(* Title: HOL/ex/insort.thy
ID: $Id: InSort.thy,v 1.9 2005/04/22 15:32:03 paulson Exp $
Author: Tobias Nipkow
Copyright 1994 TU Muenchen
*)
header{*Insertion Sort*}
theory InSort
imports Sorting
begin
consts
ins :: "('a => 'a => bool) => 'a => 'a list => 'a list"
insort :: "('a => 'a => bool) => 'a list => 'a list"
primrec
"ins le x [] = [x]"
"ins le x (y#ys) = (if le x y then (x#y#ys) else y#(ins le x ys))"
primrec
"insort le [] = []"
"insort le (x#xs) = ins le x (insort le xs)"
lemma multiset_ins[simp]:
"!!y. multiset_of (ins le x xs) = multiset_of (x#xs)"
by (induct xs) (auto simp: union_ac)
theorem insort_permutes[simp]:
"!!x. multiset_of (insort le xs) = multiset_of xs"
by (induct "xs") auto
lemma set_ins [simp]: "set(ins le x xs) = insert x (set xs)"
by (simp add: set_count_greater_0) fast
lemma sorted_ins[simp]:
"[| total le; transf le |] ==> sorted le (ins le x xs) = sorted le xs";
apply (induct xs)
apply simp_all
apply (unfold Sorting.total_def Sorting.transf_def)
apply blast
done
theorem sorted_insort:
"[| total(le); transf(le) |] ==> sorted le (insort le xs)"
by (induct xs) auto
end
lemma multiset_ins:
multiset_of (ins le x xs) = multiset_of (x # xs)
theorem insort_permutes:
multiset_of (insort le xs) = multiset_of xs
lemma set_ins:
set (ins le x xs) = insert x (set xs)
lemma sorted_ins:
[| total le; transf le |] ==> sorted le (ins le x xs) = sorted le xs
theorem sorted_insort:
[| total le; transf le |] ==> sorted le (insort le xs)