(* Title: HOL/ex/mt.thy
ID: $Id: MT.thy,v 1.11 2005/09/06 17:10:43 wenzelm Exp $
Author: Jacob Frost, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Based upon the article
Robin Milner and Mads Tofte,
Co-induction in Relational Semantics,
Theoretical Computer Science 87 (1991), pages 209-220.
Written up as
Jacob Frost, A Case Study of Co_induction in Isabelle/HOL
Report 308, Computer Lab, University of Cambridge (1993).
*)
theory MT
imports Main
begin
typedecl Const
typedecl ExVar
typedecl Ex
typedecl TyConst
typedecl Ty
typedecl Clos
typedecl Val
typedecl ValEnv
typedecl TyEnv
consts
c_app :: "[Const, Const] => Const"
e_const :: "Const => Ex"
e_var :: "ExVar => Ex"
e_fn :: "[ExVar, Ex] => Ex" ("fn _ => _" [0,51] 1000)
e_fix :: "[ExVar, ExVar, Ex] => Ex" ("fix _ ( _ ) = _" [0,51,51] 1000)
e_app :: "[Ex, Ex] => Ex" ("_ @@ _" [51,51] 1000)
e_const_fst :: "Ex => Const"
t_const :: "TyConst => Ty"
t_fun :: "[Ty, Ty] => Ty" ("_ -> _" [51,51] 1000)
v_const :: "Const => Val"
v_clos :: "Clos => Val"
ve_emp :: ValEnv
ve_owr :: "[ValEnv, ExVar, Val] => ValEnv" ("_ + { _ |-> _ }" [36,0,0] 50)
ve_dom :: "ValEnv => ExVar set"
ve_app :: "[ValEnv, ExVar] => Val"
clos_mk :: "[ExVar, Ex, ValEnv] => Clos" ("<| _ , _ , _ |>" [0,0,0] 1000)
te_emp :: TyEnv
te_owr :: "[TyEnv, ExVar, Ty] => TyEnv" ("_ + { _ |=> _ }" [36,0,0] 50)
te_app :: "[TyEnv, ExVar] => Ty"
te_dom :: "TyEnv => ExVar set"
eval_fun :: "((ValEnv * Ex) * Val) set => ((ValEnv * Ex) * Val) set"
eval_rel :: "((ValEnv * Ex) * Val) set"
eval :: "[ValEnv, Ex, Val] => bool" ("_ |- _ ---> _" [36,0,36] 50)
elab_fun :: "((TyEnv * Ex) * Ty) set => ((TyEnv * Ex) * Ty) set"
elab_rel :: "((TyEnv * Ex) * Ty) set"
elab :: "[TyEnv, Ex, Ty] => bool" ("_ |- _ ===> _" [36,0,36] 50)
isof :: "[Const, Ty] => bool" ("_ isof _" [36,36] 50)
isof_env :: "[ValEnv,TyEnv] => bool" ("_ isofenv _")
hasty_fun :: "(Val * Ty) set => (Val * Ty) set"
hasty_rel :: "(Val * Ty) set"
hasty :: "[Val, Ty] => bool" ("_ hasty _" [36,36] 50)
hasty_env :: "[ValEnv,TyEnv] => bool" ("_ hastyenv _ " [36,36] 35)
axioms
(*
Expression constructors must be injective, distinct and it must be possible
to do induction over expressions.
