safe_tac HOL_cs")
apply (tactic {* fast_tac (HOL_cs addDs [UnI2] addss (simpset()
addsimps [thm "free_tv_subst"])) 1 *})
apply (drule_tac P = "λx. m ∈ free_tv x" in subst, assumption)
apply simp
apply (tactic {* fast_tac (set_cs addss (simpset()
addsimps [thm "free_tv_subst", thm "cod_def", thm "dom_def"])) 1 *})
-- {* @{text \<Longleftarrow>} *}
apply (unfold free_tv_subst cod_def dom_def)
apply (tactic "safe_tac set_cs")
apply (cut_tac m = m and n = n in less_linear)
apply (tactic "fast_tac (HOL_cs addSIs [less_or_eq_imp_le]) 1")
apply (cut_tac m = ma and n = n in less_linear)
apply (fast intro!: less_or_eq_imp_le)
done
lemma new_tv_list: "new_tv n x = (∀y ∈ set x. new_tv n y)"
by (induct x) simp_all
lemma subst_te_new_tv [simp]:
"new_tv n (t::typ) --> $(λx. if x = n then t' else s x) t = $s t"
-- {* substitution affects only variables occurring freely *}
by (induct t) simp_all
lemma subst_tel_new_tv [simp]:
"new_tv n (ts::typ list) --> $(λx. if x = n then t else s x) ts = $s ts"
by (induct ts) simp_all
lemma new_tv_le: "n ≤ m ==> new_tv n (t::typ) ==> new_tv m t"
-- {* all greater variables are also new *}
proof (induct t)
case (TVar n)
thus ?case by (auto intro: less_le_trans)
next
case TFun
thus ?case by simp
qed
lemma [simp]: "new_tv n t ==> new_tv (Suc n) (t::typ)"
by (rule lessI [THEN less_imp_le [THEN new_tv_le]])
lemma new_tv_list_le:
"n ≤ m ==> new_tv n (ts::typ list) ==> new_tv m ts"
proof (induct ts)
case Nil
thus ?case by simp
next
case Cons
thus ?case by (auto intro: new_tv_le)
qed
lemma [simp]: "new_tv n ts ==> new_tv (Suc n) (ts::typ list)"
by (rule lessI [THEN less_imp_le [THEN new_tv_list_le]])
lemma new_tv_subst_le: "n ≤ m ==> new_tv n (s::subst) ==> new_tv m s"
apply (simp add: new_tv_subst)
apply clarify
apply (rule_tac P = "l < n" and Q = "n <= l" in disjE)
apply clarify
apply (simp_all add: new_tv_le)
done
lemma [simp]: "new_tv n s ==> new_tv (Suc n) (s::subst)"
by (rule lessI [THEN less_imp_le [THEN new_tv_subst_le]])
lemma new_tv_subst_var:
"n < m ==> new_tv m (s::subst) ==> new_tv m (s n)"
-- {* @{text new_tv} property remains if a substitution is applied *}
by (simp add: new_tv_subst)
lemma new_tv_subst_te [simp]:
"new_tv n s ==> new_tv n (t::typ) ==> new_tv n ($s t)"
by (induct t) (auto simp add: new_tv_subst)
lemma new_tv_subst_tel [simp]:
"new_tv n s ==> new_tv n (ts::typ list) ==> new_tv n ($s ts)"
by (induct ts) (fastsimp simp add: new_tv_subst)+
lemma new_tv_Suc_list: "new_tv n ts --> new_tv (Suc n) (TVar n # ts)"
-- {* auxilliary lemma *}
by (simp add: new_tv_list)
lemma new_tv_subst_comp_1 [simp]:
"new_tv n (s::subst) ==> new_tv n r ==> new_tv n ($r o s)"
-- {* composition of substitutions preserves @{text new_tv} proposition *}
by (simp add: new_tv_subst)
lemma new_tv_subst_comp_2 [simp]:
"new_tv n (s::subst) ==> new_tv n r ==> new_tv n (λv. $r (s v))"
by (simp add: new_tv_subst)
lemma new_tv_not_free_tv [simp]: "new_tv n ts ==> n ∉ free_tv ts"
-- {* new type variables do not occur freely in a type structure *}
by (auto simp add: new_tv_def)
lemma ftv_mem_sub_ftv_list [simp]:
"(t::typ) ∈ set ts ==> free_tv t ⊆ free_tv ts"
by (induct ts) auto
text {*
If two substitutions yield the same result if applied to a type
structure the substitutions coincide on the free type variables
occurring in the type structure.
*}
lemma eq_subst_te_eq_free:
"$s1 (t::typ) = $s2 t ==> n ∈ free_tv t ==> s1 n = s2 n"
by (induct t) auto
lemma eq_free_eq_subst_te:
"(∀n. n ∈ free_tv t --> s1 n = s2 n) ==> $s1 (t::typ) = $s2 t"
by (induct t) auto
lemma eq_subst_tel_eq_free:
"$s1 (ts::typ list) = $s2 ts ==> n ∈ free_tv ts ==> s1 n = s2 n"
by (induct ts) (auto intro: eq_subst_te_eq_free)
lemma eq_free_eq_subst_tel:
"(∀n. n ∈ free_tv ts --> s1 n = s2 n) ==> $s1 (ts::typ list) = $s2 ts"
by (induct ts) (auto intro: eq_free_eq_subst_te)
text {*
\medskip Some useful lemmas.
