(* Title: HOLCF/Cprod.thy
ID: $Id: Cprod.thy,v 1.15 2005/07/26 16:22:03 huffman Exp $
Author: Franz Regensburger
Partial ordering for cartesian product of HOL products.
*)
header {* The cpo of cartesian products *}
theory Cprod
imports Cfun
begin
defaultsort cpo
subsection {* Type @{typ unit} is a pcpo *}
instance unit :: sq_ord ..
defs (overloaded)
less_unit_def [simp]: "x \<sqsubseteq> (y::unit) ≡ True"
instance unit :: po
by intro_classes simp_all
instance unit :: cpo
by intro_classes (simp add: is_lub_def is_ub_def)
instance unit :: pcpo
by intro_classes simp
subsection {* Type @{typ "'a * 'b"} is a partial order *}
instance "*" :: (sq_ord, sq_ord) sq_ord ..
defs (overloaded)
less_cprod_def: "(op \<sqsubseteq>) ≡ λp1 p2. (fst p1 \<sqsubseteq> fst p2 ∧ snd p1 \<sqsubseteq> snd p2)"
lemma refl_less_cprod: "(p::'a * 'b) \<sqsubseteq> p"
by (simp add: less_cprod_def)
lemma antisym_less_cprod: "[|(p1::'a * 'b) \<sqsubseteq> p2; p2 \<sqsubseteq> p1|] ==> p1 = p2"
apply (unfold less_cprod_def)
apply (rule injective_fst_snd)
apply (fast intro: antisym_less)
apply (fast intro: antisym_less)
done
lemma trans_less_cprod: "[|(p1::'a*'b) \<sqsubseteq> p2; p2 \<sqsubseteq> p3|] ==> p1 \<sqsubseteq> p3"
apply (unfold less_cprod_def)
apply (fast intro: trans_less)
done
instance "*" :: (cpo, cpo) po
by intro_classes
(assumption | rule refl_less_cprod antisym_less_cprod trans_less_cprod)+
subsection {* Monotonicity of @{text "(_,_)"}, @{term fst}, @{term snd} *}
text {* Pair @{text "(_,_)"} is monotone in both arguments *}
lemma monofun_pair1: "monofun (λx. (x, y))"
by (simp add: monofun_def less_cprod_def)
lemma monofun_pair2: "monofun (λy. (x, y))"
by (simp add: monofun_def less_cprod_def)
lemma monofun_pair:
"[|x1 \<sqsubseteq> x2; y1 \<sqsubseteq> y2|] ==> (x1, y1) \<sqsubseteq> (x2, y2)"
by (simp add: less_cprod_def)
text {* @{term fst} and @{term snd} are monotone *}
lemma monofun_fst: "monofun fst"
by (simp add: monofun_def less_cprod_def)
lemma monofun_snd: "monofun snd"
by (simp add: monofun_def less_cprod_def)
subsection {* Type @{typ "'a * 'b"} is a cpo *}
lemma lub_cprod:
"chain S ==> range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
apply (rule is_lubI)
apply (rule ub_rangeI)
apply (rule_tac t = "S i" in surjective_pairing [THEN ssubst])
apply (rule monofun_pair)
apply (rule is_ub_thelub)
apply (erule monofun_fst [THEN ch2ch_monofun])
apply (rule is_ub_thelub)
apply (erule monofun_snd [THEN ch2ch_monofun])
apply (rule_tac t = "u" in surjective_pairing [THEN ssubst])
apply (rule monofun_pair)
apply (rule is_lub_thelub)
apply (erule monofun_fst [THEN ch2ch_monofun])
apply (erule monofun_fst [THEN ub2ub_monofun])
