(* Title: HOLCF/Adm.thy
ID: $Id: Adm.thy,v 1.9 2005/09/22 17:06:34 huffman Exp $
Author: Franz Regensburger
*)
header {* Admissibility *}
theory Adm
imports Cont
begin
defaultsort cpo
subsection {* Definitions *}
constdefs
adm :: "('a::cpo => bool) => bool"
"adm P ≡ ∀Y. chain Y --> (∀i. P (Y i)) --> P (\<Squnion>i. Y i)"
lemma admI:
"(!!Y. [|chain Y; ∀i. P (Y i)|] ==> P (\<Squnion>i. Y i)) ==> adm P"
apply (unfold adm_def)
apply blast
done
lemma triv_admI: "∀x. P x ==> adm P"
apply (rule admI)
apply (erule spec)
done
lemma admD: "[|adm P; chain Y; ∀i. P (Y i)|] ==> P (\<Squnion>i. Y i)"
apply (unfold adm_def)
apply blast
done
text {* improved admissibility introduction *}
lemma admI2:
"(!!Y. [|chain Y; ∀i. P (Y i); ∀i. ∃j>i. Y i ≠ Y j ∧ Y i \<sqsubseteq> Y j|]
==> P (\<Squnion>i. Y i)) ==> adm P"
apply (rule admI)
apply (erule (1) increasing_chain_adm_lemma)
apply fast
done
subsection {* Admissibility on chain-finite types *}
text {* for chain-finite (easy) types every formula is admissible *}
lemma adm_max_in_chain:
"∀Y. chain (Y::nat => 'a) --> (∃n. max_in_chain n Y)
==> adm (P::'a => bool)"
apply (unfold adm_def)
apply (intro strip)
apply (drule spec)
apply (drule mp)
apply assumption
apply (erule exE)
apply (simp add: maxinch_is_thelub)
done
lemmas adm_chfin = chfin [THEN adm_max_in_chain, standard]
subsection {* Admissibility of special formulae and propagation *}
lemma adm_less: "[|cont u; cont v|] ==> adm (λx. u x \<sqsubseteq> v x)"
apply (rule admI)
apply (simp add: cont2contlubE)
apply (rule lub_mono)
apply (erule (1) ch2ch_cont)
apply (erule (1) ch2ch_cont)
apply assumption
done
lemma adm_conj: "[|adm P; adm Q|] ==> adm (λx. P x ∧ Q x)"
by (fast elim: admD intro: admI)
lemma adm_not_free: "adm (λx. t)"
by (rule admI, simp)
lemma adm_not_less: "cont t ==> adm (λx. ¬ t x \<sqsubseteq> u)"
apply (rule admI)
apply (drule_tac x=0 in spec)
apply (erule contrapos_nn)
apply (rule trans_less)
prefer 2 apply (assumption)
apply (erule cont2mono [THEN monofun_fun_arg])
apply (erule is_ub_thelub)
done
lemma adm_all: "∀y. adm (P y) ==> adm (λx. ∀y. P y x)"
by (fast intro: admI elim: admD)
lemmas adm_all2 = adm_all [rule_format]
lemma adm_ball: "∀y∈A. adm (P y) ==> adm (λx. ∀y∈A. P y x)"
by (fast intro: admI elim: admD)
lemmas adm_ball2 = adm_ball [rule_format]
lemma adm_subst: "[|cont t; adm P|] ==> adm (λx. P (t x))"
apply (rule admI)
apply (simp add: cont2contlubE)
apply (erule admD)
apply (erule (1) ch2ch_cont)
apply assumption
done