*}
lemma codD: "v ∈ cod s ==> v ∈ free_tv s"
by (simp add: free_tv_subst)
lemma not_free_impl_id: "x ∉ free_tv s ==> s x = TVar x"
by (simp add: free_tv_subst dom_def)
lemma free_tv_le_new_tv: "new_tv n t ==> m ∈ free_tv t ==> m < n"
by (unfold new_tv_def) fast
lemma free_tv_subst_var: "free_tv (s (v::nat)) ≤ insert v (cod s)"
by (cases "v ∈ dom s") (auto simp add: cod_def dom_def)
lemma free_tv_app_subst_te: "free_tv ($s (t::typ)) ⊆ cod s ∪ free_tv t"
by (induct t) (auto simp add: free_tv_subst_var)
lemma free_tv_app_subst_tel: "free_tv ($s (ts::typ list)) ⊆ cod s ∪ free_tv ts"
apply (induct ts)
apply simp
apply (cut_tac free_tv_app_subst_te)
apply fastsimp
done
lemma free_tv_comp_subst:
"free_tv (λu::nat. $s1 (s2 u) :: typ) ⊆ free_tv s1 ∪ free_tv s2"
apply (unfold free_tv_subst dom_def)
apply (tactic {*
fast_tac (set_cs addSDs [thm "free_tv_app_subst_te" RS subsetD,
thm "free_tv_subst_var" RS subsetD]
addss (simpset() delsimps bex_simps
addsimps [thm "cod_def", thm "dom_def"])) 1 *})
done
subsection {* Most general unifiers *}
consts
mgu :: "typ => typ => subst maybe"
axioms
mgu_eq [simp]: "mgu t1 t2 = Ok u ==> $u t1 = $u t2"
mgu_mg [simp]: "mgu t1 t2 = Ok u ==> $s t1 = $s t2 ==> ∃r. s = $r o u"
mgu_Ok: "$s t1 = $s t2 ==> ∃u. mgu t1 t2 = Ok u"
mgu_free [simp]: "mgu t1 t2 = Ok u ==> free_tv u ⊆ free_tv t1 ∪ free_tv t2"
lemma mgu_new: "mgu t1 t2 = Ok u ==> new_tv n t1 ==> new_tv n t2 ==> new_tv n u"
-- {* @{text mgu} does not introduce new type variables *}
by (unfold new_tv_def) (blast dest: mgu_free)
section {* Mini-ML with type inference rules *}
datatype
expr = Var nat | Abs expr | App expr expr
text {* Type inference rules. *}
consts
has_type :: "(typ list × expr × typ) set"
syntax
"_has_type" :: "typ list => expr => typ => bool"
("((_) |-/ (_) :: (_))" [60, 0, 60] 60)
translations
"a |- e :: t" == "(a, e, t) ∈ has_type"
inductive has_type
intros
Var: "n < length a ==> a |- Var n :: a ! n"
Abs: "t1#a |- e :: t2 ==> a |- Abs e :: t1 -> t2"
App: "a |- e1 :: t2 -> t1 ==> a |- e2 :: t2
==> a |- App e1 e2 :: t1"
text {* Type assigment is closed wrt.\ substitution. *}
lemma has_type_subst_closed: "a |- e :: t ==> $s a |- e :: $s t"
proof -
assume "a |- e :: t"
thus ?thesis (is "?P a e t")
proof induct
case (Var a n)
hence "n < length (map ($ s) a)" by simp
hence "map ($ s) a |- Var n :: map ($ s) a ! n"
by (rule has_type.Var)
also have "map ($ s) a ! n = $ s (a ! n)"
by (rule nth_map)
also have "map ($ s) a = $ s a"
by (simp only: app_subst_list)
finally show "?P a (Var n) (a ! n)" .
next
case (Abs a e t1 t2)
hence "$ s t1 # map ($ s) a |- e :: $ s t2"
by (simp add: app_subst_list)
hence "map ($ s) a |- Abs e :: $ s t1 -> $ s t2"
by (rule has_type.Abs)
thus "?P a (Abs e) (t1 -> t2)"
by (simp add: app_subst_list)
next
case App
thus ?case by (simp add: has_type.App)
qed
qed
section {* Correctness and completeness of the type inference algorithm W *}
consts
W :: "expr => typ list => nat => (subst × typ × nat) maybe" ("\<W>")
primrec
"\<W> (Var i) a n =
(if i < length a then Ok (id_subst, a ! i, n) else Fail)"
"\<W> (Abs e) a n =
((s, t, m) := \<W> e (TVar n # a) (Suc n);
Ok (s, (s n) -> t, m))"
"\<W> (App e1 e2) a n =
((s1, t1, m1) := \<W> e1 a n;
(s2, t2, m2) := \<W> e2 ($s1 a) m1;
u := mgu ($ s2 t1) (t2 -> TVar m2);
Ok ($u o $s2 o s1, $u (TVar m2), Suc m2))"
theorem W_correct: "!!a s t m n. Ok (s, t, m) = \<W> e a n ==> $s a |- e :: t"
(is "PROP ?P e")
proof (induct e)
fix a s t m n
{
fix i
assume "Ok (s, t, m) = \<W> (Var i) a n"
thus "$s a |- Var i :: t" by (simp add: has_type.Var split: if_splits)
next
fix e assume hyp: "PROP ?P e"
assume "Ok (s, t, m) = \<W> (Abs e) a n"
then obtain t' where "t = s n -> t'"
and "Ok (s, t', m) = \<W> e (TVar n # a) (Suc n)"
by (auto split: bind_splits)
with hyp show "$s a |- Abs e :: t"
by (force intro: has_type.Abs)
next
fix e1 e2 assume hyp1: "PROP ?P e1" and hyp2: "PROP ?P e2"
assume "Ok (s, t, m) = \<W> (App e1 e2) a n"
