(* Title: HOLCF/ex/Stream.thy
ID: $Id: Stream.thy,v 1.13 2005/09/06 17:28:59 wenzelm Exp $
Author: Franz Regensburger, David von Oheimb, Borislav Gajanovic
*)
header {* General Stream domain *}
theory Stream
imports HOLCF Nat_Infinity
begin
domain 'a stream = "&&" (ft::'a) (lazy rt::"'a stream") (infixr 65)
consts
smap :: "('a -> 'b) -> 'a stream -> 'b stream"
sfilter :: "('a -> tr) -> 'a stream -> 'a stream"
slen :: "'a stream => inat" ("#_" [1000] 1000)
defs
smap_def: "smap ≡ fix·(Λ h f s. case s of x && xs => f·x && h·f·xs)"
sfilter_def: "sfilter ≡ fix·(Λ h p s. case s of x && xs =>
If p·x then x && h·p·xs else h·p·xs fi)"
slen_def: "#s ≡ if stream_finite s
then Fin (LEAST n. stream_take n·s = s) else ∞"
(* concatenation *)
consts
i_rt :: "nat => 'a stream => 'a stream" (* chops the first i elements *)
i_th :: "nat => 'a stream => 'a" (* the i-th element *)
sconc :: "'a stream => 'a stream => 'a stream" (infixr "ooo" 65)
constr_sconc :: "'a stream => 'a stream => 'a stream" (* constructive *)
constr_sconc' :: "nat => 'a stream => 'a stream => 'a stream"
defs
i_rt_def: "i_rt == %i s. iterate i rt s"
i_th_def: "i_th == %i s. ft$(i_rt i s)"
sconc_def: "s1 ooo s2 == case #s1 of
Fin n => (SOME s. (stream_take n$s=s1) & (i_rt n s = s2))
| ∞ => s1"
constr_sconc_def: "constr_sconc s1 s2 == case #s1 of
Fin n => constr_sconc' n s1 s2
| ∞ => s1"
primrec
constr_sconc'_0: "constr_sconc' 0 s1 s2 = s2"
constr_sconc'_Suc: "constr_sconc' (Suc n) s1 s2 = ft$s1 &&
constr_sconc' n (rt$s1) s2"
declare stream.rews [simp add]
(* ----------------------------------------------------------------------- *)
(* theorems about scons *)
(* ----------------------------------------------------------------------- *)
section "scons"
lemma scons_eq_UU: "(a && s = UU) = (a = UU)"
by (auto, erule contrapos_pp, simp)
lemma scons_not_empty: "[| a && x = UU; a ~= UU |] ==> R"
by auto
lemma stream_exhaust_eq: "(x ~= UU) = (EX a y. a ~= UU & x = a && y)"
by (auto,insert stream.exhaust [of x],auto)
lemma stream_neq_UU: "x~=UU ==> EX a as. x=a&&as & a~=UU"
by (simp add: stream_exhaust_eq,auto)
lemma stream_inject_eq [simp]:
"[| a ~= UU; b ~= UU |] ==> (a && s = b && t) = (a = b & s = t)"
by (insert stream.injects [of a s b t], auto)
lemma stream_prefix:
"[| a && s << t; a ~= UU |] ==> EX b tt. t = b && tt & b ~= UU & s << tt"
apply (insert stream.exhaust [of t], auto)
apply (drule eq_UU_iff [THEN iffD2], simp)
by (drule stream.inverts, auto)
lemma stream_prefix':
"b ~= UU ==> x << b && z =
(x = UU | (EX a y. x = a && y & a ~= UU & a << b & y << z))"
apply (case_tac "x=UU",auto)
apply (drule stream_exhaust_eq [THEN iffD1],auto)
apply (drule stream.inverts,auto)
by (intro monofun_cfun,auto)
(*
lemma stream_prefix1: "[| x<<y; xs<<ys |] ==> x&&xs << y&&ys"
by (insert stream_prefix' [of y "x&&xs" ys],force)
*)
lemma stream_flat_prefix:
"[| x && xs << y && ys; (x::'a::flat) ~= UU|] ==> x = y & xs << ys"
apply (case_tac "y=UU",auto)
apply (drule eq_UU_iff [THEN iffD2],auto)
apply (drule stream.inverts,auto)
apply (drule ax_flat [rule_format],simp)
by (drule stream.inverts,auto)
(* ----------------------------------------------------------------------- *)
(* theorems about stream_when *)
(* ----------------------------------------------------------------------- *)
section "stream_when"
lemma stream_when_strictf: "stream_when$UU$s=UU"
by (rule stream.casedist [of s], auto)
(* ----------------------------------------------------------------------- *)
(* theorems about ft and rt *)
(* ----------------------------------------------------------------------- *)
section "ft & rt"
lemma ft_defin: "s~=UU ==> ft$s~=UU"
by (drule stream_exhaust_eq [THEN iffD1],auto)
lemma rt_strict_rev: "rt$s~=UU ==> s~=UU"
by auto
lemma surjectiv_scons: "(ft$s)&&(rt$s)=s"
by (rule stream.casedist [of s], auto)
lemma monofun_rt_mult: "x << s ==> iterate i rt x << iterate i rt s"
by (insert monofun_iterate2 [of i "rt"], simp add: monofun_def, auto)
(* ----------------------------------------------------------------------- *)
(* theorems about stream_take *)
(* ----------------------------------------------------------------------- *)
section "stream_take"
lemma stream_reach2: "(LUB i. stream_take i$s) = s"
apply (insert stream.reach [of s], erule subst) back
apply (simp add: fix_def2 stream.take_def)
apply (insert contlub_cfun_fun [of "%i. iterate i stream_copy UU" s,THEN sym])
by (simp add: chain_iterate)
lemma chain_stream_take: "chain (%i. stream_take i$s)"
apply (rule chainI)
apply (rule monofun_cfun_fun)
apply (simp add: stream.take_def del: iterate_Suc)
by (rule chainE, simp add: chain_iterate)
lemma stream_take_prefix [simp]: "stream_take n$s << s"
apply (insert stream_reach2 [of s])
apply (erule subst) back
apply (rule is_ub_thelub)
by (simp only: chain_stream_take)
lemma stream_take_more [rule_format]:
"ALL x. stream_take n$x = x --> stream_take (Suc n)$x = x"
apply (induct_tac n,auto)
apply (case_tac "x=UU",auto)
by (drule stream_exhaust_eq [THEN iffD1],auto)
lemma stream_take_lemma3 [rule_format]:
"ALL x xs. x~=UU --> stream_take n$(x && xs) = x && xs --> stream_take n$xs=xs"
apply (induct_tac n,clarsimp)
(*apply (drule sym, erule scons_not_empty, simp)*)
apply (clarify, rule stream_take_more)
apply (erule_tac x="x" in allE)
by (erule_tac x="xs" in allE,simp)
lemma stream_take_lemma4:
"ALL x xs. stream_take n$xs=xs --> stream_take (Suc n)$(x && xs) = x && xs"