*)
(* All the constructors are injective *)
e_const_inj: "e_const(c1) = e_const(c2) ==> c1 = c2"
e_var_inj: "e_var(ev1) = e_var(ev2) ==> ev1 = ev2"
e_fn_inj: "fn ev1 => e1 = fn ev2 => e2 ==> ev1 = ev2 & e1 = e2"
e_fix_inj:
" fix ev11e(v12) = e1 = fix ev21(ev22) = e2 ==>
ev11 = ev21 & ev12 = ev22 & e1 = e2
"
e_app_inj: "e11 @@ e12 = e21 @@ e22 ==> e11 = e21 & e12 = e22"
(* All constructors are distinct *)
e_disj_const_var: "~e_const(c) = e_var(ev)"
e_disj_const_fn: "~e_const(c) = fn ev => e"
e_disj_const_fix: "~e_const(c) = fix ev1(ev2) = e"
e_disj_const_app: "~e_const(c) = e1 @@ e2"
e_disj_var_fn: "~e_var(ev1) = fn ev2 => e"
e_disj_var_fix: "~e_var(ev) = fix ev1(ev2) = e"
e_disj_var_app: "~e_var(ev) = e1 @@ e2"
e_disj_fn_fix: "~fn ev1 => e1 = fix ev21(ev22) = e2"
e_disj_fn_app: "~fn ev1 => e1 = e21 @@ e22"
e_disj_fix_app: "~fix ev11(ev12) = e1 = e21 @@ e22"
(* Strong elimination, induction on expressions *)
e_ind:
" [| !!ev. P(e_var(ev));
!!c. P(e_const(c));
!!ev e. P(e) ==> P(fn ev => e);
!!ev1 ev2 e. P(e) ==> P(fix ev1(ev2) = e);
!!e1 e2. P(e1) ==> P(e2) ==> P(e1 @@ e2)
|] ==>
P(e)
"
(* Types - same scheme as for expressions *)
(* All constructors are injective *)
t_const_inj: "t_const(c1) = t_const(c2) ==> c1 = c2"
t_fun_inj: "t11 -> t12 = t21 -> t22 ==> t11 = t21 & t12 = t22"
(* All constructors are distinct, not needed so far ... *)
(* Strong elimination, induction on types *)
t_ind:
"[| !!p. P(t_const p); !!t1 t2. P(t1) ==> P(t2) ==> P(t_fun t1 t2) |]
==> P(t)"
(* Values - same scheme again *)
(* All constructors are injective *)
v_const_inj: "v_const(c1) = v_const(c2) ==> c1 = c2"
v_clos_inj:
" v_clos(<|ev1,e1,ve1|>) = v_clos(<|ev2,e2,ve2|>) ==>
ev1 = ev2 & e1 = e2 & ve1 = ve2"
(* All constructors are distinct *)
v_disj_const_clos: "~v_const(c) = v_clos(cl)"
(* No induction on values: they are a codatatype! ... *)
(*
Value environments bind variables to values. Only the following trivial
properties are needed.
*)
ve_dom_owr: "ve_dom(ve + {ev |-> v}) = ve_dom(ve) Un {ev}"
ve_app_owr1: "ve_app (ve + {ev |-> v}) ev=v"
ve_app_owr2: "~ev1=ev2 ==> ve_app (ve+{ev1 |-> v}) ev2=ve_app ve ev2"
(* Type Environments bind variables to types. The following trivial
properties are needed. *)
te_dom_owr: "te_dom(te + {ev |=> t}) = te_dom(te) Un {ev}"
te_app_owr1: "te_app (te + {ev |=> t}) ev=t"
te_app_owr2: "~ev1=ev2 ==> te_app (te+{ev1 |=> t}) ev2=te_app te ev2"
(* The dynamic semantics is defined inductively by a set of inference
rules. These inference rules allows one to draw conclusions of the form ve
|- e ---> v, read the expression e evaluates to the value v in the value
environment ve. Therefore the relation _ |- _ ---> _ is defined in Isabelle
as the least fixpoint of the functor eval_fun below. From this definition
introduction rules and a strong elimination (induction) rule can be
derived.
*)
defs
eval_fun_def:
" eval_fun(s) ==
{ pp.
(? ve c. pp=((ve,e_const(c)),v_const(c))) |
(? ve x. pp=((ve,e_var(x)),ve_app ve x) & x:ve_dom(ve)) |
(? ve e x. pp=((ve,fn x => e),v_clos(<|x,e,ve|>)))|
( ? ve e x f cl.
pp=((ve,fix f(x) = e),v_clos(cl)) &
cl=<|x, e, ve+{f |-> v_clos(cl)} |>
) |
( ? ve e1 e2 c1 c2.
pp=((ve,e1 @@ e2),v_const(c_app c1 c2)) &
((ve,e1),v_const(c1)):s & ((ve,e2),v_const(c2)):s
) |
( ? ve vem e1 e2 em xm v v2.
pp=((ve,e1 @@ e2),v) &
((ve,e1),v_clos(<|xm,em,vem|>)):s &
((ve,e2),v2):s &
((vem+{xm |-> v2},em),v):s
)
}"
eval_rel_def: "eval_rel == lfp(eval_fun)"
eval_def: "ve |- e ---> v == ((ve,e),v):eval_rel"
(* The static semantics is defined in the same way as the dynamic
semantics. The relation te |- e ===> t express the expression e has the
type t in the type environment te.