lemma adm_UU_not_less: "adm (λx. ¬ ⊥ \<sqsubseteq> t x)"
by (simp add: adm_not_free)
lemma adm_not_UU: "cont t ==> adm (λx. ¬ t x = ⊥)"
by (simp add: eq_UU_iff adm_not_less)
lemma adm_eq: "[|cont u; cont v|] ==> adm (λx. u x = v x)"
by (simp add: po_eq_conv adm_conj adm_less)
text {* admissibility for disjunction is hard to prove. It takes 7 Lemmas *}
lemma adm_disj_lemma1:
"∀n::nat. P n ∨ Q n ==> (∀i. ∃j≥i. P j) ∨ (∀i. ∃j≥i. Q j)"
apply (erule contrapos_pp)
apply clarsimp
apply (rule exI)
apply (rule conjI)
apply (drule spec, erule mp)
apply (rule le_maxI1)
apply (drule spec, erule mp)
apply (rule le_maxI2)
done
lemma adm_disj_lemma2:
"[|adm P; ∃X. chain X ∧ (∀n. P (X n)) ∧ (\<Squnion>i. Y i) = (\<Squnion>i. X i)|]
==> P (\<Squnion>i. Y i)"
by (force elim: admD)
lemma adm_disj_lemma3:
"[|chain (Y::nat => 'a::cpo); ∀i. ∃j≥i. P (Y j)|]
==> chain (λm. Y (LEAST j. m ≤ j ∧ P (Y j)))"
apply (rule chainI)
apply (erule chain_mono3)
apply (rule Least_le)
apply (drule_tac x="Suc i" in spec)
apply (rule conjI)
apply (rule Suc_leD)
apply (erule LeastI_ex [THEN conjunct1])
apply (erule LeastI_ex [THEN conjunct2])
done
lemma adm_disj_lemma4:
"[|∀i. ∃j≥i. P (Y j)|] ==> ∀m. P (Y (LEAST j::nat. m ≤ j ∧ P (Y j)))"
apply (rule allI)
apply (drule_tac x=m in spec)
apply (erule LeastI_ex [THEN conjunct2])
done
lemma adm_disj_lemma5:
"[|chain (Y::nat => 'a::cpo); ∀i. ∃j≥i. P (Y j)|] ==>
(\<Squnion>m. Y m) = (\<Squnion>m. Y (LEAST j. m ≤ j ∧ P (Y j)))"
apply (rule antisym_less)
apply (rule lub_mono)
apply assumption
apply (erule (1) adm_disj_lemma3)
apply (rule allI)
apply (erule chain_mono3)
apply (drule_tac x=k in spec)
apply (erule LeastI_ex [THEN conjunct1])
apply (rule lub_mono3)
apply (erule (1) adm_disj_lemma3)
apply assumption
apply (rule allI)
apply (rule exI)
apply (rule refl_less)
done
lemma adm_disj_lemma6:
"[|chain (Y::nat => 'a::cpo); ∀i. ∃j≥i. P(Y j)|] ==>
∃X. chain X ∧ (∀n. P (X n)) ∧ (\<Squnion>i. Y i) = (\<Squnion>i. X i)"
apply (rule_tac x = "λm. Y (LEAST j. m ≤ j ∧ P (Y j))" in exI)
apply (fast intro!: adm_disj_lemma3 adm_disj_lemma4 adm_disj_lemma5)
done
lemma adm_disj_lemma7:
"[|adm P; chain Y; ∀i. ∃j≥i. P (Y j)|] ==> P (\<Squnion>i. Y i)"
apply (erule adm_disj_lemma2)
apply (erule (1) adm_disj_lemma6)
done
lemma adm_disj: "[|adm P; adm Q|] ==> adm (λx. P x ∨ Q x)"
apply (rule admI)
apply (erule adm_disj_lemma1 [THEN disjE])
apply (rule disjI1)
apply (erule (2) adm_disj_lemma7)
apply (rule disjI2)
apply (erule (2) adm_disj_lemma7)
done
