(* Title: HOL/ex/BinEx.thy
ID: $Id: BinEx.thy,v 1.20 2005/06/17 14:12:49 haftmann Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
*)
header {* Binary arithmetic examples *}
theory BinEx imports Main begin
subsection {* Regression Testing for Cancellation Simprocs *}
(*taken from HOL/Integ/int_arith1.ML *)
lemma "l + 2 + 2 + 2 + (l + 2) + (oo + 2) = (uu::int)"
apply simp oops
lemma "2*u = (u::int)"
apply simp oops
lemma "(i + j + 12 + (k::int)) - 15 = y"
apply simp oops
lemma "(i + j + 12 + (k::int)) - 5 = y"
apply simp oops
lemma "y - b < (b::int)"
apply simp oops
lemma "y - (3*b + c) < (b::int) - 2*c"
apply simp oops
lemma "(2*x - (u*v) + y) - v*3*u = (w::int)"
apply simp oops
lemma "(2*x*u*v + (u*v)*4 + y) - v*u*4 = (w::int)"
apply simp oops
lemma "(2*x*u*v + (u*v)*4 + y) - v*u = (w::int)"
apply simp oops
lemma "u*v - (x*u*v + (u*v)*4 + y) = (w::int)"
apply simp oops
lemma "(i + j + 12 + (k::int)) = u + 15 + y"
apply simp oops
lemma "(i + j*2 + 12 + (k::int)) = j + 5 + y"
apply simp oops
lemma "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + (vv::int)"
apply simp oops
lemma "a + -(b+c) + b = (d::int)"
apply simp oops
lemma "a + -(b+c) - b = (d::int)"
apply simp oops
(*negative numerals*)
lemma "(i + j + -2 + (k::int)) - (u + 5 + y) = zz"
apply simp oops
lemma "(i + j + -3 + (k::int)) < u + 5 + y"
apply simp oops
lemma "(i + j + 3 + (k::int)) < u + -6 + y"
apply simp oops
lemma "(i + j + -12 + (k::int)) - 15 = y"
apply simp oops
lemma "(i + j + 12 + (k::int)) - -15 = y"
apply simp oops
lemma "(i + j + -12 + (k::int)) - -15 = y"
apply simp oops
lemma "- (2*i) + 3 + (2*i + 4) = (0::int)"
apply simp oops
subsection {* Arithmetic Method Tests *}
lemma "!!a::int. [| a <= b; c <= d; x+y<z |] ==> a+c <= b+d"
by arith
lemma "!!a::int. [| a < b; c < d |] ==> a-d+ 2 <= b+(-c)"
by arith
lemma "!!a::int. [| a < b; c < d |] ==> a+c+ 1 < b+d"
by arith
lemma "!!a::int. [| a <= b; b+b <= c |] ==> a+a <= c"
by arith
lemma "!!a::int. [| a+b <= i+j; a<=b; i<=j |] ==> a+a <= j+j"
by arith
lemma "!!a::int. [| a+b < i+j; a<b; i<j |] ==> a+a - - -1 < j+j - 3"
by arith
lemma "!!a::int. a+b+c <= i+j+k & a<=b & b<=c & i<=j & j<=k --> a+a+a <= k+k+k"
by arith
lemma "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |]
==> a <= l"
by arith
lemma "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |]
==> a+a+a+a <= l+l+l+l"
by arith
lemma "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |]
==> a+a+a+a+a <= l+l+l+l+i"
by arith
lemma "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |]
==> a+a+a+a+a+a <= l+l+l+l+i+l"
by arith
lemma "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |]
==> 6*a <= 5*l+i"
by arith
subsection {* The Integers *}
text {* Addition *}
lemma "(13::int) + 19 = 32"
by simp
lemma "(1234::int) + 5678 = 6912"
by simp
lemma "(1359::int) + -2468 = -1109"
by simp
lemma "(93746::int) + -46375 = 47371"
by simp
text {* \medskip Negation *}
lemma "- (65745::int) = -65745"
by simp
lemma "- (-54321::int) = 54321"
by simp
text {* \medskip Multiplication *}
lemma "(13::int) * 19 = 247"
by simp
lemma "(-84::int) * 51 = -4284"
by simp
lemma "(255::int) * 255 = 65025"
by simp
lemma "(1359::int) * -2468 = -3354012"
