Up to index of Isabelle/HOLCF/IOA
theory Simulations(* Title: HOLCF/IOA/meta_theory/Simulations.thy
ID: $Id: Simulations.thy,v 1.7 2005/09/02 15:24:02 wenzelm Exp $
Author: Olaf Müller
*)
header {* Simulations in HOLCF/IOA *}
theory Simulations
imports RefCorrectness
begin
defaultsort type
consts
is_simulation ::"[('s1 * 's2)set,('a,'s1)ioa,('a,'s2)ioa] => bool"
is_backward_simulation ::"[('s1 * 's2)set,('a,'s1)ioa,('a,'s2)ioa] => bool"
is_forw_back_simulation ::"[('s1 * 's2 set)set,('a,'s1)ioa,('a,'s2)ioa] => bool"
is_back_forw_simulation ::"[('s1 * 's2 set)set,('a,'s1)ioa,('a,'s2)ioa] => bool"
is_history_relation ::"[('s1 * 's2)set,('a,'s1)ioa,('a,'s2)ioa] => bool"
is_prophecy_relation ::"[('s1 * 's2)set,('a,'s1)ioa,('a,'s2)ioa] => bool"
defs
is_simulation_def:
"is_simulation R C A ==
(!s:starts_of C. R``{s} Int starts_of A ~= {}) &
(!s s' t a. reachable C s &
s -a--C-> t &
(s,s') : R
--> (? t' ex. (t,t'):R & move A ex s' a t'))"
is_backward_simulation_def:
"is_backward_simulation R C A ==
(!s:starts_of C. R``{s} <= starts_of A) &
(!s t t' a. reachable C s &
s -a--C-> t &
(t,t') : R
--> (? ex s'. (s,s'):R & move A ex s' a t'))"
is_forw_back_simulation_def:
"is_forw_back_simulation R C A ==
(!s:starts_of C. ? S'. (s,S'):R & S'<= starts_of A) &
(!s S' t a. reachable C s &
s -a--C-> t &
(s,S') : R
--> (? T'. (t,T'):R & (! t':T'. ? s':S'. ? ex. move A ex s' a t')))"
is_back_forw_simulation_def:
"is_back_forw_simulation R C A ==
(!s:starts_of C. ! S'. (s,S'):R --> S' Int starts_of A ~={}) &
(!s t T' a. reachable C s &
s -a--C-> t &
(t,T') : R
--> (? S'. (s,S'):R & (! s':S'. ? t':T'. ? ex. move A ex s' a t')))"
is_history_relation_def:
"is_history_relation R C A == is_simulation R C A &
is_ref_map (%x.(@y. (x,y):(R^-1))) A C"
is_prophecy_relation_def:
"is_prophecy_relation R C A == is_backward_simulation R C A &
is_ref_map (%x.(@y. (x,y):(R^-1))) A C"
ML {* use_legacy_bindings (the_context ()) *}
end
theorem set_non_empty:
(A ≠ {}) = (∃x. x ∈ A)
theorem Int_non_empty:
(A ∩ B ≠ {}) = (∃x. x ∈ A ∧ x ∈ B)
theorem Sim_start_convert:
(R `` {x} ∩ S ≠ {}) = (∃y. (x, y) ∈ R ∧ y ∈ S)
theorem ref_map_is_simulation:
is_ref_map f C A ==> is_simulation {p. snd p = f (fst p)} C A