lemma adm_imp: "[|adm (λx. ¬ P x); adm Q|] ==> adm (λx. P x --> Q x)"
by (subst imp_conv_disj, rule adm_disj)
lemma adm_iff:
"[|adm (λx. P x --> Q x); adm (λx. Q x --> P x)|]
==> adm (λx. P x = Q x)"
by (subst iff_conv_conj_imp, rule adm_conj)
lemma adm_not_conj:
"[|adm (λx. ¬ P x); adm (λx. ¬ Q x)|] ==> adm (λx. ¬ (P x ∧ Q x))"
by (subst de_Morgan_conj, rule adm_disj)
lemmas adm_lemmas =
adm_less adm_conj adm_not_free adm_imp adm_disj adm_eq adm_not_UU
adm_UU_not_less adm_all2 adm_not_less adm_not_conj adm_iff
declare adm_lemmas [simp]
(* legacy ML bindings *)
ML
{*
val adm_def = thm "adm_def";
val admI = thm "admI";
val triv_admI = thm "triv_admI";
val admD = thm "admD";
val adm_max_in_chain = thm "adm_max_in_chain";
val adm_chfin = thm "adm_chfin";
val admI2 = thm "admI2";
val adm_less = thm "adm_less";
val adm_conj = thm "adm_conj";
val adm_not_free = thm "adm_not_free";
val adm_not_less = thm "adm_not_less";
val adm_all = thm "adm_all";
val adm_all2 = thm "adm_all2";
val adm_ball = thm "adm_ball";
val adm_ball2 = thm "adm_ball2";
val adm_subst = thm "adm_subst";
val adm_UU_not_less = thm "adm_UU_not_less";
val adm_not_UU = thm "adm_not_UU";
val adm_eq = thm "adm_eq";
val adm_disj_lemma1 = thm "adm_disj_lemma1";
val adm_disj_lemma2 = thm "adm_disj_lemma2";
val adm_disj_lemma3 = thm "adm_disj_lemma3";
val adm_disj_lemma4 = thm "adm_disj_lemma4";
val adm_disj_lemma5 = thm "adm_disj_lemma5";
val adm_disj_lemma6 = thm "adm_disj_lemma6";
val adm_disj_lemma7 = thm "adm_disj_lemma7";
val adm_disj = thm "adm_disj";
val adm_imp = thm "adm_imp";
val adm_iff = thm "adm_iff";
val adm_not_conj = thm "adm_not_conj";
val adm_lemmas = thms "adm_lemmas";
*}
end
lemma admI:
(!!Y. [| chain Y; ∀i. P (Y i) |] ==> P (lub (range Y))) ==> adm P
lemma triv_admI:
∀x. P x ==> adm P
lemma admD:
[| adm P; chain Y; ∀i. P (Y i) |] ==> P (lub (range Y))
lemma admI2:
(!!Y. [| chain Y; ∀i. P (Y i); ∀i. ∃j. i < j ∧ Y i ≠ Y j ∧ Y i << Y j |] ==> P (lub (range Y))) ==> adm P
lemma adm_max_in_chain:
∀Y. chain Y --> (∃n. max_in_chain n Y) ==> adm P
lemmas adm_chfin:
adm P
lemmas adm_chfin:
adm P
lemma adm_less:
[| cont u; cont v |] ==> adm (%x. u x << v x)
lemma adm_conj:
[| adm P; adm Q |] ==> adm (%x. P x ∧ Q x)
lemma adm_not_free:
adm (%x. t)
lemma adm_not_less:
cont t ==> adm (%x. ¬ t x << u)
lemma adm_all:
∀y. adm (P y) ==> adm (%x. ∀y. P y x)
lemmas adm_all2:
(!!y. adm (P y)) ==> adm (%x. ∀y. P y x)
lemmas adm_all2:
(!!y. adm (P y)) ==> adm (%x. ∀y. P y x)
lemma adm_ball:
∀y∈A. adm (P y) ==> adm (%x. ∀y∈A. P y x)
lemmas adm_ball2:
(!!y. y ∈ A ==> adm (P y)) ==> adm (%x. ∀y∈A. P y x)
lemmas adm_ball2:
(!!y. y ∈ A ==> adm (P y)) ==> adm (%x. ∀y∈A. P y x)
lemma adm_subst:
[| cont t; adm P |] ==> adm (%x. P (t x))
lemma adm_UU_not_less:
adm (%x. ¬ UU << t x)
lemma adm_not_UU:
cont t ==> adm (%x. t x ≠ UU)
lemma adm_eq:
[| cont u; cont v |] ==> adm (%x. u x = v x)
lemma adm_disj_lemma1:
∀n. P n ∨ Q n ==> (∀i. ∃j. i ≤ j ∧ P j) ∨ (∀i. ∃j. i ≤ j ∧ Q j)
lemma adm_disj_lemma2:
[| adm P; ∃X. chain X ∧ (∀n. P (X n)) ∧ lub (range Y) = lub (range X) |] ==> P (lub (range Y))
lemma adm_disj_lemma3:
[| chain Y; ∀i. ∃j. i ≤ j ∧ P (Y j) |] ==> chain (%m. Y (LEAST j. m ≤ j ∧ P (Y j)))
lemma adm_disj_lemma4:
∀i. ∃j. i ≤ j ∧ P (Y j) ==> ∀m. P (Y (LEAST j. m ≤ j ∧ P (Y j)))
lemma adm_disj_lemma5:
[| chain Y; ∀i. ∃j. i ≤ j ∧ P (Y j) |] ==> lub (range Y) = (LUB m. Y (LEAST j. m ≤ j ∧ P (Y j)))
lemma adm_disj_lemma6:
[| chain Y; ∀i. ∃j. i ≤ j ∧ P (Y j) |] ==> ∃X. chain X ∧ (∀n. P (X n)) ∧ lub (range Y) = lub (range X)
lemma adm_disj_lemma7:
[| adm P; chain Y; ∀i. ∃j. i ≤ j ∧ P (Y j) |] ==> P (lub (range Y))
lemma adm_disj:
[| adm P; adm Q |] ==> adm (%x. P x ∨ Q x)
lemma adm_imp:
[| adm (%x. ¬ P x); adm Q |] ==> adm (%x. P x --> Q x)
lemma adm_iff:
[| adm (%x. P x --> Q x); adm (%x. Q x --> P x) |] ==> adm (%x. P x = Q x)
lemma adm_not_conj:
[| adm (%x. ¬ P x); adm (%x. ¬ Q x) |] ==> adm (%x. ¬ (P x ∧ Q x))
lemmas adm_lemmas:
[| cont u; cont v |] ==> adm (%x. u x << v x)
[| adm P; adm Q |] ==> adm (%x. P x ∧ Q x)
adm (%x. t)
[| adm (%x. ¬ P x); adm Q |] ==> adm (%x. P x --> Q x)
[| adm P; adm Q |] ==> adm (%x. P x ∨ Q x)
[| cont u; cont v |] ==> adm (%x. u x = v x)
cont t ==> adm (%x. t x ≠ UU)
adm (%x. ¬ UU << t x)
(!!y. adm (P y)) ==> adm (%x. ∀y. P y x)
cont t ==> adm (%x. ¬ t x << u)
[| adm (%x. ¬ P x); adm (%x. ¬ Q x) |] ==> adm (%x. ¬ (P x ∧ Q x))
[| adm (%x. P x --> Q x); adm (%x. Q x --> P x) |] ==> adm (%x. P x = Q x)
lemmas adm_lemmas:
[| cont u; cont v |] ==> adm (%x. u x << v x)
[| adm P; adm Q |] ==> adm (%x. P x ∧ Q x)
adm (%x. t)
[| adm (%x. ¬ P x); adm Q |] ==> adm (%x. P x --> Q x)
[| adm P; adm Q |] ==> adm (%x. P x ∨ Q x)
[| cont u; cont v |] ==> adm (%x. u x = v x)
cont t ==> adm (%x. t x ≠ UU)
adm (%x. ¬ UU << t x)
(!!y. adm (P y)) ==> adm (%x. ∀y. P y x)
cont t ==> adm (%x. ¬ t x << u)
[| adm (%x. ¬ P x); adm (%x. ¬ Q x) |] ==> adm (%x. ¬ (P x ∧ Q x))
[| adm (%x. P x --> Q x); adm (%x. Q x --> P x) |] ==> adm (%x. P x = Q x)