by simp
lemma "(89::int) * 10 ≠ 889"
by simp
lemma "(13::int) < 18 - 4"
by simp
lemma "(-345::int) < -242 + -100"
by simp
lemma "(13557456::int) < 18678654"
by simp
lemma "(999999::int) ≤ (1000001 + 1) - 2"
by simp
lemma "(1234567::int) ≤ 1234567"
by simp
text{*No integer overflow!*}
lemma "1234567 * (1234567::int) < 1234567*1234567*1234567"
by simp
text {* \medskip Quotient and Remainder *}
lemma "(10::int) div 3 = 3"
by simp
lemma "(10::int) mod 3 = 1"
by simp
text {* A negative divisor *}
lemma "(10::int) div -3 = -4"
by simp
lemma "(10::int) mod -3 = -2"
by simp
text {*
A negative dividend\footnote{The definition agrees with mathematical
convention and with ML, but not with the hardware of most computers}
*}
lemma "(-10::int) div 3 = -4"
by simp
lemma "(-10::int) mod 3 = 2"
by simp
text {* A negative dividend \emph{and} divisor *}
lemma "(-10::int) div -3 = 3"
by simp
lemma "(-10::int) mod -3 = -1"
by simp
text {* A few bigger examples *}
lemma "(8452::int) mod 3 = 1"
by simp
lemma "(59485::int) div 434 = 137"
by simp
lemma "(1000006::int) mod 10 = 6"
by simp
text {* \medskip Division by shifting *}
lemma "10000000 div 2 = (5000000::int)"
by simp
lemma "10000001 mod 2 = (1::int)"
by simp
lemma "10000055 div 32 = (312501::int)"
by simp
lemma "10000055 mod 32 = (23::int)"
by simp
lemma "100094 div 144 = (695::int)"
by simp
lemma "100094 mod 144 = (14::int)"
by simp
text {* \medskip Powers *}
lemma "2 ^ 10 = (1024::int)"
by simp
lemma "-3 ^ 7 = (-2187::int)"
by simp
lemma "13 ^ 7 = (62748517::int)"
by simp
lemma "3 ^ 15 = (14348907::int)"
by simp
lemma "-5 ^ 11 = (-48828125::int)"
by simp
subsection {* The Natural Numbers *}
text {* Successor *}
lemma "Suc 99999 = 100000"
by (simp add: Suc_nat_number_of)
-- {* not a default rewrite since sometimes we want to have @{text "Suc #nnn"} *}
text {* \medskip Addition *}
lemma "(13::nat) + 19 = 32"
by simp
lemma "(1234::nat) + 5678 = 6912"
by simp
lemma "(973646::nat) + 6475 = 980121"
by simp
text {* \medskip Subtraction *}
lemma "(32::nat) - 14 = 18"
by simp
lemma "(14::nat) - 15 = 0"
by simp
lemma "(14::nat) - 1576644 = 0"
by simp
lemma "(48273776::nat) - 3873737 = 44400039"
by simp
text {* \medskip Multiplication *}
lemma "(12::nat) * 11 = 132"
by simp
lemma "(647::nat) * 3643 = 2357021"
by simp
text {* \medskip Quotient and Remainder *}
lemma "(10::nat) div 3 = 3"
by simp
lemma "(10::nat) mod 3 = 1"
by simp
lemma "(10000::nat) div 9 = 1111"
by simp
lemma "(10000::nat) mod 9 = 1"
by simp
lemma "(10000::nat) div 16 = 625"
by simp
lemma "(10000::nat) mod 16 = 0"
by simp
text {* \medskip Powers *}
lemma "2 ^ 12 = (4096::nat)"
by simp
lemma "3 ^ 10 = (59049::nat)"
by simp
lemma "12 ^ 7 = (35831808::nat)"
by simp
lemma "3 ^ 14 = (4782969::nat)"
by simp
lemma "5 ^ 11 = (48828125::nat)"
by simp
text {* \medskip Testing the cancellation of complementary terms *}
lemma "y + (x + -x) = (0::int) + y"
by simp
lemma "y + (-x + (- y + x)) = (0::int)"
by simp
lemma "-x + (y + (- y + x)) = (0::int)"
by simp
lemma "x + (x + (- x + (- x + (- y + - z)))) = (0::int) - y - z"
by simp
lemma "x + x - x - x - y - z = (0::int) - y - z"
by simp
lemma "x + y + z - (x + z) = y - (0::int)"