*)
elab_fun_def:
"elab_fun(s) ==
{ pp.
(? te c t. pp=((te,e_const(c)),t) & c isof t) |
(? te x. pp=((te,e_var(x)),te_app te x) & x:te_dom(te)) |
(? te x e t1 t2. pp=((te,fn x => e),t1->t2) & ((te+{x |=> t1},e),t2):s) |
(? te f x e t1 t2.
pp=((te,fix f(x)=e),t1->t2) & ((te+{f |=> t1->t2}+{x |=> t1},e),t2):s
) |
(? te e1 e2 t1 t2.
pp=((te,e1 @@ e2),t2) & ((te,e1),t1->t2):s & ((te,e2),t1):s
)
}"
elab_rel_def: "elab_rel == lfp(elab_fun)"
elab_def: "te |- e ===> t == ((te,e),t):elab_rel"
(* The original correspondence relation *)
isof_env_def:
" ve isofenv te ==
ve_dom(ve) = te_dom(te) &
( ! x.
x:ve_dom(ve) -->
(? c. ve_app ve x = v_const(c) & c isof te_app te x)
)
"
axioms
isof_app: "[| c1 isof t1->t2; c2 isof t1 |] ==> c_app c1 c2 isof t2"
defs
(* The extented correspondence relation *)
hasty_fun_def:
" hasty_fun(r) ==
{ p.
( ? c t. p = (v_const(c),t) & c isof t) |
( ? ev e ve t te.
p = (v_clos(<|ev,e,ve|>),t) &
te |- fn ev => e ===> t &
ve_dom(ve) = te_dom(te) &
(! ev1. ev1:ve_dom(ve) --> (ve_app ve ev1,te_app te ev1) : r)
)
}
"
hasty_rel_def: "hasty_rel == gfp(hasty_fun)"
hasty_def: "v hasty t == (v,t) : hasty_rel"
hasty_env_def:
" ve hastyenv te ==
ve_dom(ve) = te_dom(te) &
(! x. x: ve_dom(ve) --> ve_app ve x hasty te_app te x)"
ML {* use_legacy_bindings (the_context ()) *}
end
theorem infsys_p1:
P a b ==> P (fst (a, b)) (snd (a, b))
theorem infsys_p2:
P (fst (a, b)) (snd (a, b)) ==> P a b
theorem infsys_pp1:
P a b c ==> P (fst (fst ((a, b), c))) (snd (fst ((a, b), c))) (snd ((a, b), c))
theorem infsys_pp2:
P (fst (fst ((a, b), c))) (snd (fst ((a, b), c))) (snd ((a, b), c)) ==> P a b c
theorem lfp_intro2:
[| mono f; x ∈ f (lfp f) |] ==> x ∈ lfp f
theorem lfp_elim2:
[| x ∈ lfp f; mono f; !!y. y ∈ f (lfp f) ==> P y |] ==> P x
theorem lfp_ind2:
[| x ∈ lfp f; mono f; !!y. y ∈ f (lfp f ∩ {x. P x}) ==> P y |] ==> P x
theorem gfp_coind2:
[| x ∈ f ({x} ∪ gfp f); mono f |] ==> x ∈ gfp f
theorem gfp_elim2:
[| x ∈ gfp f; mono f; !!y. y ∈ f (gfp f) ==> P y |] ==> P x
theorem eval_fun_mono:
mono eval_fun
theorem eval_const:
ve |- e_const c ---> v_const c
theorem eval_var2:
ev ∈ ve_dom ve ==> ve |- e_var ev ---> ve_app ve ev
theorem eval_fn:
ve |- fn ev => e ---> v_clos <| ev , e , ve |>
theorem eval_fix:
cl = <| ev1.0 , e , ve + { ev2.0 |-> v_clos cl } |> ==> ve |- fix ev2.0 ev1.0 = e ---> v_clos cl
theorem eval_app1:
[| ve |- e1.0 ---> v_const c1.0; ve |- e2.0 ---> v_const c2.0 |] ==> ve |- e1.0 @@ e2.0 ---> v_const (c_app c1.0 c2.0)
theorem eval_app2:
