(* Title: HOLCF/Ssum.thy
ID: $Id: Ssum.thy,v 1.15 2005/07/26 16:28:11 huffman Exp $
Author: Franz Regensburger and Brian Huffman
Strict sum with typedef.
*)
header {* The type of strict sums *}
theory Ssum
imports Cprod
begin
defaultsort pcpo
subsection {* Definition of strict sum type *}
pcpodef (Ssum) ('a, 'b) "++" (infixr 10) =
"{p::'a × 'b. cfst·p = ⊥ ∨ csnd·p = ⊥}"
by simp
syntax (xsymbols)
"++" :: "[type, type] => type" ("(_ ⊕/ _)" [21, 20] 20)
syntax (HTML output)
"++" :: "[type, type] => type" ("(_ ⊕/ _)" [21, 20] 20)
subsection {* Definitions of constructors *}
constdefs
sinl :: "'a -> ('a ++ 'b)"
"sinl ≡ Λ a. Abs_Ssum <a, ⊥>"
sinr :: "'b -> ('a ++ 'b)"
"sinr ≡ Λ b. Abs_Ssum <⊥, b>"
subsection {* Properties of @{term sinl} and @{term sinr} *}
lemma sinl_Abs_Ssum: "sinl·a = Abs_Ssum <a, ⊥>"
by (unfold sinl_def, simp add: cont_Abs_Ssum Ssum_def)
lemma sinr_Abs_Ssum: "sinr·b = Abs_Ssum <⊥, b>"
by (unfold sinr_def, simp add: cont_Abs_Ssum Ssum_def)
lemma Rep_Ssum_sinl: "Rep_Ssum (sinl·a) = <a, ⊥>"
by (unfold sinl_def, simp add: cont_Abs_Ssum Abs_Ssum_inverse Ssum_def)
lemma Rep_Ssum_sinr: "Rep_Ssum (sinr·b) = <⊥, b>"
by (unfold sinr_def, simp add: cont_Abs_Ssum Abs_Ssum_inverse Ssum_def)
lemma sinl_strict [simp]: "sinl·⊥ = ⊥"
by (simp add: sinl_Abs_Ssum Abs_Ssum_strict cpair_strict)
lemma sinr_strict [simp]: "sinr·⊥ = ⊥"
by (simp add: sinr_Abs_Ssum Abs_Ssum_strict cpair_strict)
lemma sinl_eq [simp]: "(sinl·x = sinl·y) = (x = y)"
by (simp add: sinl_Abs_Ssum Abs_Ssum_inject Ssum_def)
lemma sinr_eq [simp]: "(sinr·x = sinr·y) = (x = y)"
by (simp add: sinr_Abs_Ssum Abs_Ssum_inject Ssum_def)
lemma sinl_inject: "sinl·x = sinl·y ==> x = y"
by (rule sinl_eq [THEN iffD1])
lemma sinr_inject: "sinr·x = sinr·y ==> x = y"
by (rule sinr_eq [THEN iffD1])
lemma sinl_defined_iff [simp]: "(sinl·x = ⊥) = (x = ⊥)"
apply (rule sinl_strict [THEN subst])
apply (rule sinl_eq)
done
lemma sinr_defined_iff [simp]: "(sinr·x = ⊥) = (x = ⊥)"
apply (rule sinr_strict [THEN subst])
apply (rule sinr_eq)
done
lemma sinl_defined [intro!]: "x ≠ ⊥ ==> sinl·x ≠ ⊥"
by simp
lemma sinr_defined [intro!]: "x ≠ ⊥ ==> sinr·x ≠ ⊥"
by simp
subsection {* Case analysis *}
lemma Exh_Ssum:
"z = ⊥ ∨ (∃a. z = sinl·a ∧ a ≠ ⊥) ∨ (∃b. z = sinr·b ∧ b ≠ ⊥)"
apply (rule_tac x=z in Abs_Ssum_induct)
apply (rule_tac p=y in cprodE)
apply (simp add: sinl_Abs_Ssum sinr_Abs_Ssum)
apply (simp add: Abs_Ssum_inject Ssum_def)