apply (rule is_lub_thelub)
apply (erule monofun_snd [THEN ch2ch_monofun])
apply (erule monofun_snd [THEN ub2ub_monofun])
done
lemma thelub_cprod:
"chain S ==> lub (range S) = (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
by (rule lub_cprod [THEN thelubI])
lemma cpo_cprod:
"chain (S::nat => 'a::cpo * 'b::cpo) ==> ∃x. range S <<| x"
by (rule exI, erule lub_cprod)
instance "*" :: (cpo, cpo) cpo
by intro_classes (rule cpo_cprod)
subsection {* Type @{typ "'a * 'b"} is pointed *}
lemma minimal_cprod: "(⊥, ⊥) \<sqsubseteq> p"
by (simp add: less_cprod_def)
lemma least_cprod: "EX x::'a::pcpo * 'b::pcpo. ALL y. x \<sqsubseteq> y"
apply (rule_tac x = "(⊥, ⊥)" in exI)
apply (rule minimal_cprod [THEN allI])
done
instance "*" :: (pcpo, pcpo) pcpo
by intro_classes (rule least_cprod)
text {* for compatibility with old HOLCF-Version *}
lemma inst_cprod_pcpo: "UU = (UU,UU)"
by (rule minimal_cprod [THEN UU_I, symmetric])
subsection {* Continuity of @{text "(_,_)"}, @{term fst}, @{term snd} *}
lemma contlub_pair1: "contlub (λx. (x, y))"
apply (rule contlubI)
apply (subst thelub_cprod)
apply (erule monofun_pair1 [THEN ch2ch_monofun])
apply (simp add: thelub_const)
done
lemma contlub_pair2: "contlub (λy. (x, y))"
apply (rule contlubI)
apply (subst thelub_cprod)
apply (erule monofun_pair2 [THEN ch2ch_monofun])
apply (simp add: thelub_const)
done
lemma cont_pair1: "cont (λx. (x, y))"
apply (rule monocontlub2cont)
apply (rule monofun_pair1)
apply (rule contlub_pair1)
done
lemma cont_pair2: "cont (λy. (x, y))"
apply (rule monocontlub2cont)
apply (rule monofun_pair2)
apply (rule contlub_pair2)
done
lemma contlub_fst: "contlub fst"
apply (rule contlubI)
apply (simp add: thelub_cprod)
done
lemma contlub_snd: "contlub snd"
apply (rule contlubI)
apply (simp add: thelub_cprod)
done
lemma cont_fst: "cont fst"
apply (rule monocontlub2cont)
apply (rule monofun_fst)
apply (rule contlub_fst)
done
lemma cont_snd: "cont snd"
apply (rule monocontlub2cont)
apply (rule monofun_snd)
apply (rule contlub_snd)
done
subsection {* Continuous versions of constants *}
consts
cpair :: "'a -> 'b -> ('a * 'b)" (* continuous pairing *)
cfst :: "('a * 'b) -> 'a"
csnd :: "('a * 'b) -> 'b"
csplit :: "('a -> 'b -> 'c) -> ('a * 'b) -> 'c"
syntax
"@ctuple" :: "['a, args] => 'a * 'b" ("(1<_,/ _>)")
translations
"<x, y, z>" == "<x, <y, z>>"
"<x, y>" == "cpair$x$y"
defs
cpair_def: "cpair ≡ (Λ x y. (x, y))"
cfst_def: "cfst ≡ (Λ p. fst p)"
csnd_def: "csnd ≡ (Λ p. snd p)"
csplit_def: "csplit ≡ (Λ f p. f·(cfst·p)·(csnd·p))"
subsection {* Syntax *}
text {* syntax for @{text "LAM <x,y,z>.e"} *}
syntax
"_LAM" :: "[patterns, 'a => 'b] => ('a -> 'b)" ("(3LAM <_>./ _)" [0, 10] 10)