[| ve |- e1.0 ---> v_clos <| xm , em , vem |>; ve |- e2.0 ---> v2.0; vem + { xm |-> v2.0 } |- em ---> v |] ==> ve |- e1.0 @@ e2.0 ---> v
theorem eval_ind0:
[| ve |- e ---> v; !!ve c. P ((ve, e_const c), v_const c); !!ev ve. ev ∈ ve_dom ve ==> P ((ve, e_var ev), ve_app ve ev); !!ev ve e. P ((ve, fn ev => e), v_clos <| ev , e , ve |>); !!ev1 ev2 ve cl e. cl = <| ev1 , e , ve + { ev2 |-> v_clos cl } |> ==> P ((ve, fix ev2 ev1 = e), v_clos cl); !!ve c1 c2 e1 e2. [| P ((ve, e1), v_const c1); P ((ve, e2), v_const c2) |] ==> P ((ve, e1 @@ e2), v_const (c_app c1 c2)); !!ve vem xm e1 e2 em v v2. [| P ((ve, e1), v_clos <| xm , em , vem |>); P ((ve, e2), v2); P ((vem + { xm |-> v2 }, em), v) |] ==> P ((ve, e1 @@ e2), v) |] ==> P ((ve, e), v)
theorem eval_ind:
[| ve |- e ---> v; !!ve c. P ve (e_const c) (v_const c); !!ev ve. ev ∈ ve_dom ve ==> P ve (e_var ev) (ve_app ve ev); !!ev ve e. P ve fn ev => e (v_clos <| ev , e , ve |>); !!ev1 ev2 ve cl e. cl = <| ev1 , e , ve + { ev2 |-> v_clos cl } |> ==> P ve fix ev2 ev1 = e (v_clos cl); !!ve c1 c2 e1 e2. [| P ve e1 (v_const c1); P ve e2 (v_const c2) |] ==> P ve e1 @@ e2 (v_const (c_app c1 c2)); !!ve vem evm e1 e2 em v v2. [| P ve e1 (v_clos <| evm , em , vem |>); P ve e2 v2; P (vem + { evm |-> v2 }) em v |] ==> P ve e1 @@ e2 v |] ==> P ve e v
theorem elab_fun_mono:
mono elab_fun
theorem elab_const:
c isof ty ==> te |- e_const c ===> ty
theorem elab_var:
x ∈ te_dom te ==> te |- e_var x ===> te_app te x
theorem elab_fn:
te + { x |=> ty1.0 } |- e ===> ty2.0 ==> te |- fn x => e ===> ty1.0 -> ty2.0
theorem elab_fix:
te + { f |=> ty1.0 -> ty2.0 } + { x |=> ty1.0 } |- e ===> ty2.0 ==> te |- fix f x = e ===> ty1.0 -> ty2.0
theorem elab_app:
[| te |- e1.0 ===> ty1.0 -> ty2.0; te |- e2.0 ===> ty1.0 |] ==> te |- e1.0 @@ e2.0 ===> ty2.0
theorem elab_ind0:
[| te |- e ===> t; !!te c t. c isof t ==> P ((te, e_const c), t); !!te x. x ∈ te_dom te ==> P ((te, e_var x), te_app te x); !!te x e t1 t2. [| te + { x |=> t1 } |- e ===> t2; P ((te + { x |=> t1 }, e), t2) |] ==> P ((te, fn x => e), t1 -> t2); !!te f x e t1 t2. [| te + { f |=> t1 -> t2 } + { x |=> t1 } |- e ===> t2; P ((te + { f |=> t1 -> t2 } + { x |=> t1 }, e), t2) |] ==> P ((te, fix f x = e), t1 -> t2); !!te e1 e2 t1 t2. [| te |- e1 ===> t1 -> t2; P ((te, e1), t1 -> t2); te |- e2 ===> t1; P ((te, e2), t1) |] ==> P ((te, e1 @@ e2), t2) |] ==> P ((te, e), t)
theorem elab_ind:
