(* Title: HOL/ex/Qsort.thy
ID: $Id: Qsort.thy,v 1.11 2005/04/22 15:32:03 paulson Exp $
Author: Tobias Nipkow
Copyright 1994 TU Muenchen
*)
header{*Quicksort*}
theory Qsort
imports Sorting
begin
subsection{*Version 1: higher-order*}
consts qsort :: "('a => 'a => bool) * 'a list => 'a list"
recdef qsort "measure (size o snd)"
"qsort(le, []) = []"
"qsort(le, x#xs) = qsort(le, [y:xs . ~ le x y]) @ [x] @
qsort(le, [y:xs . le x y])"
(hints recdef_simp: length_filter_le[THEN le_less_trans])
lemma qsort_permutes [simp]:
"multiset_of (qsort(le,xs)) = multiset_of xs"
by (induct le xs rule: qsort.induct) (auto simp: union_ac)
lemma set_qsort [simp]: "set (qsort(le,xs)) = set xs";
by(simp add: set_count_greater_0)
lemma sorted_qsort:
"total(le) ==> transf(le) ==> sorted le (qsort(le,xs))"
apply (induct le xs rule: qsort.induct)
apply simp
apply simp
apply(unfold Sorting.total_def Sorting.transf_def)
apply blast
done
subsection{*Version 2:type classes*}
consts quickSort :: "('a::linorder) list => 'a list"
recdef quickSort "measure size"
"quickSort [] = []"
"quickSort (x#l) = quickSort [y:l. ~ x≤y] @ [x] @ quickSort [y:l. x≤y]"
(hints recdef_simp: length_filter_le[THEN le_less_trans])
lemma quickSort_permutes[simp]:
"multiset_of (quickSort xs) = multiset_of xs"
by (induct xs rule: quickSort.induct) (auto simp: union_ac)
lemma set_quickSort[simp]: "set (quickSort xs) = set xs"
by(simp add: set_count_greater_0)
theorem sorted_quickSort: "sorted (op ≤) (quickSort xs)"
by (induct xs rule: quickSort.induct, auto)
end
lemma qsort_permutes:
multiset_of (qsort (le, xs)) = multiset_of xs
lemma set_qsort:
set (qsort (le, xs)) = set xs
lemma sorted_qsort:
[| total le; transf le |] ==> sorted le (qsort (le, xs))
lemma quickSort_permutes:
multiset_of (quickSort xs) = multiset_of xs
lemma set_quickSort:
set (quickSort xs) = set xs
theorem sorted_quickSort:
sorted op ≤ (quickSort xs)