Up to index of Isabelle/HOLCF/IOA/ex
theory TrivEx2(* Title: HOLCF/IOA/TrivEx.thy
ID: $Id: TrivEx2.thy,v 1.4 2005/09/03 14:50:26 wenzelm Exp $
Author: Olaf Müller
*)
header {* Trivial Abstraction Example with fairness *}
theory TrivEx2
imports IOA Abstraction
begin
datatype action = INC
consts
C_asig :: "action signature"
C_trans :: "(action, nat)transition set"
C_ioa :: "(action, nat)ioa"
C_live_ioa :: "(action, nat)live_ioa"
A_asig :: "action signature"
A_trans :: "(action, bool)transition set"
A_ioa :: "(action, bool)ioa"
A_live_ioa :: "(action, bool)live_ioa"
h_abs :: "nat => bool"
defs
C_asig_def:
"C_asig == ({},{INC},{})"
C_trans_def: "C_trans ==
{tr. let s = fst(tr);
t = snd(snd(tr))
in case fst(snd(tr))
of
INC => t = Suc(s)}"
C_ioa_def: "C_ioa ==
(C_asig, {0}, C_trans,{},{})"
C_live_ioa_def:
"C_live_ioa == (C_ioa, WF C_ioa {INC})"
A_asig_def:
"A_asig == ({},{INC},{})"
A_trans_def: "A_trans ==
{tr. let s = fst(tr);
t = snd(snd(tr))
in case fst(snd(tr))
of
INC => t = True}"
A_ioa_def: "A_ioa ==
(A_asig, {False}, A_trans,{},{})"
A_live_ioa_def:
"A_live_ioa == (A_ioa, WF A_ioa {INC})"
h_abs_def:
"h_abs n == n~=0"
axioms
MC_result:
"validLIOA (A_ioa,WF A_ioa {INC}) (<>[] <%(b,a,c). b>)"
ML {* use_legacy_bindings (the_context ()) *}
end
theorem h_abs_is_abstraction:
is_abstraction h_abs C_ioa A_ioa
theorem Enabled_implication:
Enabled A_ioa {INC} (h_abs s) ==> Enabled C_ioa {INC} s
theorem h_abs_is_liveabstraction:
is_live_abstraction h_abs (C_ioa, WF C_ioa {INC}) (A_ioa, WF A_ioa {INC})
theorem TrivEx2_abstraction:
validLIOA C_live_ioa (<> [] <%(n, a, m). n ≠ 0>)