(* Title: HOLCF/Fix.thy
ID: $Id: Fix.thy,v 1.36 2005/09/22 17:06:05 huffman Exp $
Author: Franz Regensburger
Definitions for fixed point operator and admissibility.
*)
header {* Fixed point operator and admissibility *}
theory Fix
imports Cfun Cprod Adm
begin
defaultsort pcpo
subsection {* Definitions *}
consts
iterate :: "nat => ('a -> 'a) => 'a => 'a"
Ifix :: "('a -> 'a) => 'a"
"fix" :: "('a -> 'a) -> 'a"
admw :: "('a => bool) => bool"
primrec
iterate_0: "iterate 0 F x = x"
iterate_Suc: "iterate (Suc n) F x = F·(iterate n F x)"
defs
Ifix_def: "Ifix ≡ λF. \<Squnion>i. iterate i F ⊥"
fix_def: "fix ≡ Λ F. Ifix F"
admw_def: "admw P ≡ ∀F. (∀n. P (iterate n F ⊥)) -->
P (\<Squnion>i. iterate i F ⊥)"
subsection {* Binder syntax for @{term fix} *}
syntax
"@FIX" :: "('a => 'a) => 'a" (binder "FIX " 10)
"@FIXP" :: "[patterns, 'a] => 'a" ("(3FIX <_>./ _)" [0, 10] 10)
syntax (xsymbols)
"FIX " :: "[idt, 'a] => 'a" ("(3μ_./ _)" [0, 10] 10)
"@FIXP" :: "[patterns, 'a] => 'a" ("(3μ()<_>./ _)" [0, 10] 10)
translations
"FIX x. LAM y. t" == "fix·(LAM x y. t)"
"FIX x. t" == "fix·(LAM x. t)"
"FIX <xs>. t" == "fix·(LAM <xs>. t)"
subsection {* Properties of @{term iterate} and @{term fix} *}
text {* derive inductive properties of iterate from primitive recursion *}
lemma iterate_Suc2: "iterate (Suc n) F x = iterate n F (F·x)"
by (induct_tac n, auto)
text {*
The sequence of function iterations is a chain.
This property is essential since monotonicity of iterate makes no sense.
*}
lemma chain_iterate2: "x \<sqsubseteq> F·x ==> chain (λi. iterate i F x)"
by (rule chainI, induct_tac i, auto elim: monofun_cfun_arg)
lemma chain_iterate: "chain (λi. iterate i F ⊥)"
by (rule chain_iterate2 [OF minimal])
text {*
Kleene's fixed point theorems for continuous functions in pointed
omega cpo's
*}
lemma Ifix_eq: "Ifix F = F·(Ifix F)"
apply (unfold Ifix_def)
apply (subst lub_range_shift [of _ 1, symmetric])
apply (rule chain_iterate)
apply (subst contlub_cfun_arg)
apply (rule chain_iterate)
apply simp
done
lemma Ifix_least: "F·x = x ==> Ifix F \<sqsubseteq> x"
apply (unfold Ifix_def)
apply (rule is_lub_thelub)
apply (rule chain_iterate)
apply (rule ub_rangeI)
apply (induct_tac i)
apply simp
apply simp
apply (erule subst)
apply (erule monofun_cfun_arg)
done
text {* continuity of @{term iterate} *}
lemma cont_iterate1: "cont (λF. iterate n F x)"
by (induct_tac n, simp_all)
lemma cont_iterate2: "cont (λx. iterate n F x)"
by (induct_tac n, simp_all)
lemma cont_iterate: "cont (iterate n)"
by (rule cont_iterate1 [THEN cont2cont_lambda])
lemmas monofun_iterate2 = cont_iterate2 [THEN cont2mono, standard]
lemmas contlub_iterate2 = cont_iterate2 [THEN cont2contlub, standard]
text {* continuity of @{term Ifix} *}
lemma cont_Ifix: "cont Ifix"
apply (unfold Ifix_def)
apply (rule cont2cont_lub)
apply (rule ch2ch_fun_rev)
apply (rule chain_iterate)
apply (rule cont_iterate1)
done
text {* propagate properties of @{term Ifix} to its continuous counterpart *}
lemma fix_eq: "fix·F = F·(fix·F)"
apply (unfold fix_def)
apply (simp add: cont_Ifix)
apply (rule Ifix_eq)
done
lemma fix_least: "F·x = x ==> fix·F \<sqsubseteq> x"
apply (unfold fix_def)
apply (simp add: cont_Ifix)
apply (erule Ifix_least)
done
lemma fix_eqI: "[|F·x = x; ∀z. F·z = z --> x \<sqsubseteq> z|] ==> x = fix·F"
apply (rule antisym_less)
apply (erule allE)
apply (erule mp)
apply (rule fix_eq [symmetric])
apply (erule fix_least)
done
lemma fix_eq2: "f ≡ fix·F ==> f = F·f"
by (simp add: fix_eq [symmetric])
lemma fix_eq3: "f ≡ fix·F ==> f·x = F·f·x"
by (erule fix_eq2 [THEN cfun_fun_cong])
lemma fix_eq4: "f = fix·F ==> f = F·f"
apply (erule ssubst)