by auto
lemma stream_take_idempotent [rule_format, simp]:
"ALL s. stream_take n$(stream_take n$s) = stream_take n$s"
apply (induct_tac n, auto)
apply (case_tac "s=UU", auto)
by (drule stream_exhaust_eq [THEN iffD1], auto)
lemma stream_take_take_Suc [rule_format, simp]:
"ALL s. stream_take n$(stream_take (Suc n)$s) =
stream_take n$s"
apply (induct_tac n, auto)
apply (case_tac "s=UU", auto)
by (drule stream_exhaust_eq [THEN iffD1], auto)
lemma mono_stream_take_pred:
"stream_take (Suc n)$s1 << stream_take (Suc n)$s2 ==>
stream_take n$s1 << stream_take n$s2"
by (insert monofun_cfun_arg [of "stream_take (Suc n)$s1"
"stream_take (Suc n)$s2" "stream_take n"], auto)
(*
lemma mono_stream_take_pred:
"stream_take (Suc n)$s1 << stream_take (Suc n)$s2 ==>
stream_take n$s1 << stream_take n$s2"
by (drule mono_stream_take [of _ _ n],simp)
*)
lemma stream_take_lemma10 [rule_format]:
"ALL k<=n. stream_take n$s1 << stream_take n$s2
--> stream_take k$s1 << stream_take k$s2"
apply (induct_tac n,simp,clarsimp)
apply (case_tac "k=Suc n",blast)
apply (erule_tac x="k" in allE)
by (drule mono_stream_take_pred,simp)
lemma stream_take_le_mono : "k<=n ==> stream_take k$s1 << stream_take n$s1"
apply (insert chain_stream_take [of s1])
by (drule chain_mono3,auto)
lemma mono_stream_take: "s1 << s2 ==> stream_take n$s1 << stream_take n$s2"
by (simp add: monofun_cfun_arg)
(*
lemma stream_take_prefix [simp]: "stream_take n$s << s"
apply (subgoal_tac "s=(LUB n. stream_take n$s)")
apply (erule ssubst, rule is_ub_thelub)
apply (simp only: chain_stream_take)
by (simp only: stream_reach2)
*)
lemma stream_take_take_less:"stream_take k$(stream_take n$s) << stream_take k$s"
by (rule monofun_cfun_arg,auto)
(* ------------------------------------------------------------------------- *)
(* special induction rules *)
(* ------------------------------------------------------------------------- *)
section "induction"
lemma stream_finite_ind:
"[| stream_finite x; P UU; !!a s. [| a ~= UU; P s |] ==> P (a && s) |] ==> P x"
apply (simp add: stream.finite_def,auto)
apply (erule subst)
by (drule stream.finite_ind [of P _ x], auto)
lemma stream_finite_ind2:
"[| P UU; !! x. x ~= UU ==> P (x && UU); !! y z s. [| y ~= UU; z ~= UU; P s |] ==> P (y && z && s )|] ==>
!s. P (stream_take n$s)"
apply (rule nat_induct2 [of _ n],auto)
apply (case_tac "s=UU",clarsimp)
apply (drule stream_exhaust_eq [THEN iffD1],clarsimp)
apply (case_tac "s=UU",clarsimp)
apply (drule stream_exhaust_eq [THEN iffD1],clarsimp)
apply (case_tac "y=UU",clarsimp)
by (drule stream_exhaust_eq [THEN iffD1],clarsimp)
lemma stream_ind2:
"[| adm P; P UU; !!a. a ~= UU ==> P (a && UU); !!a b s. [| a ~= UU; b ~= UU; P s |] ==> P (a && b && s) |] ==> P x"
apply (insert stream.reach [of x],erule subst)
apply (frule adm_impl_admw, rule wfix_ind, auto)
apply (rule adm_subst [THEN adm_impl_admw],auto)
apply (insert stream_finite_ind2 [of P])
by (simp add: stream.take_def)
(* ----------------------------------------------------------------------- *)
(* simplify use of coinduction *)
(* ----------------------------------------------------------------------- *)
section "coinduction"
lemma stream_coind_lemma2: "!s1 s2. R s1 s2 --> ft$s1 = ft$s2 & R (rt$s1) (rt$s2) ==> stream_bisim R"
apply (simp add: stream.bisim_def,clarsimp)
apply (case_tac "x=UU",clarsimp)
apply (erule_tac x="UU" in allE,simp)
apply (case_tac "x'=UU",simp)
apply (drule stream_exhaust_eq [THEN iffD1],auto)+
apply (case_tac "x'=UU",auto)
apply (erule_tac x="a && y" in allE)
apply (erule_tac x="UU" in allE)+
apply (auto,drule stream_exhaust_eq [THEN iffD1],clarsimp)
apply (erule_tac x="a && y" in allE)
apply (erule_tac x="aa && ya" in allE)
by auto
(* ----------------------------------------------------------------------- *)
(* theorems about stream_finite *)
(* ----------------------------------------------------------------------- *)
section "stream_finite"
lemma stream_finite_UU [simp]: "stream_finite UU"
by (simp add: stream.finite_def)
lemma stream_finite_UU_rev: "~ stream_finite s ==> s ~= UU"
by (auto simp add: stream.finite_def)
lemma stream_finite_lemma1: "stream_finite xs ==> stream_finite (x && xs)"
apply (simp add: stream.finite_def,auto)
apply (rule_tac x="Suc n" in exI)
by (simp add: stream_take_lemma4)
lemma stream_finite_lemma2: "[| x ~= UU; stream_finite (x && xs) |] ==> stream_finite xs"
apply (simp add: stream.finite_def, auto)
apply (rule_tac x="n" in exI)
by (erule stream_take_lemma3,simp)
lemma stream_finite_rt_eq: "stream_finite (rt$s) = stream_finite s"
apply (rule stream.casedist [of s], auto)
apply (rule stream_finite_lemma1, simp)
by (rule stream_finite_lemma2,simp)
lemma stream_finite_less: "stream_finite s ==> !t. t<<s --> stream_finite t"
apply (erule stream_finite_ind [of s])
apply (clarsimp, drule eq_UU_iff [THEN iffD2], auto)
apply (case_tac "t=UU", auto)
apply (drule stream_exhaust_eq [THEN iffD1],auto)
apply (drule stream.inverts, auto)
apply (erule_tac x="y" in allE, simp)
by (rule stream_finite_lemma1, simp)
lemma stream_take_finite [simp]: "stream_finite (stream_take n$s)"
apply (simp add: stream.finite_def)
by (rule_tac x="n" in exI,simp)
lemma adm_not_stream_finite: "adm (%x. ~ stream_finite x)"
apply (rule admI2, auto)
apply (drule stream_finite_less,drule is_ub_thelub)
by auto
(* ----------------------------------------------------------------------- *)