by simp
lemma "x + (y + (y + (y + (-x + -x)))) = (0::int) + y - x + y + y"
by simp
lemma "x + (y + (y + (y + (-y + -x)))) = y + (0::int) + y"
by simp
lemma "x + y - x + z - x - y - z + x < (1::int)"
by simp
text{*The proofs about arithmetic yielding normal forms have been deleted:
they are irrelevant with the new treatment of numerals.*}
end
lemma
[| a ≤ b; c ≤ d; x + y < z |] ==> a + c ≤ b + d
lemma
[| a < b; c < d |] ==> a - d + 2 ≤ b + - c
lemma
[| a < b; c < d |] ==> a + c + 1 < b + d
lemma
[| a ≤ b; b + b ≤ c |] ==> a + a ≤ c
lemma
[| a + b ≤ i + j; a ≤ b; i ≤ j |] ==> a + a ≤ j + j
lemma
[| a + b < i + j; a < b; i < j |] ==> a + a - - -1 < j + j - 3
lemma
a + b + c ≤ i + j + k ∧ a ≤ b ∧ b ≤ c ∧ i ≤ j ∧ j ≤ k --> a + a + a ≤ k + k + k
lemma
[| a + b + c + d ≤ i + j + k + l; a ≤ b; b ≤ c; c ≤ d; i ≤ j; j ≤ k; k ≤ l |] ==> a ≤ l
lemma
[| a + b + c + d ≤ i + j + k + l; a ≤ b; b ≤ c; c ≤ d; i ≤ j; j ≤ k; k ≤ l |] ==> a + a + a + a ≤ l + l + l + l
lemma
[| a + b + c + d ≤ i + j + k + l; a ≤ b; b ≤ c; c ≤ d; i ≤ j; j ≤ k; k ≤ l |] ==> a + a + a + a + a ≤ l + l + l + l + i
lemma
[| a + b + c + d ≤ i + j + k + l; a ≤ b; b ≤ c; c ≤ d; i ≤ j; j ≤ k; k ≤ l |] ==> a + a + a + a + a + a ≤ l + l + l + l + i + l
lemma
[| a + b + c + d ≤ i + j + k + l; a ≤ b; b ≤ c; c ≤ d; i ≤ j; j ≤ k; k ≤ l |] ==> 6 * a ≤ 5 * l + i
lemma
13 + 19 = 32
lemma
1234 + 5678 = 6912
lemma
1359 + -2468 = -1109
lemma
93746 + -46375 = 47371
lemma
- 65745 = -65745
lemma
- -54321 = 54321
lemma
13 * 19 = 247
lemma
-84 * 51 = -4284
lemma
255 * 255 = 65025
lemma
1359 * -2468 = -3354012
lemma
89 * 10 ≠ 889
lemma
13 < 18 - 4
lemma
-345 < -242 + -100
lemma
13557456 < 18678654
lemma
999999 ≤ 1000001 + 1 - 2
lemma
1234567 ≤ 1234567
lemma
1234567 * 1234567 < 1234567 * 1234567 * 1234567
lemma
10 div 3 = 3
lemma
10 mod 3 = 1
lemma
10 div -3 = -4
lemma
10 mod -3 = -2
lemma
-10 div 3 = -4
lemma
-10 mod 3 = 2
lemma
-10 div -3 = 3
lemma
-10 mod -3 = -1
lemma
8452 mod 3 = 1
lemma
59485 div 434 = 137
lemma
1000006 mod 10 = 6
lemma
10000000 div 2 = 5000000
lemma
10000001 mod 2 = 1
lemma
10000055 div 32 = 312501
lemma
10000055 mod 32 = 23
lemma
100094 div 144 = 695
lemma
100094 mod 144 = 14
lemma
2 ^ 10 = 1024
lemma
-3 ^ 7 = -2187
lemma
13 ^ 7 = 62748517
lemma
3 ^ 15 = 14348907
lemma
-5 ^ 11 = -48828125
lemma
Suc 99999 = 100000
lemma
13 + 19 = 32
lemma
1234 + 5678 = 6912
lemma
973646 + 6475 = 980121
lemma
32 - 14 = 18
lemma
14 - 15 = 0
lemma
14 - 1576644 = 0
lemma
48273776 - 3873737 = 44400039
lemma
12 * 11 = 132
lemma
647 * 3643 = 2357021
lemma
10 div 3 = 3
lemma
10 mod 3 = 1
lemma
10000 div 9 = 1111
lemma
10000 mod 9 = 1
lemma
10000 div 16 = 625
lemma
10000 mod 16 = 0
lemma
2 ^ 12 = 4096
lemma
3 ^ 10 = 59049
lemma
12 ^ 7 = 35831808
lemma
3 ^ 14 = 4782969
lemma
5 ^ 11 = 48828125
lemma
y + (x + - x) = 0 + y
lemma
y + (- x + (- y + x)) = 0
lemma
- x + (y + (- y + x)) = 0
lemma
x + (x + (- x + (- x + (- y + - z)))) = 0 - y - z
lemma
x + x - x - x - y - z = 0 - y - z
lemma
x + y + z - (x + z) = y - 0
lemma
x + (y + (y + (y + (- x + - x)))) = 0 + y - x + y + y
lemma
x + (y + (y + (y + (- y + - x)))) = y + 0 + y
lemma
x + y - x + z - x - y - z + x < 1