then obtain s1 t1 n1 s2 t2 n2 u where
s: "s = $u o $s2 o s1"
and t: "t = u n2"
and mgu_ok: "mgu ($s2 t1) (t2 -> TVar n2) = Ok u"
and W1_ok: "Ok (s1, t1, n1) = \<W> e1 a n"
and W2_ok: "Ok (s2, t2, n2) = \<W> e2 ($s1 a) n1"
by (auto split: bind_splits simp: that)
show "$s a |- App e1 e2 :: t"
proof (rule has_type.App)
from s have s': "$u ($s2 ($s1 a)) = $s a"
by (simp add: subst_comp_tel o_def)
show "$s a |- e1 :: $u t2 -> t"
proof -
from W1_ok have "$s1 a |- e1 :: t1" by (rule hyp1)
hence "$u ($s2 ($s1 a)) |- e1 :: $u ($s2 t1)"
by (intro has_type_subst_closed)
with s' t mgu_ok show ?thesis by simp
qed
show "$s a |- e2 :: $u t2"
proof -
from W2_ok have "$s2 ($s1 a) |- e2 :: t2" by (rule hyp2)
hence "$u ($s2 ($s1 a)) |- e2 :: $u t2"
by (rule has_type_subst_closed)
with s' show ?thesis by simp
qed
qed
}
qed
inductive_cases has_type_casesE:
"s |- Var n :: t"
"s |- Abs e :: t"
"s |- App e1 e2 ::t"
lemmas [simp] = Suc_le_lessD
and [simp del] = less_imp_le ex_simps all_simps
lemma W_var_ge [simp]: "!!a n s t m. \<W> e a n = Ok (s, t, m) ==> n ≤ m"
-- {* the resulting type variable is always greater or equal than the given one *}
apply (atomize (full))
apply (induct e)
txt {* case @{text "Var n"} *}
apply clarsimp
txt {* case @{text "Abs e"} *}
apply (simp split add: split_bind)
apply (fast dest: Suc_leD)
txt {* case @{text "App e1 e2"} *}
apply (simp (no_asm) split add: split_bind)
apply (intro strip)
apply (rename_tac s t na sa ta nb sb)
apply (erule_tac x = a in allE)
apply (erule_tac x = n in allE)
apply (erule_tac x = "$s a" in allE)
apply (erule_tac x = s in allE)
apply (erule_tac x = t in allE)
apply (erule_tac x = na in allE)
apply (erule_tac x = na in allE)
apply (simp add: eq_sym_conv)
done
lemma W_var_geD: "Ok (s, t, m) = \<W> e a n ==> n ≤ m"
by (simp add: eq_sym_conv)
lemma new_tv_W: "!!n a s t m.
new_tv n a ==> \<W> e a n = Ok (s, t, m) ==> new_tv m s & new_tv m t"
-- {* resulting type variable is new *}
apply (atomize (full))
apply (induct e)
txt {* case @{text "Var n"} *}
apply clarsimp
apply (force elim: list_ball_nth simp add: id_subst_def new_tv_list new_tv_subst)
txt {* case @{text "Abs e"} *}
apply (simp (no_asm) add: new_tv_subst new_tv_Suc_list split add: split_bind)
apply (intro strip)
apply (erule_tac x = "Suc n" in allE)
apply (erule_tac x = "TVar n # a" in allE)
apply (fastsimp simp add: new_tv_subst new_tv_Suc_list)
txt {* case @{text "App e1 e2"} *}
apply (simp (no_asm) split add: split_bind)
apply (intro strip)
apply (rename_tac s t na sa ta nb sb)
apply (erule_tac x = n in allE)
apply (erule_tac x = a in allE)
apply (erule_tac x = s in allE)
apply (erule_tac x = t in allE)
apply (erule_tac x = na in allE)
apply (erule_tac x = na in allE)
apply (simp add: eq_sym_conv)
apply (erule_tac x = "$s a" in allE)
apply (erule_tac x = sa in allE)
apply (erule_tac x = ta in allE)
apply (erule_tac x = nb in allE)
apply (simp add: o_def rotate_Ok)
apply (rule conjI)
apply (rule new_tv_subst_comp_2)
apply (rule new_tv_subst_comp_2)
apply (rule lessI [THEN less_imp_le, THEN new_tv_subst_le])
apply (rule_tac n = na in new_tv_subst_le)
apply (simp add: rotate_Ok)
apply (simp (no_asm_simp))
apply (fast dest: W_var_geD intro: new_tv_list_le new_tv_subst_tel
lessI [THEN less_imp_le, THEN new_tv_subst_le])
apply (erule sym [THEN mgu_new])
apply (best dest: W_var_geD intro: new_tv_subst_te new_tv_list_le new_tv_subst_tel
lessI [THEN less_imp_le, THEN new_tv_le] lessI [THEN less_imp_le, THEN new_tv_subst_le]
new_tv_le)
apply (tactic {* fast_tac (HOL_cs addDs [thm "W_var_geD"]
addIs [thm "new_tv_list_le", thm "new_tv_subst_tel", thm "new_tv_le"]
addss (simpset())) 1 *})
apply (rule lessI [THEN new_tv_subst_var])
apply (erule sym [THEN mgu_new])
apply (bestsimp intro!: lessI [THEN less_imp_le, THEN new_tv_le] new_tv_subst_te
dest!: W_var_geD intro: new_tv_list_le new_tv_subst_tel
lessI [THEN less_imp_le, THEN new_tv_subst_le] new_tv_le)
apply (tactic {* fast_tac (HOL_cs addDs [thm "W_var_geD"]