(* theorems about stream length *)
(* ----------------------------------------------------------------------- *)
section "slen"
lemma slen_empty [simp]: "#⊥ = 0"
apply (simp add: slen_def stream.finite_def)
by (simp add: inat_defs Least_equality)
lemma slen_scons [simp]: "x ~= ⊥ ==> #(x&&xs) = iSuc (#xs)"
apply (case_tac "stream_finite (x && xs)")
apply (simp add: slen_def, auto)
apply (simp add: stream.finite_def, auto)
apply (rule Least_Suc2,auto)
(*apply (drule sym)*)
(*apply (drule sym scons_eq_UU [THEN iffD1],simp)*)
apply (erule stream_finite_lemma2, simp)
apply (simp add: slen_def, auto)
by (drule stream_finite_lemma1,auto)
lemma slen_less_1_eq: "(#x < Fin (Suc 0)) = (x = ⊥)"
by (rule stream.casedist [of x], auto simp del: iSuc_Fin
simp add: Fin_0 iSuc_Fin[THEN sym] i0_iless_iSuc iSuc_mono)
lemma slen_empty_eq: "(#x = 0) = (x = ⊥)"
by (rule stream.casedist [of x], auto)
lemma slen_scons_eq: "(Fin (Suc n) < #x) = (? a y. x = a && y & a ~= ⊥ & Fin n < #y)"
apply (auto, case_tac "x=UU",auto)
apply (drule stream_exhaust_eq [THEN iffD1], auto)
apply (rule_tac x="a" in exI)
apply (rule_tac x="y" in exI, simp)
by (simp add: inat_defs split:inat_splits)+
lemma slen_iSuc: "#x = iSuc n --> (? a y. x = a&&y & a ~= ⊥ & #y = n)"
by (rule stream.casedist [of x], auto)
lemma slen_stream_take_finite [simp]: "#(stream_take n$s) ~= ∞"
by (simp add: slen_def)
lemma slen_scons_eq_rev: "(#x < Fin (Suc (Suc n))) = (!a y. x ~= a && y | a = ⊥ | #y < Fin (Suc n))"
apply (rule stream.casedist [of x], auto)
apply ((*drule sym,*) drule scons_eq_UU [THEN iffD1],auto)
apply (simp add: inat_defs split:inat_splits)
apply (subgoal_tac "s=y & aa=a",simp)
apply (simp add: inat_defs split:inat_splits)
apply (case_tac "aa=UU",auto)
apply (erule_tac x="a" in allE, simp)
by (simp add: inat_defs split:inat_splits)
lemma slen_take_lemma4 [rule_format]:
"!s. stream_take n$s ~= s --> #(stream_take n$s) = Fin n"
apply (induct_tac n,auto simp add: Fin_0)
apply (case_tac "s=UU",simp)
by (drule stream_exhaust_eq [THEN iffD1], auto)
(*
lemma stream_take_idempotent [simp]:
"stream_take n$(stream_take n$s) = stream_take n$s"
apply (case_tac "stream_take n$s = s")
apply (auto,insert slen_take_lemma4 [of n s]);
by (auto,insert slen_take_lemma1 [of "stream_take n$s" n],simp)
lemma stream_take_take_Suc [simp]: "stream_take n$(stream_take (Suc n)$s) =
stream_take n$s"
apply (simp add: po_eq_conv,auto)
apply (simp add: stream_take_take_less)
apply (subgoal_tac "stream_take n$s = stream_take n$(stream_take n$s)")
apply (erule ssubst)
apply (rule_tac monofun_cfun_arg)
apply (insert chain_stream_take [of s])
by (simp add: chain_def,simp)
*)
lemma slen_take_eq: "ALL x. (Fin n < #x) = (stream_take n·x ~= x)"
apply (induct_tac n, auto)
apply (simp add: Fin_0, clarsimp)
apply (drule not_sym)
apply (drule slen_empty_eq [THEN iffD1], simp)
apply (case_tac "x=UU", simp)
apply (drule stream_exhaust_eq [THEN iffD1], clarsimp)
apply (erule_tac x="y" in allE, auto)
apply (simp add: inat_defs split:inat_splits)
apply (case_tac "x=UU", simp)
apply (drule stream_exhaust_eq [THEN iffD1], clarsimp)
apply (erule_tac x="y" in allE, simp)
by (simp add: inat_defs split:inat_splits)
lemma slen_take_eq_rev: "(#x <= Fin n) = (stream_take n·x = x)"
by (simp add: ile_def slen_take_eq)
lemma slen_take_lemma1: "#x = Fin n ==> stream_take n·x = x"
by (rule slen_take_eq_rev [THEN iffD1], auto)
lemma slen_rt_mono: "#s2 <= #s1 ==> #(rt$s2) <= #(rt$s1)"
apply (rule stream.casedist [of s1])
by (rule stream.casedist [of s2],simp+)+
lemma slen_take_lemma5: "#(stream_take n$s) <= Fin n"
apply (case_tac "stream_take n$s = s")
apply (simp add: slen_take_eq_rev)
by (simp add: slen_take_lemma4)
lemma slen_take_lemma2: "!x. ~stream_finite x --> #(stream_take i·x) = Fin i"
apply (simp add: stream.finite_def, auto)
by (simp add: slen_take_lemma4)
lemma slen_infinite: "stream_finite x = (#x ~= Infty)"
by (simp add: slen_def)
lemma slen_mono_lemma: "stream_finite s ==> ALL t. s << t --> #s <= #t"
apply (erule stream_finite_ind [of s], auto)
apply (case_tac "t=UU", auto)
apply (drule eq_UU_iff [THEN iffD2])
apply (drule scons_eq_UU [THEN iffD2], simp)
apply (drule stream_exhaust_eq [THEN iffD1], auto)
apply (erule_tac x="y" in allE, auto)
by (drule stream.inverts, auto)
lemma slen_mono: "s << t ==> #s <= #t"
apply (case_tac "stream_finite t")
apply (frule stream_finite_less)
apply (erule_tac x="s" in allE, simp)
apply (drule slen_mono_lemma, auto)
by (simp add: slen_def)
lemma iterate_lemma: "F$(iterate n F x) = iterate n F (F$x)"
by (insert iterate_Suc2 [of n F x], auto)
lemma slen_rt_mult [rule_format]: "!x. Fin (i + j) <= #x --> Fin j <= #(iterate i rt x)"
apply (induct_tac i, auto)
apply (case_tac "x=UU", auto)
apply (simp add: inat_defs)
apply (drule stream_exhaust_eq [THEN iffD1], auto)
apply (erule_tac x="y" in allE, auto)
apply (simp add: inat_defs split:inat_splits)
by (simp add: iterate_lemma)
lemma slen_take_lemma3 [rule_format]:
"!(x::'a::flat stream) y. Fin n <= #x --> x << y --> stream_take n·x = stream_take n·y"
apply (induct_tac n, auto)
apply (case_tac "x=UU", auto)
apply (simp add: inat_defs)
apply (simp add: Suc_ile_eq)
apply (case_tac "y=UU", clarsimp)
apply (drule eq_UU_iff [THEN iffD2],simp)
apply (drule stream_exhaust_eq [THEN iffD1], clarsimp)+
apply (erule_tac x="ya" in allE, simp)
apply (drule stream.inverts,auto)