[| te |- e ===> t; !!te c t. c isof t ==> P te (e_const c) t; !!te x. x ∈ te_dom te ==> P te (e_var x) (te_app te x); !!te x e t1 t2. [| te + { x |=> t1 } |- e ===> t2; P (te + { x |=> t1 }) e t2 |] ==> P te fn x => e t1 -> t2; !!te f x e t1 t2. [| te + { f |=> t1 -> t2 } + { x |=> t1 } |- e ===> t2; P (te + { f |=> t1 -> t2 } + { x |=> t1 }) e t2 |] ==> P te fix f x = e t1 -> t2; !!te e1 e2 t1 t2. [| te |- e1 ===> t1 -> t2; P te e1 t1 -> t2; te |- e2 ===> t1; P te e2 t1 |] ==> P te e1 @@ e2 t2 |] ==> P te e t
theorem elab_elim0:
[| te |- e ===> t; !!te c t. c isof t ==> P ((te, e_const c), t); !!te x. x ∈ te_dom te ==> P ((te, e_var x), te_app te x); !!te x e t1 t2. te + { x |=> t1 } |- e ===> t2 ==> P ((te, fn x => e), t1 -> t2); !!te f x e t1 t2. te + { f |=> t1 -> t2 } + { x |=> t1 } |- e ===> t2 ==> P ((te, fix f x = e), t1 -> t2); !!te e1 e2 t1 t2. [| te |- e1 ===> t1 -> t2; te |- e2 ===> t1 |] ==> P ((te, e1 @@ e2), t2) |] ==> P ((te, e), t)
theorem elab_elim:
[| te |- e ===> t; !!te c t. c isof t ==> P te (e_const c) t; !!te x. x ∈ te_dom te ==> P te (e_var x) (te_app te x); !!te x e t1 t2. te + { x |=> t1 } |- e ===> t2 ==> P te fn x => e t1 -> t2; !!te f x e t1 t2. te + { f |=> t1 -> t2 } + { x |=> t1 } |- e ===> t2 ==> P te fix f x = e t1 -> t2; !!te e1 e2 t1 t2. [| te |- e1 ===> t1 -> t2; te |- e2 ===> t1 |] ==> P te e1 @@ e2 t2 |] ==> P te e t
theorem elab_const_elim_lem:
te |- e ===> t ==> e = e_const c --> c isof t
theorem elab_const_elim:
te |- e_const c ===> t ==> c isof t
theorem elab_var_elim_lem:
te |- e ===> t ==> e = e_var x --> t = te_app te x ∧ x ∈ te_dom te
theorem elab_var_elim:
te |- e_var ev ===> t ==> t = te_app te ev ∧ ev ∈ te_dom te
theorem elab_fn_elim_lem:
te |- e ===> t ==> e = fn x1.0 => e1.0 --> (∃t1 t2. t = t1 -> t2 ∧ te + { x1.0 |=> t1 } |- e1.0 ===> t2)
theorem elab_fn_elim:
te |- fn x1.0 => e1.0 ===> t ==> ∃t1 t2. t = t1 -> t2 ∧ te + { x1.0 |=> t1 } |- e1.0 ===> t2
theorem elab_fix_elim_lem:
te |- e ===> t ==> e = fix f x = e1.0 --> (∃t1 t2. t = t1 -> t2 ∧ te + { f |=> t1 -> t2 } + { x |=> t1 } |- e1.0 ===> t2)
theorem elab_fix_elim:
te |- fix ev1.0 ev2.0 = e1.0 ===> t ==> ∃t1 t2. t = t1 -> t2 ∧ te + { ev1.0 |=> t1 -> t2 } + { ev2.0 |=> t1 } |- e1.0 ===> t2
theorem elab_app_elim_lem:
te |- e ===> t2.0 ==> e = e1.0 @@ e2.0 --> (∃t1. te |- e1.0 ===> t1 -> t2.0 ∧ te |- e2.0 ===> t1)
theorem elab_app_elim:
te |- e1.0 @@ e2.0 ===> t2.0 ==> ∃t1. te |- e1.0 ===> t1 -> t2.0 ∧ te |- e2.0 ===> t1
theorem mono_hasty_fun:
mono hasty_fun
theorem hasty_rel_const_coind:
c isof t ==> (v_const c, t) ∈ hasty_rel
theorem hasty_rel_clos_coind:
[| te |- fn ev => e ===> t; ve_dom ve = te_dom te; ∀ev1. ev1 ∈ ve_dom ve --> (ve_app ve ev1, te_app te ev1) ∈ {(v_clos <| ev , e , ve |>, t)} ∪ hasty_rel |] ==> (v_clos <| ev , e , ve |>, t) ∈ hasty_rel