addIs [thm "new_tv_list_le", thm "new_tv_subst_tel", thm "new_tv_le"]
addss (simpset())) 1 *})
done
lemma free_tv_W: "!!n a s t m v. \<W> e a n = Ok (s, t, m) ==>
(v ∈ free_tv s ∨ v ∈ free_tv t) ==> v < n ==> v ∈ free_tv a"
apply (atomize (full))
apply (induct e)
txt {* case @{text "Var n"} *}
apply clarsimp
apply (tactic {* fast_tac (HOL_cs addIs [nth_mem, subsetD, thm "ftv_mem_sub_ftv_list"]) 1 *})
txt {* case @{text "Abs e"} *}
apply (simp add: free_tv_subst split add: split_bind)
apply (intro strip)
apply (rename_tac s t n1 v)
apply (erule_tac x = "Suc n" in allE)
apply (erule_tac x = "TVar n # a" in allE)
apply (erule_tac x = s in allE)
apply (erule_tac x = t in allE)
apply (erule_tac x = n1 in allE)
apply (erule_tac x = v in allE)
apply (force elim!: allE intro: cod_app_subst)
txt {* case @{text "App e1 e2"} *}
apply (simp (no_asm) split add: split_bind)
apply (intro strip)
apply (rename_tac s t n1 s1 t1 n2 s3 v)
apply (erule_tac x = n in allE)
apply (erule_tac x = a in allE)
apply (erule_tac x = s in allE)
apply (erule_tac x = t in allE)
apply (erule_tac x = n1 in allE)
apply (erule_tac x = n1 in allE)
apply (erule_tac x = v in allE)
txt {* second case *}
apply (erule_tac x = "$ s a" in allE)
apply (erule_tac x = s1 in allE)
apply (erule_tac x = t1 in allE)
apply (erule_tac x = n2 in allE)
apply (erule_tac x = v in allE)
apply (tactic "safe_tac (empty_cs addSIs [conjI, impI] addSEs [conjE])")
apply (simp add: rotate_Ok o_def)
apply (drule W_var_geD)
apply (drule W_var_geD)
apply (frule less_le_trans, assumption)
apply (fastsimp dest: free_tv_comp_subst [THEN subsetD] sym [THEN mgu_free] codD
free_tv_app_subst_te [THEN subsetD] free_tv_app_subst_tel [THEN subsetD] subsetD elim: UnE)
apply simp
apply (drule sym [THEN W_var_geD])
apply (drule sym [THEN W_var_geD])
apply (frule less_le_trans, assumption)
apply (tactic {* fast_tac (HOL_cs addDs [thm "mgu_free", thm "codD",
thm "free_tv_subst_var" RS subsetD,
thm "free_tv_app_subst_te" RS subsetD,
thm "free_tv_app_subst_tel" RS subsetD, less_le_trans, subsetD]
addSEs [UnE] addss (simpset() setSolver unsafe_solver)) 1 *})
-- {* builtin arithmetic in simpset messes things up *}
done
text {*
\medskip Completeness of @{text \<W>} wrt.\ @{text has_type}.
*}
lemma W_complete_aux: "!!s' a t' n. $s' a |- e :: t' ==> new_tv n a ==>
(∃s t. (∃m. \<W> e a n = Ok (s, t, m)) ∧ (∃r. $s' a = $r ($s a) ∧ t' = $r t))"
apply (atomize (full))
apply (induct e)
txt {* case @{text "Var n"} *}
apply (intro strip)
apply (simp (no_asm) cong add: conj_cong)
apply (erule has_type_casesE)
apply (simp add: eq_sym_conv app_subst_list)
apply (rule_tac x = s' in exI)
apply simp
txt {* case @{text "Abs e"} *}
apply (intro strip)
apply (erule has_type_casesE)
apply (erule_tac x = "λx. if x = n then t1 else (s' x)" in allE)
apply (erule_tac x = "TVar n # a" in allE)
apply (erule_tac x = t2 in allE)
apply (erule_tac x = "Suc n" in allE)
apply (fastsimp cong add: conj_cong split add: split_bind)
txt {* case @{text "App e1 e2"} *}
apply (intro strip)
apply (erule has_type_casesE)
apply (erule_tac x = s' in allE)
apply (erule_tac x = a in allE)
apply (erule_tac x = "t2 -> t'" in allE)
apply (erule_tac x = n in allE)
apply (tactic "safe_tac HOL_cs")
apply (erule_tac x = r in allE)
apply (erule_tac x = "$s a" in allE)
apply (erule_tac x = t2 in allE)
apply (erule_tac x = m in allE)
apply simp
apply (tactic "safe_tac HOL_cs")
apply (tactic {* fast_tac (HOL_cs addIs [sym RS thm "W_var_geD",
thm "new_tv_W" RS conjunct1, thm "new_tv_list_le", thm "new_tv_subst_tel"]) 1 *})
apply (subgoal_tac
"$(λx. if x = ma then t' else (if x ∈ free_tv t - free_tv sa then r x
else ra x)) ($ sa t) =
$(λx. if x = ma then t' else (if x ∈ free_tv t - free_tv sa then r x
else ra x)) (ta -> (TVar ma))")
apply (rule_tac [2] t = "$(λx. if x = ma then t'
else (if x ∈ (free_tv t - free_tv sa) then r x else ra x)) ($sa t)" and
s = "($ ra ta) -> t'" in ssubst)