by (drule ax_flat [rule_format], simp)
lemma slen_strict_mono_lemma:
"stream_finite t ==> !s. #(s::'a::flat stream) = #t & s << t --> s = t"
apply (erule stream_finite_ind, auto)
apply (drule eq_UU_iff [THEN iffD2], simp)
apply (case_tac "sa=UU", auto)
apply (drule stream_exhaust_eq [THEN iffD1], clarsimp)
apply (drule stream.inverts, simp, simp, clarsimp)
by (drule ax_flat [rule_format], simp)
lemma slen_strict_mono: "[|stream_finite t; s ~= t; s << (t::'a::flat stream) |] ==> #s < #t"
apply (intro ilessI1, auto)
apply (simp add: slen_mono)
by (drule slen_strict_mono_lemma, auto)
lemma stream_take_Suc_neq: "stream_take (Suc n)$s ~=s ==>
stream_take n$s ~= stream_take (Suc n)$s"
apply auto
apply (subgoal_tac "stream_take n$s ~=s")
apply (insert slen_take_lemma4 [of n s],auto)
apply (rule stream.casedist [of s],simp)
apply (simp add: inat_defs split:inat_splits)
by (simp add: slen_take_lemma4)
(* ----------------------------------------------------------------------- *)
(* theorems about smap *)
(* ----------------------------------------------------------------------- *)
section "smap"
lemma smap_unfold: "smap = (Λ f t. case t of x&&xs => f$x && smap$f$xs)"
by (insert smap_def [THEN fix_eq2], auto)
lemma smap_empty [simp]: "smap·f·⊥ = ⊥"
by (subst smap_unfold, simp)
lemma smap_scons [simp]: "x~=⊥ ==> smap·f·(x&&xs) = (f·x)&&(smap·f·xs)"
by (subst smap_unfold, force)
(* ----------------------------------------------------------------------- *)
(* theorems about sfilter *)
(* ----------------------------------------------------------------------- *)
section "sfilter"
lemma sfilter_unfold:
"sfilter = (Λ p s. case s of x && xs =>
If p·x then x && sfilter·p·xs else sfilter·p·xs fi)"
by (insert sfilter_def [THEN fix_eq2], auto)
lemma strict_sfilter: "sfilter·⊥ = ⊥"
apply (rule ext_cfun)
apply (subst sfilter_unfold, auto)
apply (case_tac "x=UU", auto)
by (drule stream_exhaust_eq [THEN iffD1], auto)
lemma sfilter_empty [simp]: "sfilter·f·⊥ = ⊥"
by (subst sfilter_unfold, force)
lemma sfilter_scons [simp]:
"x ~= ⊥ ==> sfilter·f·(x && xs) =
If f·x then x && sfilter·f·xs else sfilter·f·xs fi"
by (subst sfilter_unfold, force)
(* ----------------------------------------------------------------------- *)
section "i_rt"
(* ----------------------------------------------------------------------- *)
lemma i_rt_UU [simp]: "i_rt n UU = UU"
apply (simp add: i_rt_def)
by (rule iterate.induct,auto)
lemma i_rt_0 [simp]: "i_rt 0 s = s"
by (simp add: i_rt_def)
lemma i_rt_Suc [simp]: "a ~= UU ==> i_rt (Suc n) (a&&s) = i_rt n s"
by (simp add: i_rt_def iterate_Suc2 del: iterate_Suc)
lemma i_rt_Suc_forw: "i_rt (Suc n) s = i_rt n (rt$s)"
by (simp only: i_rt_def iterate_Suc2)
lemma i_rt_Suc_back:"i_rt (Suc n) s = rt$(i_rt n s)"
by (simp only: i_rt_def,auto)
lemma i_rt_mono: "x << s ==> i_rt n x << i_rt n s"
by (simp add: i_rt_def monofun_rt_mult)
lemma i_rt_ij_lemma: "Fin (i + j) <= #x ==> Fin j <= #(i_rt i x)"
by (simp add: i_rt_def slen_rt_mult)
lemma slen_i_rt_mono: "#s2 <= #s1 ==> #(i_rt n s2) <= #(i_rt n s1)"
apply (induct_tac n,auto)
apply (simp add: i_rt_Suc_back)
by (drule slen_rt_mono,simp)
lemma i_rt_take_lemma1 [rule_format]: "ALL s. i_rt n (stream_take n$s) = UU"
apply (induct_tac n)
apply (simp add: i_rt_Suc_back,auto)
apply (case_tac "s=UU",auto)
by (drule stream_exhaust_eq [THEN iffD1],auto)
lemma i_rt_slen: "(i_rt n s = UU) = (stream_take n$s = s)"
apply auto
apply (insert i_rt_ij_lemma [of n "Suc 0" s])
apply (subgoal_tac "#(i_rt n s)=0")
apply (case_tac "stream_take n$s = s",simp+)
apply (insert slen_take_eq [rule_format,of n s],simp)
apply (simp add: inat_defs split:inat_splits)
apply (simp add: slen_take_eq )
by (simp, insert i_rt_take_lemma1 [of n s],simp)
lemma i_rt_lemma_slen: "#s=Fin n ==> i_rt n s = UU"
by (simp add: i_rt_slen slen_take_lemma1)
lemma stream_finite_i_rt [simp]: "stream_finite (i_rt n s) = stream_finite s"
apply (induct_tac n, auto)
apply (rule stream.casedist [of "s"], auto simp del: i_rt_Suc)
by (simp add: i_rt_Suc_back stream_finite_rt_eq)+
lemma take_i_rt_len_lemma: "ALL sl x j t. Fin sl = #x & n <= sl &
#(stream_take n$x) = Fin t & #(i_rt n x)= Fin j
--> Fin (j + t) = #x"
apply (induct_tac n,auto)
apply (simp add: inat_defs)
apply (case_tac "x=UU",auto)
apply (simp add: inat_defs)
apply (drule stream_exhaust_eq [THEN iffD1],clarsimp)
apply (subgoal_tac "EX k. Fin k = #y",clarify)
apply (erule_tac x="k" in allE)
apply (erule_tac x="y" in allE,auto)
apply (erule_tac x="THE p. Suc p = t" in allE,auto)
apply (simp add: inat_defs split:inat_splits)
apply (simp add: inat_defs split:inat_splits)
apply (simp only: the_equality)
apply (simp add: inat_defs split:inat_splits)
apply force
by (simp add: inat_defs split:inat_splits)
lemma take_i_rt_len:
"[| Fin sl = #x; n <= sl; #(stream_take n$x) = Fin t; #(i_rt n x) = Fin j |] ==>
Fin (j + t) = #x"
by (blast intro: take_i_rt_len_lemma [rule_format])
(* ----------------------------------------------------------------------- *)
section "i_th"
(* ----------------------------------------------------------------------- *)
lemma i_th_i_rt_step:
"[| i_th n s1 << i_th n s2; i_rt (Suc n) s1 << i_rt (Suc n) s2 |] ==>
i_rt n s1 << i_rt n s2"
apply (simp add: i_th_def i_rt_Suc_back)
apply (rule stream.casedist [of "i_rt n s1"],simp)
apply (rule stream.casedist [of "i_rt n s2"],auto)
apply (drule eq_UU_iff [THEN iffD2], simp add: scons_eq_UU)