apply (rule fix_eq)
done
lemma fix_eq5: "f = fix·F ==> f·x = F·f·x"
by (erule fix_eq4 [THEN cfun_fun_cong])
text {* direct connection between @{term fix} and iteration without @{term Ifix} *}
lemma fix_def2: "fix·F = (\<Squnion>i. iterate i F ⊥)"
apply (unfold fix_def)
apply (simp add: cont_Ifix)
apply (simp add: Ifix_def)
done
text {* strictness of @{term fix} *}
lemma fix_defined_iff: "(fix·F = ⊥) = (F·⊥ = ⊥)"
apply (rule iffI)
apply (erule subst)
apply (rule fix_eq [symmetric])
apply (erule fix_least [THEN UU_I])
done
lemma fix_strict: "F·⊥ = ⊥ ==> fix·F = ⊥"
by (simp add: fix_defined_iff)
lemma fix_defined: "F·⊥ ≠ ⊥ ==> fix·F ≠ ⊥"
by (simp add: fix_defined_iff)
text {* @{term fix} applied to identity and constant functions *}
lemma fix_id: "(μ x. x) = ⊥"
by (simp add: fix_strict)
lemma fix_const: "(μ x. c) = c"
by (rule fix_eq [THEN trans], simp)
subsection {* Admissibility and fixed point induction *}
text {* an admissible formula is also weak admissible *}
lemma adm_impl_admw: "adm P ==> admw P"
apply (unfold admw_def)
apply (intro strip)
apply (erule admD)
apply (rule chain_iterate)
apply assumption
done
text {* some lemmata for functions with flat/chfin domain/range types *}
lemma adm_chfindom: "adm (λ(u::'a::cpo -> 'b::chfin). P(u·s))"
apply (unfold adm_def)
apply (intro strip)
apply (drule chfin_Rep_CFunR)
apply (erule_tac x = "s" in allE)
apply clarsimp
done
(* adm_flat not needed any more, since it is a special case of adm_chfindom *)
text {* fixed point induction *}
lemma fix_ind: "[|adm P; P ⊥; !!x. P x ==> P (F·x)|] ==> P (fix·F)"
apply (subst fix_def2)
apply (erule admD)
apply (rule chain_iterate)
apply (rule allI)
apply (induct_tac "i")
apply simp
apply simp
done
lemma def_fix_ind:
"[|f ≡ fix·F; adm P; P ⊥; !!x. P x ==> P (F·x)|] ==> P f"
apply simp
apply (erule fix_ind)
apply assumption
apply fast
done
text {* computational induction for weak admissible formulae *}
lemma wfix_ind: "[|admw P; ∀n. P (iterate n F ⊥)|] ==> P (fix·F)"
by (simp add: fix_def2 admw_def)
lemma def_wfix_ind:
"[|f ≡ fix·F; admw P; ∀n. P (iterate n F ⊥)|] ==> P f"
by (simp, rule wfix_ind)
end
lemma iterate_Suc2:
iterate (Suc n) F x = iterate n F (F·x)
lemma chain_iterate2:
x << F·x ==> chain (%i. iterate i F x)
lemma chain_iterate:
chain (%i. iterate i F UU)
lemma Ifix_eq:
Ifix F = F·(Ifix F)
lemma Ifix_least:
F·x = x ==> Ifix F << x
lemma cont_iterate1:
cont (%F. iterate n F x)
lemma cont_iterate2:
cont (iterate n F)
lemma cont_iterate:
cont (iterate n)
lemmas monofun_iterate2:
monofun (iterate n F)
lemmas monofun_iterate2:
monofun (iterate n F)
lemmas contlub_iterate2:
contlub (iterate n F)
lemmas contlub_iterate2:
contlub (iterate n F)
lemma cont_Ifix:
cont Ifix
lemma fix_eq:
fix·F = F·(fix·F)
lemma fix_least:
F·x = x ==> fix·F << x
lemma fix_eqI:
[| F·x = x; ∀z. F·z = z --> x << z |] ==> x = fix·F
lemma fix_eq2:
f == fix·F ==> f = F·f
lemma fix_eq3:
f == fix·F ==> f·x = F·f·x
lemma fix_eq4:
f = fix·F ==> f = F·f
lemma fix_eq5:
f = fix·F ==> f·x = F·f·x
lemma fix_def2:
fix·F = (LUB i. iterate i F UU)
lemma fix_defined_iff:
(fix·F = UU) = (F·UU = UU)
lemma fix_strict:
F·UU = UU ==> fix·F = UU
lemma fix_defined:
F·UU ≠ UU ==> fix·F ≠ UU
lemma fix_id:
(FIX x. x) = UU
lemma fix_const:
(FIX x. c) = c
lemma adm_impl_admw:
adm P ==> admw P
lemma adm_chfindom:
adm (%u. P (u·s))
lemma fix_ind:
[| adm P; P UU; !!x. P x ==> P (F·x) |] ==> P (fix·F)
lemma def_fix_ind:
[| f == fix·F; adm P; P UU; !!x. P x ==> P (F·x) |] ==> P f
lemma wfix_ind:
[| admw P; ∀n. P (iterate n F UU) |] ==> P (fix·F)
lemma def_wfix_ind:
[| f == fix·F; admw P; ∀n. P (iterate n F UU) |] ==> P f