prefer 2
apply (simp add: subst_comp_te)
apply (rule eq_free_eq_subst_te)
apply (intro strip)
apply (subgoal_tac "na ≠ ma")
prefer 2
apply (fast dest: new_tv_W sym [THEN W_var_geD] new_tv_not_free_tv new_tv_le)
apply (case_tac "na ∈ free_tv sa")
txt {* @{text "na ∉ free_tv sa"} *}
prefer 2
apply (frule not_free_impl_id)
apply simp
txt {* @{text "na ∈ free_tv sa"} *}
apply (drule_tac ts1 = "$s a" and r = "$ r ($ s a)" in subst_comp_tel [THEN [2] trans])
apply (drule_tac eq_subst_tel_eq_free)
apply (fast intro: free_tv_W free_tv_le_new_tv dest: new_tv_W)
apply simp
apply (case_tac "na ∈ dom sa")
prefer 2
txt {* @{text "na ≠ dom sa"} *}
apply (simp add: dom_def)
txt {* @{text "na ∈ dom sa"} *}
apply (rule eq_free_eq_subst_te)
apply (intro strip)
apply (subgoal_tac "nb ≠ ma")
prefer 2
apply (frule new_tv_W, assumption)
apply (erule conjE)
apply (drule new_tv_subst_tel)
apply (fast intro: new_tv_list_le dest: sym [THEN W_var_geD])
apply (fastsimp dest: new_tv_W new_tv_not_free_tv simp add: cod_def free_tv_subst)
apply (fastsimp simp add: cod_def free_tv_subst)
prefer 2
apply (simp (no_asm))
apply (rule eq_free_eq_subst_te)
apply (intro strip)
apply (subgoal_tac "na ≠ ma")
prefer 2
apply (frule new_tv_W, assumption)
apply (erule conjE)
apply (drule sym [THEN W_var_geD])
apply (fast dest: new_tv_list_le new_tv_subst_tel new_tv_W new_tv_not_free_tv)
apply (case_tac "na ∈ free_tv t - free_tv sa")
prefer 2
txt {* case @{text "na ∉ free_tv t - free_tv sa"} *}
apply simp
defer
txt {* case @{text "na ∈ free_tv t - free_tv sa"} *}
apply simp
apply (drule_tac ts1 = "$s a" and r = "$ r ($ s a)" in subst_comp_tel [THEN [2] trans])
apply (drule eq_subst_tel_eq_free)
apply (fast intro: free_tv_W free_tv_le_new_tv dest: new_tv_W)
apply (simp add: free_tv_subst dom_def)
prefer 2 apply fast
apply (simp (no_asm_simp) split add: split_bind)
apply (tactic "safe_tac HOL_cs")
apply (drule mgu_Ok)
apply fastsimp
apply (drule mgu_mg, assumption)
apply (erule exE)
apply (rule_tac x = rb in exI)
apply (rule conjI)
prefer 2
apply (drule_tac x = ma in fun_cong)
apply (simp add: eq_sym_conv)
apply (simp (no_asm) add: o_def subst_comp_tel [symmetric])
apply (rule subst_comp_tel [symmetric, THEN [2] trans])
apply (simp add: o_def eq_sym_conv)
apply (rule eq_free_eq_subst_tel)
apply (tactic "safe_tac HOL_cs")
apply (subgoal_tac "ma ≠ na")
prefer 2
apply (frule new_tv_W, assumption)
apply (erule conjE)
apply (drule new_tv_subst_tel)
apply (fast intro: new_tv_list_le dest: sym [THEN W_var_geD])
apply (frule_tac n = m in new_tv_W, assumption)
apply (erule conjE)
apply (drule free_tv_app_subst_tel [THEN subsetD])
apply (tactic {* fast_tac (set_cs addDs [sym RS thm "W_var_geD", thm "new_tv_list_le",
thm "codD", thm "new_tv_not_free_tv"]) 1 *})
apply (case_tac "na ∈ free_tv t - free_tv sa")
prefer 2
txt {* case @{text "na ∉ free_tv t - free_tv sa"} *}
apply simp
defer
txt {* case @{text "na ∈ free_tv t - free_tv sa"} *}
apply simp
apply (drule free_tv_app_subst_tel [THEN subsetD])
apply (fastsimp dest: codD subst_comp_tel [THEN [2] trans]
eq_subst_tel_eq_free simp add: free_tv_subst dom_def)
apply fast
done
lemma W_complete: "[] |- e :: t' ==>
∃s t. (∃m. \<W> e [] n = Ok (s, t, m)) ∧ (∃r. t' = $r t)"
apply (cut_tac a = "[]" and s' = id_subst and e = e and t' = t' in W_complete_aux)
apply simp_all
done
section {* Equivalence of W and I *}
text {*
Recursive definition of type inference algorithm @{text \<I>} for
Mini-ML.
*}
consts
I :: "expr => typ list => nat => subst => (subst × typ × nat) maybe" ("\<I>")
primrec
"\<I> (Var i) a n s = (if i < length a then Ok (s, a ! i, n) else Fail)"
"\<I> (Abs e) a n s = ((s, t, m) := \<I> e (TVar n # a) (Suc n) s;
Ok (s, TVar n -> t, m))"
"\<I> (App e1 e2) a n s =
((s1, t1, m1) := \<I> e1 a n s;
(s2, t2, m2) := \<I> e2 a m1 s1;
u := mgu ($s2 t1) ($s2 t2 -> TVar m2);
Ok($u o s2, TVar m2, Suc m2))"
text {* \medskip Correctness. *}
lemma I_correct_wrt_W: "!!a m s s' t n.