by (intro monofun_cfun, auto)
lemma i_th_stream_take_Suc [rule_format]:
"ALL s. i_th n (stream_take (Suc n)$s) = i_th n s"
apply (induct_tac n,auto)
apply (simp add: i_th_def)
apply (case_tac "s=UU",auto)
apply (drule stream_exhaust_eq [THEN iffD1],auto)
apply (case_tac "s=UU",simp add: i_th_def)
apply (drule stream_exhaust_eq [THEN iffD1],auto)
by (simp add: i_th_def i_rt_Suc_forw)
lemma i_th_last: "i_th n s && UU = i_rt n (stream_take (Suc n)$s)"
apply (insert surjectiv_scons [of "i_rt n (stream_take (Suc n)$s)"])
apply (rule i_th_stream_take_Suc [THEN subst])
apply (simp add: i_th_def i_rt_Suc_back [symmetric])
by (simp add: i_rt_take_lemma1)
lemma i_th_last_eq:
"i_th n s1 = i_th n s2 ==> i_rt n (stream_take (Suc n)$s1) = i_rt n (stream_take (Suc n)$s2)"
apply (insert i_th_last [of n s1])
apply (insert i_th_last [of n s2])
by auto
lemma i_th_prefix_lemma:
"[| k <= n; stream_take (Suc n)$s1 << stream_take (Suc n)$s2 |] ==>
i_th k s1 << i_th k s2"
apply (insert i_th_stream_take_Suc [of k s1, THEN sym])
apply (insert i_th_stream_take_Suc [of k s2, THEN sym],auto)
apply (simp add: i_th_def)
apply (rule monofun_cfun, auto)
apply (rule i_rt_mono)
by (blast intro: stream_take_lemma10)
lemma take_i_rt_prefix_lemma1:
"stream_take (Suc n)$s1 << stream_take (Suc n)$s2 ==>
i_rt (Suc n) s1 << i_rt (Suc n) s2 ==>
i_rt n s1 << i_rt n s2 & stream_take n$s1 << stream_take n$s2"
apply auto
apply (insert i_th_prefix_lemma [of n n s1 s2])
apply (rule i_th_i_rt_step,auto)
by (drule mono_stream_take_pred,simp)
lemma take_i_rt_prefix_lemma:
"[| stream_take n$s1 << stream_take n$s2; i_rt n s1 << i_rt n s2 |] ==> s1 << s2"
apply (case_tac "n=0",simp)
apply (insert neq0_conv [of n])
apply (insert not0_implies_Suc [of n],auto)
apply (subgoal_tac "stream_take 0$s1 << stream_take 0$s2 &
i_rt 0 s1 << i_rt 0 s2")
defer 1
apply (rule zero_induct,blast)
apply (blast dest: take_i_rt_prefix_lemma1)
by simp
lemma streams_prefix_lemma: "(s1 << s2) =
(stream_take n$s1 << stream_take n$s2 & i_rt n s1 << i_rt n s2)"
apply auto
apply (simp add: monofun_cfun_arg)
apply (simp add: i_rt_mono)
by (erule take_i_rt_prefix_lemma,simp)
lemma streams_prefix_lemma1:
"[| stream_take n$s1 = stream_take n$s2; i_rt n s1 = i_rt n s2 |] ==> s1 = s2"
apply (simp add: po_eq_conv,auto)
apply (insert streams_prefix_lemma)
by blast+
(* ----------------------------------------------------------------------- *)
section "sconc"
(* ----------------------------------------------------------------------- *)
lemma UU_sconc [simp]: " UU ooo s = s "
by (simp add: sconc_def inat_defs)
lemma scons_neq_UU: "a~=UU ==> a && s ~=UU"
by auto
lemma singleton_sconc [rule_format, simp]: "x~=UU --> (x && UU) ooo y = x && y"
apply (simp add: sconc_def inat_defs split:inat_splits,auto)
apply (rule someI2_ex,auto)
apply (rule_tac x="x && y" in exI,auto)
apply (simp add: i_rt_Suc_forw)
apply (case_tac "xa=UU",simp)
by (drule stream_exhaust_eq [THEN iffD1],auto)
lemma ex_sconc [rule_format]:
"ALL k y. #x = Fin k --> (EX w. stream_take k$w = x & i_rt k w = y)"
apply (case_tac "#x")
apply (rule stream_finite_ind [of x],auto)
apply (simp add: stream.finite_def)
apply (drule slen_take_lemma1,blast)
apply (simp add: inat_defs split:inat_splits)+
apply (erule_tac x="y" in allE,auto)
by (rule_tac x="a && w" in exI,auto)
lemma rt_sconc1: "Fin n = #x ==> i_rt n (x ooo y) = y"
apply (simp add: sconc_def inat_defs split:inat_splits, arith?,auto)
apply (rule someI2_ex,auto)
by (drule ex_sconc,simp)
lemma sconc_inj2: "[|Fin n = #x; x ooo y = x ooo z|] ==> y = z"
apply (frule_tac y=y in rt_sconc1)
by (auto elim: rt_sconc1)
lemma sconc_UU [simp]:"s ooo UU = s"
apply (case_tac "#s")
apply (simp add: sconc_def inat_defs)
apply (rule someI2_ex)
apply (rule_tac x="s" in exI)
apply auto
apply (drule slen_take_lemma1,auto)
apply (simp add: i_rt_lemma_slen)
apply (drule slen_take_lemma1,auto)
apply (simp add: i_rt_slen)
by (simp add: sconc_def inat_defs)
lemma stream_take_sconc [simp]: "Fin n = #x ==> stream_take n$(x ooo y) = x"
apply (simp add: sconc_def)
apply (simp add: inat_defs split:inat_splits,auto)
apply (rule someI2_ex,auto)
by (drule ex_sconc,simp)
lemma scons_sconc [rule_format,simp]: "a~=UU --> (a && x) ooo y = a && x ooo y"
apply (case_tac "#x",auto)
apply (simp add: sconc_def)
apply (rule someI2_ex)
apply (drule ex_sconc,simp)
apply (rule someI2_ex,auto)
apply (simp add: i_rt_Suc_forw)
apply (rule_tac x="a && x" in exI,auto)
apply (case_tac "xa=UU",auto)
(*apply (drule_tac s="stream_take nat$x" in scons_neq_UU)
apply (simp add: i_rt_Suc_forw)*)
apply (drule stream_exhaust_eq [THEN iffD1],auto)
apply (drule streams_prefix_lemma1,simp+)
by (simp add: sconc_def)
lemma ft_sconc: "x ~= UU ==> ft$(x ooo y) = ft$x"
by (rule stream.casedist [of x],auto)
lemma sconc_assoc: "(x ooo y) ooo z = x ooo y ooo z"
apply (case_tac "#x")
apply (rule stream_finite_ind [of x],auto simp del: scons_sconc)
apply (simp add: stream.finite_def del: scons_sconc)
apply (drule slen_take_lemma1,auto simp del: scons_sconc)
apply (case_tac "a = UU", auto)
by (simp add: sconc_def)
(* ----------------------------------------------------------------------- *)
lemma sconc_mono: "y << y' ==> x ooo y << x ooo y'"
apply (case_tac "#x")
apply (rule stream_finite_ind [of "x"])
apply (auto simp add: stream.finite_def)
apply (drule slen_take_lemma1,blast)
by (simp add: stream_prefix',auto simp add: sconc_def)