apply (auto simp add: cpair_strict Abs_Ssum_strict)
done
lemma ssumE:
"[|p = ⊥ ==> Q;
!!x. [|p = sinl·x; x ≠ ⊥|] ==> Q;
!!y. [|p = sinr·y; y ≠ ⊥|] ==> Q|] ==> Q"
by (cut_tac z=p in Exh_Ssum, auto)
lemma ssumE2:
"[|!!x. p = sinl·x ==> Q; !!y. p = sinr·y ==> Q|] ==> Q"
apply (rule_tac p=p in ssumE)
apply (simp only: sinl_strict [symmetric])
apply simp
apply simp
done
subsection {* Ordering properties of @{term sinl} and @{term sinr} *}
lemma sinl_less [simp]: "(sinl·x \<sqsubseteq> sinl·y) = (x \<sqsubseteq> y)"
by (simp add: less_Ssum_def Rep_Ssum_sinl cpair_less)
lemma sinr_less [simp]: "(sinr·x \<sqsubseteq> sinr·y) = (x \<sqsubseteq> y)"
by (simp add: less_Ssum_def Rep_Ssum_sinr cpair_less)
lemma sinl_less_sinr [simp]: "(sinl·x \<sqsubseteq> sinr·y) = (x = ⊥)"
by (simp add: less_Ssum_def Rep_Ssum_sinl Rep_Ssum_sinr cpair_less eq_UU_iff)
lemma sinr_less_sinl [simp]: "(sinr·x \<sqsubseteq> sinl·y) = (x = ⊥)"
by (simp add: less_Ssum_def Rep_Ssum_sinl Rep_Ssum_sinr cpair_less eq_UU_iff)
lemma sinl_eq_sinr [simp]: "(sinl·x = sinr·y) = (x = ⊥ ∧ y = ⊥)"
by (simp add: po_eq_conv)
lemma sinr_eq_sinl [simp]: "(sinr·x = sinl·y) = (x = ⊥ ∧ y = ⊥)"
by (simp add: po_eq_conv)
subsection {* Chains of strict sums *}
lemma less_sinlD: "p \<sqsubseteq> sinl·x ==> ∃y. p = sinl·y ∧ y \<sqsubseteq> x"
apply (rule_tac p=p in ssumE)
apply (rule_tac x="⊥" in exI, simp)
apply simp
apply simp
done
lemma less_sinrD: "p \<sqsubseteq> sinr·x ==> ∃y. p = sinr·y ∧ y \<sqsubseteq> x"
apply (rule_tac p=p in ssumE)
apply (rule_tac x="⊥" in exI, simp)
apply simp
apply simp
done
lemma ssum_chain_lemma:
"chain Y ==> (∃A. chain A ∧ Y = (λi. sinl·(A i))) ∨
(∃B. chain B ∧ Y = (λi. sinr·(B i)))"
apply (rule_tac p="lub (range Y)" in ssumE2)
apply (rule disjI1)
apply (rule_tac x="λi. cfst·(Rep_Ssum (Y i))" in exI)
apply (rule conjI)
apply (rule chain_monofun)
apply (erule cont_Rep_Ssum [THEN ch2ch_cont])
apply (rule ext, drule_tac x=i in is_ub_thelub, simp)
apply (drule less_sinlD, clarify)
apply (simp add: Rep_Ssum_sinl)
apply (rule disjI2)
apply (rule_tac x="λi. csnd·(Rep_Ssum (Y i))" in exI)
apply (rule conjI)
apply (rule chain_monofun)
apply (erule cont_Rep_Ssum [THEN ch2ch_cont])
apply (rule ext, drule_tac x=i in is_ub_thelub, simp)
apply (drule less_sinrD, clarify)
apply (simp add: Rep_Ssum_sinr)
done
subsection {* Definitions of constants *}
constdefs
Iwhen :: "['a -> 'c, 'b -> 'c, 'a ++ 'b] => 'c"
"Iwhen ≡ λf g s.
