(* Title: HOLCF/FunCpo.thy
ID: $Id: Ffun.thy,v 1.1 2005/06/03 20:07:30 huffman Exp $
Author: Franz Regensburger
Definition of the partial ordering for the type of all functions => (fun)
Class instance of => (fun) for class pcpo.
*)
header {* Class instances for the full function space *}
theory Ffun
imports Pcpo
begin
subsection {* Type @{typ "'a => 'b"} is a partial order *}
instance fun :: (type, sq_ord) sq_ord ..
defs (overloaded)
less_fun_def: "(op \<sqsubseteq>) ≡ (λf g. ∀x. f x \<sqsubseteq> g x)"
lemma refl_less_fun: "(f::'a::type => 'b::po) \<sqsubseteq> f"
by (simp add: less_fun_def)
lemma antisym_less_fun:
"[|(f1::'a::type => 'b::po) \<sqsubseteq> f2; f2 \<sqsubseteq> f1|] ==> f1 = f2"
by (simp add: less_fun_def expand_fun_eq antisym_less)
lemma trans_less_fun:
"[|(f1::'a::type => 'b::po) \<sqsubseteq> f2; f2 \<sqsubseteq> f3|] ==> f1 \<sqsubseteq> f3"
apply (unfold less_fun_def)
apply clarify
apply (rule trans_less)
apply (erule spec)
apply (erule spec)
done
instance fun :: (type, po) po
by intro_classes
(assumption | rule refl_less_fun antisym_less_fun trans_less_fun)+
text {* make the symbol @{text "<<"} accessible for type fun *}
lemma less_fun: "(f \<sqsubseteq> g) = (∀x. f x \<sqsubseteq> g x)"
by (simp add: less_fun_def)
lemma less_fun_ext: "(!!x. f x \<sqsubseteq> g x) ==> f \<sqsubseteq> g"
by (simp add: less_fun_def)
subsection {* Type @{typ "'a::type => 'b::pcpo"} is pointed *}
lemma minimal_fun: "(λx. ⊥) \<sqsubseteq> f"
by (simp add: less_fun_def)
lemma least_fun: "∃x::'a => 'b::pcpo. ∀y. x \<sqsubseteq> y"
apply (rule_tac x = "λx. ⊥" in exI)
apply (rule minimal_fun [THEN allI])
done
subsection {* Type @{typ "'a::type => 'b::cpo"} is chain complete *}
text {* chains of functions yield chains in the po range *}
lemma ch2ch_fun: "chain S ==> chain (λi. S i x)"
by (simp add: chain_def less_fun_def)
lemma ch2ch_fun_rev: "(!!x. chain (λi. S i x)) ==> chain S"
by (simp add: chain_def less_fun_def)
text {* upper bounds of function chains yield upper bound in the po range *}
lemma ub2ub_fun:
"range (S::nat => 'a => 'b::po) <| u ==> range (λi. S i x) <| u x"
by (auto simp add: is_ub_def less_fun_def)
text {* Type @{typ "'a::type => 'b::cpo"} is chain complete *}
lemma lub_fun:
"chain (S::nat => 'a::type => 'b::cpo)
==> range S <<| (λx. \<Squnion>i. S i x)"
apply (rule is_lubI)
apply (rule ub_rangeI)
apply (rule less_fun_ext)
apply (rule is_ub_thelub)
apply (erule ch2ch_fun)
apply (rule less_fun_ext)
apply (rule is_lub_thelub)
apply (erule ch2ch_fun)
apply (erule ub2ub_fun)
done
lemma thelub_fun:
"chain (S::nat => 'a::type => 'b::cpo)
==> lub (range S) = (λx. \<Squnion>i. S i x)"
by (rule lub_fun [THEN thelubI])
lemma cpo_fun:
"chain (S::nat => 'a::type => 'b::cpo) ==> ∃x. range S <<| x"
by (rule exI, erule lub_fun)
instance fun :: (type, cpo) cpo
by intro_classes (rule cpo_fun)
instance fun :: (type, pcpo) pcpo
by intro_classes (rule least_fun)
text {* for compatibility with old HOLCF-Version *}
lemma inst_fun_pcpo: "UU = (%x. UU)"
by (rule minimal_fun [THEN UU_I, symmetric])
text {* function application is strict in the left argument *}
lemma app_strict [simp]: "⊥ x = ⊥"
by (simp add: inst_fun_pcpo)
end
lemma refl_less_fun:
f << f
lemma antisym_less_fun:
[| f1.0 << f2.0; f2.0 << f1.0 |] ==> f1.0 = f2.0
lemma trans_less_fun:
[| f1.0 << f2.0; f2.0 << f3.0 |] ==> f1.0 << f3.0
lemma less_fun:
f << g = (∀x. f x << g x)
lemma less_fun_ext:
(!!x. f x << g x) ==> f << g
lemma minimal_fun:
(%x. UU) << f
lemma least_fun:
∃x. ∀y. x << y
lemma ch2ch_fun:
chain S ==> chain (%i. S i x)
lemma ch2ch_fun_rev:
(!!x. chain (%i. S i x)) ==> chain S
lemma ub2ub_fun:
range S <| u ==> range (%i. S i x) <| u x
lemma lub_fun:
chain S ==> range S <<| (%x. LUB i. S i x)
lemma thelub_fun:
chain S ==> lub (range S) = (%x. LUB i. S i x)
lemma cpo_fun:
chain S ==> ∃x. range S <<| x
lemma inst_fun_pcpo:
UU = (%x. UU)
lemma app_strict:
UU x = UU