new_tv m a ∧ new_tv m s ==> \<I> e a m s = Ok (s', t, n) ==>
∃r. \<W> e ($s a) m = Ok (r, $s' t, n) ∧ s' = ($r o s)"
apply (atomize (full))
apply (induct e)
txt {* case @{text "Var n"} *}
apply (simp add: app_subst_list split: split_if)
txt {* case @{text "Abs e"} *}
apply (tactic {* asm_full_simp_tac
(simpset() setloop (split_inside_tac [thm "split_bind"])) 1 *})
apply (intro strip)
apply (rule conjI)
apply (intro strip)
apply (erule allE)+
apply (erule impE)
prefer 2 apply (fastsimp simp add: new_tv_subst)
apply (tactic {* fast_tac (HOL_cs addIs [thm "new_tv_Suc_list" RS mp,
thm "new_tv_subst_le", less_imp_le, lessI]) 1 *})
apply (intro strip)
apply (erule allE)+
apply (erule impE)
prefer 2 apply (fastsimp simp add: new_tv_subst)
apply (tactic {* fast_tac (HOL_cs addIs [thm "new_tv_Suc_list" RS mp,
thm "new_tv_subst_le", less_imp_le, lessI]) 1 *})
txt {* case @{text "App e1 e2"} *}
apply (tactic {* simp_tac (simpset () setloop (split_inside_tac [thm "split_bind"])) 1 *})
apply (intro strip)
apply (rename_tac s1' t1 n1 s2' t2 n2 sa)
apply (rule conjI)
apply fastsimp
apply (intro strip)
apply (rename_tac s1 t1' n1')
apply (erule_tac x = a in allE)
apply (erule_tac x = m in allE)
apply (erule_tac x = s in allE)
apply (erule_tac x = s1' in allE)
apply (erule_tac x = t1 in allE)
apply (erule_tac x = n1 in allE)
apply (erule_tac x = a in allE)
apply (erule_tac x = n1 in allE)
apply (erule_tac x = s1' in allE)
apply (erule_tac x = s2' in allE)
apply (erule_tac x = t2 in allE)
apply (erule_tac x = n2 in allE)
apply (rule conjI)
apply (intro strip)
apply (rule notI)
apply simp
apply (erule impE)
apply (frule new_tv_subst_tel, assumption)
apply (drule_tac a = "$s a" in new_tv_W, assumption)
apply (fastsimp dest: sym [THEN W_var_geD] new_tv_subst_le new_tv_list_le)
apply (fastsimp simp add: subst_comp_tel)
apply (intro strip)
apply (rename_tac s2 t2' n2')
apply (rule conjI)
apply (intro strip)
apply (rule notI)
apply simp
apply (erule impE)
apply (frule new_tv_subst_tel, assumption)
apply (drule_tac a = "$s a" in new_tv_W, assumption)
apply (fastsimp dest: sym [THEN W_var_geD] new_tv_subst_le new_tv_list_le)
apply (fastsimp simp add: subst_comp_tel subst_comp_te)
apply (intro strip)
apply (erule (1) notE impE)
apply (erule (1) notE impE)
apply (erule exE)
apply (erule conjE)
apply (erule impE)
apply (frule new_tv_subst_tel, assumption)
apply (drule_tac a = "$s a" in new_tv_W, assumption)
apply (fastsimp dest: sym [THEN W_var_geD] new_tv_subst_le new_tv_list_le)
apply (erule (1) notE impE)
apply (erule exE conjE)+
apply (simp (asm_lr) add: subst_comp_tel subst_comp_te o_def, (erule conjE)+, hypsubst)+
apply (subgoal_tac "new_tv n2 s ∧ new_tv n2 r ∧ new_tv n2 ra")
apply (simp add: new_tv_subst)
apply (frule new_tv_subst_tel, assumption)
apply (drule_tac a = "$s a" in new_tv_W, assumption)
apply (tactic "safe_tac HOL_cs")
apply (bestsimp dest: sym [THEN W_var_geD] new_tv_subst_le new_tv_list_le)
apply (fastsimp dest: sym [THEN W_var_geD] new_tv_subst_le new_tv_list_le)
apply (drule_tac e = e1 in sym [THEN W_var_geD])
apply (drule new_tv_subst_tel, assumption)
apply (drule_tac ts = "$s a" in new_tv_list_le, assumption)
apply (drule new_tv_subst_tel, assumption)
apply (bestsimp dest: new_tv_W simp add: subst_comp_tel)
done
lemma I_complete_wrt_W: "!!a m s.