translations
"LAM <x,y,zs>. b" == "csplit$(LAM x. LAM <y,zs>. b)"
"LAM <x,y>. LAM zs. b" <= "csplit$(LAM x y zs. b)"
"LAM <x,y>.b" == "csplit$(LAM x y. b)"
syntax (xsymbols)
"_LAM" :: "[patterns, 'a => 'b] => ('a -> 'b)" ("(3Λ()<_>./ _)" [0, 10] 10)
text {* syntax for Let *}
constdefs
CLet :: "'a -> ('a -> 'b) -> 'b"
"CLet ≡ Λ s f. f·s"
nonterminals
Cletbinds Cletbind
syntax
"_Cbind" :: "[pttrn, 'a] => Cletbind" ("(2_ =/ _)" 10)
"_Cbindp" :: "[patterns, 'a] => Cletbind" ("(2<_> =/ _)" 10)
"" :: "Cletbind => Cletbinds" ("_")
"_Cbinds" :: "[Cletbind, Cletbinds] => Cletbinds" ("_;/ _")
"_CLet" :: "[Cletbinds, 'a] => 'a" ("(Let (_)/ in (_))" 10)
translations
"_CLet (_Cbinds b bs) e" == "_CLet b (_CLet bs e)"
"Let x = a in LAM ys. e" == "CLet$a$(LAM x ys. e)"
"Let x = a in e" == "CLet$a$(LAM x. e)"
"Let <xs> = a in e" == "CLet$a$(LAM <xs>. e)"
subsection {* Convert all lemmas to the continuous versions *}
lemma cpair_eq_pair: "<x, y> = (x, y)"
by (simp add: cpair_def cont_pair1 cont_pair2)
lemma inject_cpair: "<a,b> = <aa,ba> ==> a = aa ∧ b = ba"
by (simp add: cpair_eq_pair)
lemma cpair_eq [iff]: "(<a, b> = <a', b'>) = (a = a' ∧ b = b')"
by (simp add: cpair_eq_pair)
lemma cpair_less: "(<a, b> \<sqsubseteq> <a', b'>) = (a \<sqsubseteq> a' ∧ b \<sqsubseteq> b')"
by (simp add: cpair_eq_pair less_cprod_def)
lemma cpair_defined_iff: "(<x, y> = ⊥) = (x = ⊥ ∧ y = ⊥)"
by (simp add: inst_cprod_pcpo cpair_eq_pair)
lemma cpair_strict: "<⊥, ⊥> = ⊥"
by (simp add: cpair_defined_iff)
lemma inst_cprod_pcpo2: "⊥ = <⊥, ⊥>"
by (rule cpair_strict [symmetric])
lemma defined_cpair_rev:
"<a,b> = ⊥ ==> a = ⊥ ∧ b = ⊥"
by (simp add: inst_cprod_pcpo cpair_eq_pair)
lemma Exh_Cprod2: "∃a b. z = <a, b>"
by (simp add: cpair_eq_pair)
lemma cprodE: "[|!!x y. p = <x, y> ==> Q|] ==> Q"
by (cut_tac Exh_Cprod2, auto)
lemma cfst_cpair [simp]: "cfst·<x, y> = x"
by (simp add: cpair_eq_pair cfst_def cont_fst)
lemma csnd_cpair [simp]: "csnd·<x, y> = y"
by (simp add: cpair_eq_pair csnd_def cont_snd)
lemma cfst_strict [simp]: "cfst·⊥ = ⊥"
by (simp add: inst_cprod_pcpo2)
lemma csnd_strict [simp]: "csnd·⊥ = ⊥"
by (simp add: inst_cprod_pcpo2)
lemma surjective_pairing_Cprod2: "<cfst·p, csnd·p> = p"
apply (unfold cfst_def csnd_def)
apply (simp add: cont_fst cont_snd cpair_eq_pair)
done
lemma less_cprod: "x \<sqsubseteq> y = (cfst·x \<sqsubseteq> cfst·y ∧ csnd·x \<sqsubseteq> csnd·y)"
by (simp add: less_cprod_def cfst_def csnd_def cont_fst cont_snd)
lemma eq_cprod: "(x = y) = (cfst·x = cfst·y ∧ csnd·x = csnd·y)"
by (auto simp add: po_eq_conv less_cprod)
lemma lub_cprod2:
"chain S ==> range S <<| <\<Squnion>i. cfst·(S i), \<Squnion>i. csnd·(S i)>"