theorem hasty_rel_elim0:
[| !!c t. c isof t ==> P (v_const c, t); !!te ev e t ve. [| te |- fn ev => e ===> t; ve_dom ve = te_dom te; ∀ev1. ev1 ∈ ve_dom ve --> (ve_app ve ev1, te_app te ev1) ∈ hasty_rel |] ==> P (v_clos <| ev , e , ve |>, t); (v, t) ∈ hasty_rel |] ==> P (v, t)
theorem hasty_rel_elim:
[| (v, t) ∈ hasty_rel; !!c t. c isof t ==> P (v_const c) t; !!te ev e t ve. [| te |- fn ev => e ===> t; ve_dom ve = te_dom te; ∀ev1. ev1 ∈ ve_dom ve --> (ve_app ve ev1, te_app te ev1) ∈ hasty_rel |] ==> P (v_clos <| ev , e , ve |>) t |] ==> P v t
theorem hasty_const:
c isof t ==> v_const c hasty t
theorem hasty_clos:
te |- fn ev => e ===> t ∧ ve hastyenv te ==> v_clos <| ev , e , ve |> hasty t
theorem hasty_elim_const_lem:
v hasty t ==> ∀c. v = v_const c --> c isof t
theorem hasty_elim_const:
v_const c hasty t ==> c isof t
theorem hasty_elim_clos_lem:
v hasty t ==> ∀x e ve. v = v_clos <| x , e , ve |> --> (∃te. te |- fn x => e ===> t ∧ ve hastyenv te )
theorem hasty_elim_clos:
v_clos <| ev , e , ve |> hasty t ==> ∃te. te |- fn ev => e ===> t ∧ ve hastyenv te
theorem hasty_env1:
[| ve hastyenv te ; v hasty t |] ==> ve + { ev |-> v } hastyenv te + { ev |=> t }
theorem consistency_const:
[| ve hastyenv te ; te |- e_const c ===> t |] ==> v_const c hasty t
theorem consistency_var:
[| ev ∈ ve_dom ve; ve hastyenv te ; te |- e_var ev ===> t |] ==> ve_app ve ev hasty t
theorem consistency_fn:
[| ve hastyenv te ; te |- fn ev => e ===> t |] ==> v_clos <| ev , e , ve |> hasty t
theorem consistency_fix:
[| cl = <| ev1.0 , e , ve + { ev2.0 |-> v_clos cl } |>; ve hastyenv te ; te |- fix ev2.0 ev1.0 = e ===> t |] ==> v_clos cl hasty t
theorem consistency_app1:
[| ∀t te. ve hastyenv te --> te |- e1.0 ===> t --> v_const c1.0 hasty t; ∀t te. ve hastyenv te --> te |- e2.0 ===> t --> v_const c2.0 hasty t; ve hastyenv te ; te |- e1.0 @@ e2.0 ===> t |] ==> v_const (c_app c1.0 c2.0) hasty t
theorem consistency_app2:
[| ∀t te. ve hastyenv te --> te |- e1.0 ===> t --> v_clos <| evm , em , vem |> hasty t; ∀t te. ve hastyenv te --> te |- e2.0 ===> t --> v2.0 hasty t; ∀t te. vem + { evm |-> v2.0 } hastyenv te --> te |- em ===> t --> v hasty t; ve hastyenv te ; te |- e1.0 @@ e2.0 ===> t |] ==> v hasty t
theorem consistency:
ve |- e ---> v ==> ∀t te. ve hastyenv te --> te |- e ===> t --> v hasty t
theorem basic_consistency_lem:
ve isofenv te ==> ve hastyenv te
theorem basic_consistency:
[| ve isofenv te; ve |- e ---> v_const c; te |- e ===> t |] ==> c isof t