lemma sconc_mono1 [simp]: "x << x ooo y"
by (rule sconc_mono [of UU, simplified])
(* ----------------------------------------------------------------------- *)
lemma empty_sconc [simp]: "(x ooo y = UU) = (x = UU & y = UU)"
apply (case_tac "#x",auto)
apply (insert sconc_mono1 [of x y])
by (insert eq_UU_iff [THEN iffD2, of x],auto)
(* ----------------------------------------------------------------------- *)
lemma rt_sconc [rule_format, simp]: "s~=UU --> rt$(s ooo x) = rt$s ooo x"
by (rule stream.casedist,auto)
lemma i_th_sconc_lemma [rule_format]:
"ALL x y. Fin n < #x --> i_th n (x ooo y) = i_th n x"
apply (induct_tac n, auto)
apply (simp add: Fin_0 i_th_def)
apply (simp add: slen_empty_eq ft_sconc)
apply (simp add: i_th_def)
apply (case_tac "x=UU",auto)
apply (drule stream_exhaust_eq [THEN iffD1], auto)
apply (erule_tac x="ya" in allE)
by (simp add: inat_defs split:inat_splits)
(* ----------------------------------------------------------------------- *)
lemma sconc_lemma [rule_format, simp]: "ALL s. stream_take n$s ooo i_rt n s = s"
apply (induct_tac n,auto)
apply (case_tac "s=UU",auto)
by (drule stream_exhaust_eq [THEN iffD1],auto)
(* ----------------------------------------------------------------------- *)
subsection "pointwise equality"
(* ----------------------------------------------------------------------- *)
lemma ex_last_stream_take_scons: "stream_take (Suc n)$s =
stream_take n$s ooo i_rt n (stream_take (Suc n)$s)"
by (insert sconc_lemma [of n "stream_take (Suc n)$s"],simp)
lemma i_th_stream_take_eq:
"!!n. ALL n. i_th n s1 = i_th n s2 ==> stream_take n$s1 = stream_take n$s2"
apply (induct_tac n,auto)
apply (subgoal_tac "stream_take (Suc na)$s1 =
stream_take na$s1 ooo i_rt na (stream_take (Suc na)$s1)")
apply (subgoal_tac "i_rt na (stream_take (Suc na)$s1) =
i_rt na (stream_take (Suc na)$s2)")
apply (subgoal_tac "stream_take (Suc na)$s2 =
stream_take na$s2 ooo i_rt na (stream_take (Suc na)$s2)")
apply (insert ex_last_stream_take_scons,simp)
apply blast
apply (erule_tac x="na" in allE)
apply (insert i_th_last_eq [of _ s1 s2])
by blast+
lemma pointwise_eq_lemma[rule_format]: "ALL n. i_th n s1 = i_th n s2 ==> s1 = s2"
by (insert i_th_stream_take_eq [THEN stream.take_lemmas],blast)
(* ----------------------------------------------------------------------- *)
subsection "finiteness"
(* ----------------------------------------------------------------------- *)
lemma slen_sconc_finite1:
"[| #(x ooo y) = Infty; Fin n = #x |] ==> #y = Infty"
apply (case_tac "#y ~= Infty",auto)
apply (simp only: slen_infinite [symmetric])
apply (drule_tac y=y in rt_sconc1)
apply (insert stream_finite_i_rt [of n "x ooo y"])
by (simp add: slen_infinite)
lemma slen_sconc_infinite1: "#x=Infty ==> #(x ooo y) = Infty"
by (simp add: sconc_def)
lemma slen_sconc_infinite2: "#y=Infty ==> #(x ooo y) = Infty"
apply (case_tac "#x")
apply (simp add: sconc_def)
apply (rule someI2_ex)
apply (drule ex_sconc,auto)
apply (erule contrapos_pp)
apply (insert stream_finite_i_rt)
apply (simp add: slen_infinite,auto)
by (simp add: sconc_def)
lemma sconc_finite: "(#x~=Infty & #y~=Infty) = (#(x ooo y)~=Infty)"
apply auto
apply (case_tac "#x",auto)
apply (erule contrapos_pp,simp)
apply (erule slen_sconc_finite1,simp)
apply (drule slen_sconc_infinite1 [of _ y],simp)
by (drule slen_sconc_infinite2 [of _ x],simp)
(* ----------------------------------------------------------------------- *)
lemma slen_sconc_mono3: "[| Fin n = #x; Fin k = #(x ooo y) |] ==> n <= k"
apply (insert slen_mono [of "x" "x ooo y"])
by (simp add: inat_defs split: inat_splits)
(* ----------------------------------------------------------------------- *)
subsection "finite slen"
(* ----------------------------------------------------------------------- *)
lemma slen_sconc: "[| Fin n = #x; Fin m = #y |] ==> #(x ooo y) = Fin (n + m)"
apply (case_tac "#(x ooo y)")
apply (frule_tac y=y in rt_sconc1)
apply (insert take_i_rt_len [of "THE j. Fin j = #(x ooo y)" "x ooo y" n n m],simp)
apply (insert slen_sconc_mono3 [of n x _ y],simp)
by (insert sconc_finite [of x y],auto)
(* ----------------------------------------------------------------------- *)
subsection "flat prefix"
(* ----------------------------------------------------------------------- *)
lemma sconc_prefix: "(s1::'a::flat stream) << s2 ==> EX t. s1 ooo t = s2"
apply (case_tac "#s1")
apply (subgoal_tac "stream_take nat$s1 = stream_take nat$s2")
apply (rule_tac x="i_rt nat s2" in exI)
apply (simp add: sconc_def)
apply (rule someI2_ex)
apply (drule ex_sconc)
apply (simp,clarsimp,drule streams_prefix_lemma1)
apply (simp+,rule slen_take_lemma3 [of _ s1 s2])
apply (simp+,rule_tac x="UU" in exI)
apply (insert slen_take_lemma3 [of _ s1 s2])
by (rule stream.take_lemmas,simp)
(* ----------------------------------------------------------------------- *)
subsection "continuity"
(* ----------------------------------------------------------------------- *)
lemma chain_sconc: "chain S ==> chain (%i. (x ooo S i))"
by (simp add: chain_def,auto simp add: sconc_mono)
lemma chain_scons: "chain S ==> chain (%i. a && S i)"
apply (simp add: chain_def,auto)
by (rule monofun_cfun_arg,simp)
lemma contlub_scons: "contlub (%x. a && x)"
by (simp add: contlub_Rep_CFun2)
lemma contlub_scons_lemma: "chain S ==> (LUB i. a && S i) = a && (LUB i. S i)"
apply (insert contlub_scons [of a])
by (simp only: contlub_def)