new_tv m a ∧ new_tv m s ==> \<I> e a m s = Fail ==> \<W> e ($s a) m = Fail"
apply (atomize (full))
apply (induct e)
apply (simp add: app_subst_list)
apply (simp (no_asm))
apply (intro strip)
apply (subgoal_tac "TVar m # $s a = $s (TVar m # a)")
apply (tactic {* asm_simp_tac (HOL_ss addsimps
[thm "new_tv_Suc_list", lessI RS less_imp_le RS thm "new_tv_subst_le"]) 1 *})
apply (erule conjE)
apply (drule new_tv_not_free_tv [THEN not_free_impl_id])
apply (simp (no_asm_simp))
apply (simp (no_asm_simp))
apply (intro strip)
apply (erule exE)+
apply (erule conjE)+
apply (drule I_correct_wrt_W [COMP swap_prems_rl])
apply fast
apply (erule exE)
apply (erule conjE)
apply hypsubst
apply (simp (no_asm_simp))
apply (erule disjE)
apply (rule disjI1)
apply (simp (no_asm_use) add: o_def subst_comp_tel)
apply (erule allE, erule allE, erule allE, erule impE, erule_tac [2] impE,
erule_tac [2] asm_rl, erule_tac [2] asm_rl)
apply (rule conjI)
apply (fast intro: W_var_ge [THEN new_tv_list_le])
apply (rule new_tv_subst_comp_2)
apply (fast intro: W_var_ge [THEN new_tv_subst_le])
apply (fast intro!: new_tv_subst_tel intro: new_tv_W [THEN conjunct1])
apply (rule disjI2)
apply (erule exE)+
apply (erule conjE)
apply (drule I_correct_wrt_W [COMP swap_prems_rl])
apply (rule conjI)
apply (fast intro: W_var_ge [THEN new_tv_list_le])
apply (rule new_tv_subst_comp_1)
apply (fast intro: W_var_ge [THEN new_tv_subst_le])
apply (fast intro!: new_tv_subst_tel intro: new_tv_W [THEN conjunct1])
apply (erule exE)
apply (erule conjE)
apply hypsubst
apply (simp add: o_def subst_comp_te [symmetric] subst_comp_tel [symmetric])
done
end
lemma bind_Ok:
Ok s \<bind> f = f s
lemma bind_Fail:
Fail \<bind> f = Fail
lemma split_bind:
P (res \<bind> f) = ((res = Fail --> P Fail) ∧ (∀s. res = Ok s --> P (f s)))
lemma split_bind_asm:
P (res \<bind> f) = (¬ (res = Fail ∧ ¬ P Fail ∨ (∃s. res = Ok s ∧ ¬ P (f s))))
lemmas bind_splits:
P (res \<bind> f) = ((res = Fail --> P Fail) ∧ (∀s. res = Ok s --> P (f s)))
P (res \<bind> f) = (¬ (res = Fail ∧ ¬ P Fail ∨ (∃s. res = Ok s ∧ ¬ P (f s))))
lemmas bind_splits:
P (res \<bind> f) = ((res = Fail --> P Fail) ∧ (∀s. res = Ok s --> P (f s)))
P (res \<bind> f) = (¬ (res = Fail ∧ ¬ P Fail ∨ (∃s. res = Ok s ∧ ¬ P (f s))))
lemma bind_eq_Fail:
(m \<bind> f = Fail) = (m = Fail ∨ (∃p. m = Ok p ∧ f p = Fail))
lemma rotate_Ok:
(y = Ok x) = (Ok x = y)
lemma app_subst_id_te:
$ id_subst = (%t. t)
lemma app_subst_id_tel:
$ id_subst = (%ts. ts)
lemma o_id_subst:
$ s o id_subst = s
lemma dom_id_subst:
W0.dom id_subst = {}
lemma cod_id_subst:
cod id_subst = {}
lemma free_tv_id_subst:
free_tv id_subst = {}
lemma cod_app_subst:
[| v ∈ free_tv (s n); v ≠ n |] ==> v ∈ cod s
lemma subst_comp_te:
$ g ($ f t) = $ (%x. $ g (f x)) t
lemma subst_comp_tel:
$ g ($ f ts) = $ (%x. $ g (f x)) ts
lemma app_subst_Nil:
$ s [] = []
lemma app_subst_Cons:
$ s (t # ts) = $ s t # $ s ts
lemma new_tv_TVar:
new_tv n (TVar m) = (m < n)
lemma new_tv_Fun:
new_tv n (t1.0 -> t2.0) = (new_tv n t1.0 ∧ new_tv n t2.0)
lemma new_tv_Nil:
new_tv n []
lemma new_tv_Cons:
new_tv n (t # ts) = (new_tv n t ∧ new_tv n ts)
lemma new_tv_id_subst:
new_tv n id_subst
lemma new_tv_subst:
new_tv n s = ((∀m≥n. s m = TVar m) ∧ (∀l<n. new_tv n (s l)))
lemma new_tv_list:
new_tv n x = (∀y∈set x. new_tv n y)
lemma subst_te_new_tv:
new_tv n t --> $ (%x. if x = n then t' else s x) t = $ s t
lemma subst_tel_new_tv:
new_tv n ts --> $ (%x. if x = n then t else s x) ts = $ s ts
lemma new_tv_le:
[| n ≤ m; new_tv n t |] ==> new_tv m t
lemma
new_tv n t ==> new_tv (Suc n) t
lemma new_tv_list_le:
[| n ≤ m; new_tv n ts |] ==> new_tv m ts
lemma
new_tv n ts ==> new_tv (Suc n) ts