apply (simp add: cpair_eq_pair cfst_def csnd_def cont_fst cont_snd)
apply (erule lub_cprod)
done
lemma thelub_cprod2:
"chain S ==> lub (range S) = <\<Squnion>i. cfst·(S i), \<Squnion>i. csnd·(S i)>"
by (rule lub_cprod2 [THEN thelubI])
lemma csplit2 [simp]: "csplit·f·<x,y> = f·x·y"
by (simp add: csplit_def)
lemma csplit3 [simp]: "csplit·cpair·z = z"
by (simp add: csplit_def surjective_pairing_Cprod2)
lemmas Cprod_rews = cfst_cpair csnd_cpair csplit2
end
lemma refl_less_cprod:
p << p
lemma antisym_less_cprod:
[| p1.0 << p2.0; p2.0 << p1.0 |] ==> p1.0 = p2.0
lemma trans_less_cprod:
[| p1.0 << p2.0; p2.0 << p3.0 |] ==> p1.0 << p3.0
lemma monofun_pair1:
monofun (%x. (x, y))
lemma monofun_pair2:
monofun (Pair x)
lemma monofun_pair:
[| x1.0 << x2.0; y1.0 << y2.0 |] ==> (x1.0, y1.0) << (x2.0, y2.0)
lemma monofun_fst:
monofun fst
lemma monofun_snd:
monofun snd
lemma lub_cprod:
chain S ==> range S <<| (LUB i. fst (S i), LUB i. snd (S i))
lemma thelub_cprod:
chain S ==> lub (range S) = (LUB i. fst (S i), LUB i. snd (S i))
lemma cpo_cprod:
chain S ==> ∃x. range S <<| x
lemma minimal_cprod:
(UU, UU) << p
lemma least_cprod:
∃x. ∀y. x << y
lemma inst_cprod_pcpo:
UU = (UU, UU)
lemma contlub_pair1:
contlub (%x. (x, y))
lemma contlub_pair2:
contlub (Pair x)
lemma cont_pair1:
cont (%x. (x, y))
lemma cont_pair2:
cont (Pair x)
lemma contlub_fst:
contlub fst
lemma contlub_snd:
contlub snd
lemma cont_fst:
cont fst
lemma cont_snd:
cont snd
lemma cpair_eq_pair:
<x, y> = (x, y)
lemma inject_cpair:
<a, b> = <aa, ba> ==> a = aa ∧ b = ba
lemma cpair_eq:
(<a, b> = <a', b'>) = (a = a' ∧ b = b')
lemma cpair_less:
<a, b> << <a', b'> = (a << a' ∧ b << b')
lemma cpair_defined_iff:
(<x, y> = UU) = (x = UU ∧ y = UU)
lemma cpair_strict:
<UU, UU> = UU
lemma inst_cprod_pcpo2:
UU = <UU, UU>
lemma defined_cpair_rev:
<a, b> = UU ==> a = UU ∧ b = UU
lemma Exh_Cprod2:
∃a b. z = <a, b>
lemma cprodE:
(!!x y. p = <x, y> ==> Q) ==> Q
lemma cfst_cpair:
cfst·<x, y> = x
lemma csnd_cpair:
csnd·<x, y> = y
lemma cfst_strict:
cfst·UU = UU
lemma csnd_strict:
csnd·UU = UU
lemma surjective_pairing_Cprod2:
<cfst·p, csnd·p> = p
lemma less_cprod:
x << y = (cfst·x << cfst·y ∧ csnd·x << csnd·y)
lemma eq_cprod:
(x = y) = (cfst·x = cfst·y ∧ csnd·x = csnd·y)
lemma lub_cprod2:
chain S ==> range S <<| <LUB i. cfst·(S i), LUB i. csnd·(S i)>
lemma thelub_cprod2:
chain S ==> lub (range S) = <LUB i. cfst·(S i), LUB i. csnd·(S i)>
lemma csplit2:
csplit·f·<x, y> = f·x·y
lemma csplit3:
csplit·cpair·z = z
lemmas Cprod_rews:
cfst·<x, y> = x
csnd·<x, y> = y
csplit·f·<x, y> = f·x·y
lemmas Cprod_rews:
cfst·<x, y> = x
csnd·<x, y> = y
csplit·f·<x, y> = f·x·y