lemma finite_lub_sconc: "chain Y ==> (stream_finite x) ==>
(LUB i. x ooo Y i) = (x ooo (LUB i. Y i))"
apply (rule stream_finite_ind [of x])
apply (auto)
apply (subgoal_tac "(LUB i. a && (s ooo Y i)) = a && (LUB i. s ooo Y i)")
by (force,blast dest: contlub_scons_lemma chain_sconc)
lemma contlub_sconc_lemma:
"chain Y ==> (LUB i. x ooo Y i) = (x ooo (LUB i. Y i))"
apply (case_tac "#x=Infty")
apply (simp add: sconc_def)
prefer 2
apply (drule finite_lub_sconc,auto simp add: slen_infinite)
apply (simp add: slen_def)
apply (insert lub_const [of x] unique_lub [of _ x _])
by (auto simp add: lub)
lemma contlub_sconc: "contlub (%y. x ooo y)"
by (rule contlubI, insert contlub_sconc_lemma [of _ x], simp)
lemma monofun_sconc: "monofun (%y. x ooo y)"
by (simp add: monofun_def sconc_mono)
lemma cont_sconc: "cont (%y. x ooo y)"
apply (rule monocontlub2cont)
apply (rule monofunI, simp add: sconc_mono)
by (rule contlub_sconc)
(* ----------------------------------------------------------------------- *)
section "constr_sconc"
(* ----------------------------------------------------------------------- *)
lemma constr_sconc_UUs [simp]: "constr_sconc UU s = s"
by (simp add: constr_sconc_def inat_defs)
lemma "x ooo y = constr_sconc x y"
apply (case_tac "#x")
apply (rule stream_finite_ind [of x],auto simp del: scons_sconc)
defer 1
apply (simp add: constr_sconc_def del: scons_sconc)
apply (case_tac "#s")
apply (simp add: inat_defs)
apply (case_tac "a=UU",auto simp del: scons_sconc)
apply (simp)
apply (simp add: sconc_def)
apply (simp add: constr_sconc_def)
apply (simp add: stream.finite_def)
by (drule slen_take_lemma1,auto)
declare eq_UU_iff [THEN sym, simp add]
end
lemma scons_eq_UU:
(a && s = UU) = (a = UU)
lemma scons_not_empty:
[| a && x = UU; a ≠ UU |] ==> R
lemma stream_exhaust_eq:
(x ≠ UU) = (∃a y. a ≠ UU ∧ x = a && y)
lemma stream_neq_UU:
x ≠ UU ==> ∃a as. x = a && as ∧ a ≠ UU
lemma stream_inject_eq:
[| a ≠ UU; b ≠ UU |] ==> (a && s = b && t) = (a = b ∧ s = t)
lemma stream_prefix:
[| a && s << t; a ≠ UU |] ==> ∃b tt. t = b && tt ∧ b ≠ UU ∧ s << tt
lemma stream_prefix':
b ≠ UU ==> x << b && z = (x = UU ∨ (∃a y. x = a && y ∧ a ≠ UU ∧ a << b ∧ y << z))
lemma stream_flat_prefix:
[| x && xs << y && ys; x ≠ UU |] ==> x = y ∧ xs << ys
lemma stream_when_strictf:
stream_when·UU·s = UU
lemma ft_defin:
s ≠ UU ==> ft·s ≠ UU
lemma rt_strict_rev:
rt·s ≠ UU ==> s ≠ UU
lemma surjectiv_scons:
ft·s && rt·s = s
lemma monofun_rt_mult:
x << s ==> iterate i rt x << iterate i rt s
lemma stream_reach2:
(LUB i. stream_take i·s) = s
lemma chain_stream_take:
chain (%i. stream_take i·s)
lemma stream_take_prefix:
stream_take n·s << s
lemma stream_take_more:
stream_take n·x = x ==> stream_take (Suc n)·x = x
lemma stream_take_lemma3:
[| x ≠ UU; stream_take n·(x && xs) = x && xs |] ==> stream_take n·xs = xs
lemma stream_take_lemma4:
∀x xs. stream_take n·xs = xs --> stream_take (Suc n)·(x && xs) = x && xs
lemma stream_take_idempotent:
stream_take n·(stream_take n·s) = stream_take n·s
lemma stream_take_take_Suc:
stream_take n·(stream_take (Suc n)·s) = stream_take n·s
lemma mono_stream_take_pred:
stream_take (Suc n)·s1.0 << stream_take (Suc n)·s2.0 ==> stream_take n·s1.0 << stream_take n·s2.0
lemma stream_take_lemma10:
[| k ≤ n; stream_take n·s1.0 << stream_take n·s2.0 |] ==> stream_take k·s1.0 << stream_take k·s2.0
lemma stream_take_le_mono:
k ≤ n ==> stream_take k·s1.0 << stream_take n·s1.0
lemma mono_stream_take:
s1.0 << s2.0 ==> stream_take n·s1.0 << stream_take n·s2.0
lemma stream_take_take_less:
stream_take k·(stream_take n·s) << stream_take k·s
lemma stream_finite_ind:
[| stream_finite x; P UU; !!a s. [| a ≠ UU; P s |] ==> P (a && s) |] ==> P x
lemma stream_finite_ind2:
[| P UU; !!x. x ≠ UU ==> P (x && UU); !!y z s. [| y ≠ UU; z ≠ UU; P s |] ==> P (y && z && s) |] ==> ∀s. P (stream_take n·s)
lemma stream_ind2:
[| adm P; P UU; !!a. a ≠ UU ==> P (a && UU); !!a b s. [| a ≠ UU; b ≠ UU; P s |] ==> P (a && b && s) |] ==> P x
lemma stream_coind_lemma2:
∀s1 s2. R s1 s2 --> ft·s1 = ft·s2 ∧ R (rt·s1) (rt·s2) ==> stream_bisim R
lemma stream_finite_UU:
stream_finite UU
lemma stream_finite_UU_rev:
¬ stream_finite s ==> s ≠ UU
lemma stream_finite_lemma1:
stream_finite xs ==> stream_finite (x && xs)
lemma stream_finite_lemma2:
[| x ≠ UU; stream_finite (x && xs) |] ==> stream_finite xs
lemma stream_finite_rt_eq:
stream_finite (rt·s) = stream_finite s
lemma stream_finite_less:
stream_finite s ==> ∀t. t << s --> stream_finite t
lemma stream_take_finite:
stream_finite (stream_take n·s)
lemma adm_not_stream_finite:
adm (%x. ¬ stream_finite x)
lemma slen_empty:
#UU = 0
lemma slen_scons:
x ≠ UU ==> #(x && xs) = iSuc #xs
lemma slen_less_1_eq:
(#x < Fin (Suc 0)) = (x = UU)
lemma slen_empty_eq:
(#x = 0) = (x = UU)
lemma slen_scons_eq:
(Fin (Suc n) < #x) = (∃a y. x = a && y ∧ a ≠ UU ∧ Fin n < #y)
lemma slen_iSuc:
#x = iSuc n --> (∃a y. x = a && y ∧ a ≠ UU ∧ #y = n)
lemma slen_stream_take_finite:
#(stream_take n·s) ≠ ∞
lemma slen_scons_eq_rev:
(#x < Fin (Suc (Suc n))) = (∀a y. x ≠ a && y ∨ a = UU ∨ #y < Fin (Suc n))
lemma slen_take_lemma4:
stream_take n·s ≠ s ==> #(stream_take n·s) = Fin n
lemma slen_take_eq:
∀x. (Fin n < #x) = (stream_take n·x ≠ x)
lemma slen_take_eq_rev:
(#x ≤ Fin n) = (stream_take n·x = x)
lemma slen_take_lemma1:
#x = Fin n ==> stream_take n·x = x
lemma slen_rt_mono:
#s2.0 ≤ #s1.0 ==> #(rt·s2.0) ≤ #(rt·s1.0)