lemma new_tv_subst_le:
[| n ≤ m; new_tv n s |] ==> new_tv m s
lemma
new_tv n s ==> new_tv (Suc n) s
lemma new_tv_subst_var:
[| n < m; new_tv m s |] ==> new_tv m (s n)
lemma new_tv_subst_te:
[| new_tv n s; new_tv n t |] ==> new_tv n ($ s t)
lemma new_tv_subst_tel:
[| new_tv n s; new_tv n ts |] ==> new_tv n ($ s ts)
lemma new_tv_Suc_list:
new_tv n ts --> new_tv (Suc n) (TVar n # ts)
lemma new_tv_subst_comp_1:
[| new_tv n s; new_tv n r |] ==> new_tv n ($ r o s)
lemma new_tv_subst_comp_2:
[| new_tv n s; new_tv n r |] ==> new_tv n (%v. $ r (s v))
lemma new_tv_not_free_tv:
new_tv n ts ==> n ∉ free_tv ts
lemma ftv_mem_sub_ftv_list:
t ∈ set ts ==> free_tv t ⊆ free_tv ts
lemma eq_subst_te_eq_free:
[| $ s1.0 t = $ s2.0 t; n ∈ free_tv t |] ==> s1.0 n = s2.0 n
lemma eq_free_eq_subst_te:
∀n. n ∈ free_tv t --> s1.0 n = s2.0 n ==> $ s1.0 t = $ s2.0 t
lemma eq_subst_tel_eq_free:
[| $ s1.0 ts = $ s2.0 ts; n ∈ free_tv ts |] ==> s1.0 n = s2.0 n
lemma eq_free_eq_subst_tel:
∀n. n ∈ free_tv ts --> s1.0 n = s2.0 n ==> $ s1.0 ts = $ s2.0 ts
lemma codD:
v ∈ cod s ==> v ∈ free_tv s
lemma not_free_impl_id:
x ∉ free_tv s ==> s x = TVar x
lemma free_tv_le_new_tv:
[| new_tv n t; m ∈ free_tv t |] ==> m < n
lemma free_tv_subst_var:
free_tv (s v) ⊆ insert v (cod s)
lemma free_tv_app_subst_te:
free_tv ($ s t) ⊆ cod s ∪ free_tv t
lemma free_tv_app_subst_tel:
free_tv ($ s ts) ⊆ cod s ∪ free_tv ts
lemma free_tv_comp_subst:
free_tv (%u. $ s1.0 (s2.0 u)) ⊆ free_tv s1.0 ∪ free_tv s2.0
lemma mgu_new:
[| mgu t1.0 t2.0 = Ok u; new_tv n t1.0; new_tv n t2.0 |] ==> new_tv n u
lemma has_type_subst_closed:
a |- e :: t ==> $ s a |- e :: $ s t
theorem W_correct:
Ok (s, t, m) = \<W> e a n ==> $ s a |- e :: t
lemmas has_type_casesE:
[| s |- Var n :: t; [| n < length s; t = s ! n |] ==> P |] ==> P
[| s |- Abs e :: t; !!t1 t2. [| t1 # s |- e :: t2; t = t1 -> t2 |] ==> P |] ==> P
[| s |- App e1.0 e2.0 :: t; !!t2. [| s |- e1.0 :: t2 -> t; s |- e2.0 :: t2 |] ==> P |] ==> P
lemmas
Suc m ≤ n ==> m < n
and
m < n ==> m ≤ n
(∃x. P x ∧ Q) = ((∃x. P x) ∧ Q)
(∃x. P ∧ Q x) = (P ∧ (∃x. Q x))
(∃x. P x ∨ Q) = ((∃x. P x) ∨ Q)
(∃x. P ∨ Q x) = (P ∨ (∃x. Q x))
(∃x. P x --> Q) = ((∀x. P x) --> Q)
(∃x. P --> Q x) = (P --> (∃x. Q x))
(∀x. P x ∧ Q) = ((∀x. P x) ∧ Q)
(∀x. P ∧ Q x) = (P ∧ (∀x. Q x))
(∀x. P x ∨ Q) = ((∀x. P x) ∨ Q)
(∀x. P ∨ Q x) = (P ∨ (∀x. Q x))
(∀x. P x --> Q) = ((∃x. P x) --> Q)
(∀x. P --> Q x) = (P --> (∀x. Q x))
lemmas
Suc m ≤ n ==> m < n
and
m < n ==> m ≤ n
(∃x. P x ∧ Q) = ((∃x. P x) ∧ Q)
(∃x. P ∧ Q x) = (P ∧ (∃x. Q x))
(∃x. P x ∨ Q) = ((∃x. P x) ∨ Q)
(∃x. P ∨ Q x) = (P ∨ (∃x. Q x))
(∃x. P x --> Q) = ((∀x. P x) --> Q)
(∃x. P --> Q x) = (P --> (∃x. Q x))
(∀x. P x ∧ Q) = ((∀x. P x) ∧ Q)
(∀x. P ∧ Q x) = (P ∧ (∀x. Q x))
(∀x. P x ∨ Q) = ((∀x. P x) ∨ Q)
(∀x. P ∨ Q x) = (P ∨ (∀x. Q x))
(∀x. P x --> Q) = ((∃x. P x) --> Q)
(∀x. P --> Q x) = (P --> (∀x. Q x))
lemma W_var_ge:
\<W> e a n = Ok (s, t, m) ==> n ≤ m
lemma W_var_geD:
Ok (s, t, m) = \<W> e a n ==> n ≤ m
lemma new_tv_W:
[| new_tv n a; \<W> e a n = Ok (s, t, m) |] ==> new_tv m s ∧ new_tv m t
lemma free_tv_W:
[| \<W> e a n = Ok (s, t, m); v ∈ free_tv s ∨ v ∈ free_tv t; v < n |] ==> v ∈ free_tv a
lemma W_complete_aux:
[| $ s' a |- e :: t'; new_tv n a |] ==> ∃s t. (∃m. \<W> e a n = Ok (s, t, m)) ∧ (∃r. $ s' a = $ r ($ s a) ∧ t' = $ r t)
lemma W_complete:
[] |- e :: t' ==> ∃s t. (∃m. \<W> e [] n = Ok (s, t, m)) ∧ (∃r. t' = $ r t)
lemma I_correct_wrt_W:
[| new_tv m a ∧ new_tv m s; \<I> e a m s = Ok (s', t, n) |] ==> ∃r. \<W> e ($ s a) m = Ok (r, $ s' t, n) ∧ s' = $ r o s
lemma I_complete_wrt_W:
[| new_tv m a ∧ new_tv m s; \<I> e a m s = Fail |] ==> \<W> e ($ s a) m = Fail