(* Title: HOLCF/Domain.thy
ID: $Id: Domain.thy,v 1.8 2005/07/08 00:41:35 huffman Exp $
Author: Brian Huffman
*)
header {* Domain package *}
theory Domain
imports Ssum Sprod Up One Tr Fixrec
(*
files
("domain/library.ML")
("domain/syntax.ML")
("domain/axioms.ML")
("domain/theorems.ML")
("domain/extender.ML")
("domain/interface.ML")
*)
begin
defaultsort pcpo
subsection {* Continuous isomorphisms *}
text {* A locale for continuous isomorphisms *}
locale iso =
fixes abs :: "'a -> 'b"
fixes rep :: "'b -> 'a"
assumes abs_iso [simp]: "rep·(abs·x) = x"
assumes rep_iso [simp]: "abs·(rep·y) = y"
lemma (in iso) swap: "iso rep abs"
by (rule iso.intro [OF rep_iso abs_iso])
lemma (in iso) abs_strict: "abs·⊥ = ⊥"
proof -
have "⊥ \<sqsubseteq> rep·⊥" ..
hence "abs·⊥ \<sqsubseteq> abs·(rep·⊥)" by (rule monofun_cfun_arg)
hence "abs·⊥ \<sqsubseteq> ⊥" by simp
thus ?thesis by (rule UU_I)
qed
lemma (in iso) rep_strict: "rep·⊥ = ⊥"
by (rule iso.abs_strict [OF swap])
lemma (in iso) abs_defin': "abs·z = ⊥ ==> z = ⊥"
proof -
assume A: "abs·z = ⊥"
have "z = rep·(abs·z)" by simp
also have "… = rep·⊥" by (simp only: A)
also note rep_strict
finally show "z = ⊥" .
qed
lemma (in iso) rep_defin': "rep·z = ⊥ ==> z = ⊥"
by (rule iso.abs_defin' [OF swap])
lemma (in iso) abs_defined: "z ≠ ⊥ ==> abs·z ≠ ⊥"
by (erule contrapos_nn, erule abs_defin')
lemma (in iso) rep_defined: "z ≠ ⊥ ==> rep·z ≠ ⊥"
by (erule contrapos_nn, erule rep_defin')
lemma (in iso) iso_swap: "(x = abs·y) = (rep·x = y)"
proof
assume "x = abs·y"
hence "rep·x = rep·(abs·y)" by simp
thus "rep·x = y" by simp
next
assume "rep·x = y"
hence "abs·(rep·x) = abs·y" by simp
thus "x = abs·y" by simp
qed
subsection {* Casedist *}
lemma ex_one_defined_iff:
"(∃x. P x ∧ x ≠ ⊥) = P ONE"
apply safe
apply (rule_tac p=x in oneE)
apply simp
apply simp
apply force
done
lemma ex_up_defined_iff:
"(∃x. P x ∧ x ≠ ⊥) = (∃x. P (up·x))"
apply safe
apply (rule_tac p=x in upE)
apply simp
apply fast
apply (force intro!: up_defined)
done
lemma ex_sprod_defined_iff:
"(∃y. P y ∧ y ≠ ⊥) =
(∃x y. (P (:x, y:) ∧ x ≠ ⊥) ∧ y ≠ ⊥)"
apply safe
apply (rule_tac p=y in sprodE)
apply simp
apply fast
apply (force intro!: spair_defined)
done
lemma ex_sprod_up_defined_iff:
"(∃y. P y ∧ y ≠ ⊥) =
(∃x y. P (:up·x, y:) ∧ y ≠ ⊥)"
apply safe
apply (rule_tac p=y in sprodE)
apply simp
apply (rule_tac p=x in upE)
apply simp
apply fast
apply (force intro!: spair_defined)
done
lemma ex_ssum_defined_iff:
"(∃x. P x ∧ x ≠ ⊥) =
((∃x. P (sinl·x) ∧ x ≠ ⊥) ∨
(∃x. P (sinr·x) ∧ x ≠ ⊥))"
apply (rule iffI)
apply (erule exE)
apply (erule conjE)
apply (rule_tac p=x in ssumE)
apply simp
apply (rule disjI1, fast)
apply (rule disjI2, fast)
apply (erule disjE)
apply (force intro: sinl_defined)
apply (force intro: sinr_defined)
done
lemma exh_start: "p = ⊥ ∨ (∃x. p = x ∧ x ≠ ⊥)"
by auto
lemmas ex_defined_iffs =
ex_ssum_defined_iff
ex_sprod_up_defined_iff
ex_sprod_defined_iff
ex_up_defined_iff
ex_one_defined_iff
text {* Rules for turning exh into casedist *}
