Up to index of Isabelle/HOLCF/IOA/ex
theory TrivEx(* Title: HOLCF/IOA/TrivEx.thy
ID: $Id: TrivEx.thy,v 1.4 2005/09/03 14:50:26 wenzelm Exp $
Author: Olaf Müller
*)
header {* Trivial Abstraction Example *}
theory TrivEx
imports Abstraction
begin
datatype action = INC
consts
C_asig :: "action signature"
C_trans :: "(action, nat)transition set"
C_ioa :: "(action, nat)ioa"
A_asig :: "action signature"
A_trans :: "(action, bool)transition set"
A_ioa :: "(action, bool)ioa"
h_abs :: "nat => bool"
defs
C_asig_def:
"C_asig == ({},{INC},{})"
C_trans_def: "C_trans ==
{tr. let s = fst(tr);
t = snd(snd(tr))
in case fst(snd(tr))
of
INC => t = Suc(s)}"
C_ioa_def: "C_ioa ==
(C_asig, {0}, C_trans,{},{})"
A_asig_def:
"A_asig == ({},{INC},{})"
A_trans_def: "A_trans ==
{tr. let s = fst(tr);
t = snd(snd(tr))
in case fst(snd(tr))
of
INC => t = True}"
A_ioa_def: "A_ioa ==
(A_asig, {False}, A_trans,{},{})"
h_abs_def:
"h_abs n == n~=0"
axioms
MC_result:
"validIOA A_ioa (<>[] <%(b,a,c). b>)"
ML {* use_legacy_bindings (the_context ()) *}
end
theorem h_abs_is_abstraction:
is_abstraction h_abs C_ioa A_ioa
theorem TrivEx_abstraction:
validIOA C_ioa (<> [] <%(n, a, m). n ≠ 0>)