lemma slen_take_lemma5:
#(stream_take n·s) ≤ Fin n
lemma slen_take_lemma2:
∀x. ¬ stream_finite x --> #(stream_take i·x) = Fin i
lemma slen_infinite:
stream_finite x = (#x ≠ ∞)
lemma slen_mono_lemma:
stream_finite s ==> ∀t. s << t --> #s ≤ #t
lemma slen_mono:
s << t ==> #s ≤ #t
lemma iterate_lemma:
F·(iterate n F x) = iterate n F (F·x)
lemma slen_rt_mult:
Fin (i + j) ≤ #x ==> Fin j ≤ #(iterate i rt x)
lemma slen_take_lemma3:
[| Fin n ≤ #x; x << y |] ==> stream_take n·x = stream_take n·y
lemma slen_strict_mono_lemma:
stream_finite t ==> ∀s. #s = #t ∧ s << t --> s = t
lemma slen_strict_mono:
[| stream_finite t; s ≠ t; s << t |] ==> #s < #t
lemma stream_take_Suc_neq:
stream_take (Suc n)·s ≠ s ==> stream_take n·s ≠ stream_take (Suc n)·s
lemma smap_unfold:
smap = (LAM f t. case t of x && xs => f·x && smap·f·xs)
lemma smap_empty:
smap·f·UU = UU
lemma smap_scons:
x ≠ UU ==> smap·f·(x && xs) = f·x && smap·f·xs
lemma sfilter_unfold:
sfilter = (LAM p s. case s of x && xs => If p·x then x && sfilter·p·xs else sfilter·p·xs fi)
lemma strict_sfilter:
sfilter·UU = UU
lemma sfilter_empty:
sfilter·f·UU = UU
lemma sfilter_scons:
x ≠ UU ==> sfilter·f·(x && xs) = If f·x then x && sfilter·f·xs else sfilter·f·xs fi
lemma i_rt_UU:
i_rt n UU = UU
lemma i_rt_0:
i_rt 0 s = s
lemma i_rt_Suc:
a ≠ UU ==> i_rt (Suc n) (a && s) = i_rt n s
lemma i_rt_Suc_forw:
i_rt (Suc n) s = i_rt n (rt·s)
lemma i_rt_Suc_back:
i_rt (Suc n) s = rt·(i_rt n s)
lemma i_rt_mono:
x << s ==> i_rt n x << i_rt n s
lemma i_rt_ij_lemma:
Fin (i + j) ≤ #x ==> Fin j ≤ #(i_rt i x)
lemma slen_i_rt_mono:
#s2.0 ≤ #s1.0 ==> #(i_rt n s2.0) ≤ #(i_rt n s1.0)
lemma i_rt_take_lemma1:
i_rt n (stream_take n·s) = UU
lemma i_rt_slen:
(i_rt n s = UU) = (stream_take n·s = s)
lemma i_rt_lemma_slen:
#s = Fin n ==> i_rt n s = UU
lemma stream_finite_i_rt:
stream_finite (i_rt n s) = stream_finite s
lemma take_i_rt_len_lemma:
∀sl x j t. Fin sl = #x ∧ n ≤ sl ∧ #(stream_take n·x) = Fin t ∧ #(i_rt n x) = Fin j --> Fin (j + t) = #x
lemma take_i_rt_len:
[| Fin sl = #x; n ≤ sl; #(stream_take n·x) = Fin t; #(i_rt n x) = Fin j |] ==> Fin (j + t) = #x
lemma i_th_i_rt_step:
[| i_th n s1.0 << i_th n s2.0; i_rt (Suc n) s1.0 << i_rt (Suc n) s2.0 |] ==> i_rt n s1.0 << i_rt n s2.0
lemma i_th_stream_take_Suc:
i_th n (stream_take (Suc n)·s) = i_th n s
lemma i_th_last:
i_th n s && UU = i_rt n (stream_take (Suc n)·s)
lemma i_th_last_eq:
i_th n s1.0 = i_th n s2.0 ==> i_rt n (stream_take (Suc n)·s1.0) = i_rt n (stream_take (Suc n)·s2.0)
lemma i_th_prefix_lemma:
[| k ≤ n; stream_take (Suc n)·s1.0 << stream_take (Suc n)·s2.0 |] ==> i_th k s1.0 << i_th k s2.0
lemma take_i_rt_prefix_lemma1:
[| stream_take (Suc n)·s1.0 << stream_take (Suc n)·s2.0; i_rt (Suc n) s1.0 << i_rt (Suc n) s2.0 |] ==> i_rt n s1.0 << i_rt n s2.0 ∧ stream_take n·s1.0 << stream_take n·s2.0
lemma take_i_rt_prefix_lemma:
[| stream_take n·s1.0 << stream_take n·s2.0; i_rt n s1.0 << i_rt n s2.0 |] ==> s1.0 << s2.0
lemma streams_prefix_lemma:
s1.0 << s2.0 = (stream_take n·s1.0 << stream_take n·s2.0 ∧ i_rt n s1.0 << i_rt n s2.0)
lemma streams_prefix_lemma1:
[| stream_take n·s1.0 = stream_take n·s2.0; i_rt n s1.0 = i_rt n s2.0 |] ==> s1.0 = s2.0
lemma UU_sconc:
UU ooo s = s
lemma scons_neq_UU:
a ≠ UU ==> a && s ≠ UU
lemma singleton_sconc:
x ≠ UU ==> (x && UU) ooo y = x && y
lemma ex_sconc:
#x = Fin k ==> ∃w. stream_take k·w = x ∧ i_rt k w = y
lemma rt_sconc1:
Fin n = #x ==> i_rt n (x ooo y) = y
lemma sconc_inj2:
[| Fin n = #x; x ooo y = x ooo z |] ==> y = z
lemma sconc_UU:
s ooo UU = s
lemma stream_take_sconc:
Fin n = #x ==> stream_take n·(x ooo y) = x
lemma scons_sconc:
a ≠ UU ==> (a && x) ooo y = a && x ooo y
lemma ft_sconc:
x ≠ UU ==> ft·(x ooo y) = ft·x
lemma sconc_assoc:
(x ooo y) ooo z = x ooo y ooo z
lemma sconc_mono:
y << y' ==> x ooo y << x ooo y'
lemma sconc_mono1:
x << x ooo y
lemma empty_sconc:
(x ooo y = UU) = (x = UU ∧ y = UU)
lemma rt_sconc:
s ≠ UU ==> rt·(s ooo x) = rt·s ooo x
lemma i_th_sconc_lemma:
Fin n < #x ==> i_th n (x ooo y) = i_th n x
lemma sconc_lemma:
stream_take n·s ooo i_rt n s = s
lemma ex_last_stream_take_scons:
stream_take (Suc n)·s = stream_take n·s ooo i_rt n (stream_take (Suc n)·s)
lemma i_th_stream_take_eq:
∀n. i_th n s1.0 = i_th n s2.0 ==> stream_take n·s1.0 = stream_take n·s2.0
lemma pointwise_eq_lemma:
(!!n. i_th n s1.0 = i_th n s2.0) ==> s1.0 = s2.0
lemma slen_sconc_finite1:
[| #(x ooo y) = ∞; Fin n = #x |] ==> #y = ∞
lemma slen_sconc_infinite1:
#x = ∞ ==> #(x ooo y) = ∞
lemma slen_sconc_infinite2:
#y = ∞ ==> #(x ooo y) = ∞
lemma sconc_finite:
(#x ≠ ∞ ∧ #y ≠ ∞) = (#(x ooo y) ≠ ∞)
lemma slen_sconc_mono3:
[| Fin n = #x; Fin k = #(x ooo y) |] ==> n ≤ k
lemma slen_sconc:
[| Fin n = #x; Fin m = #y |] ==> #(x ooo y) = Fin (n + m)
lemma sconc_prefix:
s1.0 << s2.0 ==> ∃t. s1.0 ooo t = s2.0
lemma chain_sconc:
chain S ==> chain (%i. x ooo S i)
lemma chain_scons:
chain S ==> chain (%i. a && S i)
lemma contlub_scons:
contlub (Rep_CFun (op &&·a))
lemma contlub_scons_lemma:
chain S ==> (LUB i. a && S i) = a && lub (range S)
lemma finite_lub_sconc:
[| chain Y; stream_finite x |] ==> (LUB i. x ooo Y i) = x ooo lub (range Y)
lemma contlub_sconc_lemma:
chain Y ==> (LUB i. x ooo Y i) = x ooo lub (range Y)
lemma contlub_sconc:
contlub (op ooo x)
lemma monofun_sconc:
monofun (op ooo x)
lemma cont_sconc:
cont (op ooo x)
lemma constr_sconc_UUs:
constr_sconc UU s = s
lemma
x ooo y = constr_sconc x y