lemma exh_casedist0: "[|R; R ==> P|] ==> P" (* like make_elim *)
by auto
lemma exh_casedist1: "((P ∨ Q ==> R) ==> S) ≡ ([|P ==> R; Q ==> R|] ==> S)"
by rule auto
lemma exh_casedist2: "(∃x. P x ==> Q) ≡ (!!x. P x ==> Q)"
by rule auto
lemma exh_casedist3: "(P ∧ Q ==> R) ≡ (P ==> Q ==> R)"
by rule auto
lemmas exh_casedists = exh_casedist1 exh_casedist2 exh_casedist3
subsection {* Setting up the package *}
ML {*
val iso_intro = thm "iso.intro";
val iso_abs_iso = thm "iso.abs_iso";
val iso_rep_iso = thm "iso.rep_iso";
val iso_abs_strict = thm "iso.abs_strict";
val iso_rep_strict = thm "iso.rep_strict";
val iso_abs_defin' = thm "iso.abs_defin'";
val iso_rep_defin' = thm "iso.rep_defin'";
val iso_abs_defined = thm "iso.abs_defined";
val iso_rep_defined = thm "iso.rep_defined";
val iso_iso_swap = thm "iso.iso_swap";
val exh_start = thm "exh_start";
val ex_defined_iffs = thms "ex_defined_iffs";
val exh_casedist0 = thm "exh_casedist0";
val exh_casedists = thms "exh_casedists";
*}
end
lemma swap:
iso abs rep ==> iso rep abs
lemma abs_strict:
iso abs rep ==> abs·UU = UU
lemma rep_strict:
iso abs rep ==> rep·UU = UU
lemma abs_defin':
[| iso abs rep; abs·z = UU |] ==> z = UU
lemma rep_defin':
[| iso abs rep; rep·z = UU |] ==> z = UU
lemma abs_defined:
[| iso abs rep; z ≠ UU |] ==> abs·z ≠ UU
lemma rep_defined:
[| iso abs rep; z ≠ UU |] ==> rep·z ≠ UU
lemma iso_swap:
iso abs rep ==> (x = abs·y) = (rep·x = y)
lemma ex_one_defined_iff:
(∃x. P x ∧ x ≠ UU) = P ONE
lemma ex_up_defined_iff:
(∃x. P x ∧ x ≠ UU) = (∃x. P (up·x))
lemma ex_sprod_defined_iff:
(∃y. P y ∧ y ≠ UU) = (∃x y. (P (:x, y:) ∧ x ≠ UU) ∧ y ≠ UU)
lemma ex_sprod_up_defined_iff:
(∃y. P y ∧ y ≠ UU) = (∃x y. P (:up·x, y:) ∧ y ≠ UU)
lemma ex_ssum_defined_iff:
(∃x. P x ∧ x ≠ UU) = ((∃x. P (sinl·x) ∧ x ≠ UU) ∨ (∃x. P (sinr·x) ∧ x ≠ UU))
lemma exh_start:
p = UU ∨ (∃x. p = x ∧ x ≠ UU)
lemmas ex_defined_iffs:
(∃x. P x ∧ x ≠ UU) = ((∃x. P (sinl·x) ∧ x ≠ UU) ∨ (∃x. P (sinr·x) ∧ x ≠ UU))
(∃y. P y ∧ y ≠ UU) = (∃x y. P (:up·x, y:) ∧ y ≠ UU)
(∃y. P y ∧ y ≠ UU) = (∃x y. (P (:x, y:) ∧ x ≠ UU) ∧ y ≠ UU)
(∃x. P x ∧ x ≠ UU) = (∃x. P (up·x))
(∃x. P x ∧ x ≠ UU) = P ONE
lemmas ex_defined_iffs:
(∃x. P x ∧ x ≠ UU) = ((∃x. P (sinl·x) ∧ x ≠ UU) ∨ (∃x. P (sinr·x) ∧ x ≠ UU))
(∃y. P y ∧ y ≠ UU) = (∃x y. P (:up·x, y:) ∧ y ≠ UU)
(∃y. P y ∧ y ≠ UU) = (∃x y. (P (:x, y:) ∧ x ≠ UU) ∧ y ≠ UU)
(∃x. P x ∧ x ≠ UU) = (∃x. P (up·x))
(∃x. P x ∧ x ≠ UU) = P ONE
lemma exh_casedist0:
[| R; R ==> P |] ==> P
lemma exh_casedist1:
((P ∨ Q ==> R) ==> S) == ([| P ==> R; Q ==> R |] ==> S)
lemma exh_casedist2:
(∃x. P x ==> Q) == (!!x. P x ==> Q)
lemma exh_casedist3:
(P ∧ Q ==> R) == ([| P; Q |] ==> R)
lemmas exh_casedists:
((P ∨ Q ==> R) ==> S) == ([| P ==> R; Q ==> R |] ==> S)
(∃x. P x ==> Q) == (!!x. P x ==> Q)
(P ∧ Q ==> R) == ([| P; Q |] ==> R)
lemmas exh_casedists:
((P ∨ Q ==> R) ==> S) == ([| P ==> R; Q ==> R |] ==> S)
(∃x. P x ==> Q) == (!!x. P x ==> Q)
(P ∧ Q ==> R) == ([| P; Q |] ==> R)