if cfst·(Rep_Ssum s) ≠ ⊥ then f·(cfst·(Rep_Ssum s)) else
if csnd·(Rep_Ssum s) ≠ ⊥ then g·(csnd·(Rep_Ssum s)) else ⊥"
text {* rewrites for @{term Iwhen} *}
lemma Iwhen1 [simp]: "Iwhen f g ⊥ = ⊥"
by (simp add: Iwhen_def Rep_Ssum_strict)
lemma Iwhen2 [simp]: "x ≠ ⊥ ==> Iwhen f g (sinl·x) = f·x"
by (simp add: Iwhen_def Rep_Ssum_sinl)
lemma Iwhen3 [simp]: "y ≠ ⊥ ==> Iwhen f g (sinr·y) = g·y"
by (simp add: Iwhen_def Rep_Ssum_sinr)
lemma Iwhen4: "Iwhen f g (sinl·x) = strictify·f·x"
by (simp add: strictify_conv_if)
lemma Iwhen5: "Iwhen f g (sinr·y) = strictify·g·y"
by (simp add: strictify_conv_if)
subsection {* Continuity of @{term Iwhen} *}
text {* @{term Iwhen} is continuous in all arguments *}
lemma cont_Iwhen1: "cont (λf. Iwhen f g s)"
by (rule_tac p=s in ssumE, simp_all)
lemma cont_Iwhen2: "cont (λg. Iwhen f g s)"
by (rule_tac p=s in ssumE, simp_all)
lemma cont_Iwhen3: "cont (λs. Iwhen f g s)"
apply (rule contI)
apply (drule ssum_chain_lemma, safe)
apply (simp add: contlub_cfun_arg [symmetric])
apply (simp add: Iwhen4 cont_cfun_arg)
apply (simp add: contlub_cfun_arg [symmetric])
apply (simp add: Iwhen5 cont_cfun_arg)
done
subsection {* Continuous versions of constants *}
constdefs
sscase :: "('a -> 'c) -> ('b -> 'c) -> ('a ++ 'b) -> 'c"
"sscase ≡ Λ f g s. Iwhen f g s"
translations
"case s of sinl$x => t1 | sinr$y => t2" == "sscase$(LAM x. t1)$(LAM y. t2)$s"
text {* continuous versions of lemmas for @{term sscase} *}
lemma beta_sscase: "sscase·f·g·s = Iwhen f g s"
by (simp add: sscase_def cont_Iwhen1 cont_Iwhen2 cont_Iwhen3)
lemma sscase1 [simp]: "sscase·f·g·⊥ = ⊥"
by (simp add: beta_sscase)
lemma sscase2 [simp]: "x ≠ ⊥ ==> sscase·f·g·(sinl·x) = f·x"
by (simp add: beta_sscase)
lemma sscase3 [simp]: "y ≠ ⊥ ==> sscase·f·g·(sinr·y) = g·y"
by (simp add: beta_sscase)
lemma sscase4 [simp]: "sscase·sinl·sinr·z = z"
by (rule_tac p=z in ssumE, simp_all)
end
lemma sinl_Abs_Ssum:
sinl·a = Abs_Ssum <a, UU>
lemma sinr_Abs_Ssum:
sinr·b = Abs_Ssum <UU, b>
lemma Rep_Ssum_sinl:
Rep_Ssum (sinl·a) = <a, UU>
lemma Rep_Ssum_sinr:
Rep_Ssum (sinr·b) = <UU, b>
lemma sinl_strict:
sinl·UU = UU
lemma sinr_strict:
sinr·UU = UU
lemma sinl_eq:
(sinl·x = sinl·y) = (x = y)
lemma sinr_eq:
(sinr·x = sinr·y) = (x = y)
lemma sinl_inject:
sinl·x = sinl·y ==> x = y
lemma sinr_inject:
sinr·x = sinr·y ==> x = y
lemma sinl_defined_iff:
(sinl·x = UU) = (x = UU)
lemma sinr_defined_iff:
(sinr·x = UU) = (x = UU)
lemma sinl_defined:
x ≠ UU ==> sinl·x ≠ UU
lemma sinr_defined:
x ≠ UU ==> sinr·x ≠ UU
lemma Exh_Ssum:
z = UU ∨ (∃a. z = sinl·a ∧ a ≠ UU) ∨ (∃b. z = sinr·b ∧ b ≠ UU)
lemma ssumE:
[| p = UU ==> Q; !!x. [| p = sinl·x; x ≠ UU |] ==> Q; !!y. [| p = sinr·y; y ≠ UU |] ==> Q |] ==> Q
lemma ssumE2:
[| !!x. p = sinl·x ==> Q; !!y. p = sinr·y ==> Q |] ==> Q
lemma sinl_less:
sinl·x << sinl·y = x << y
lemma sinr_less:
sinr·x << sinr·y = x << y
lemma sinl_less_sinr:
sinl·x << sinr·y = (x = UU)
lemma sinr_less_sinl:
sinr·x << sinl·y = (x = UU)
lemma sinl_eq_sinr:
(sinl·x = sinr·y) = (x = UU ∧ y = UU)
lemma sinr_eq_sinl:
(sinr·x = sinl·y) = (x = UU ∧ y = UU)
lemma less_sinlD:
p << sinl·x ==> ∃y. p = sinl·y ∧ y << x
lemma less_sinrD:
p << sinr·x ==> ∃y. p = sinr·y ∧ y << x
lemma ssum_chain_lemma:
chain Y ==> (∃A. chain A ∧ Y = (%i. sinl·(A i))) ∨ (∃B. chain B ∧ Y = (%i. sinr·(B i)))
lemma Iwhen1:
Iwhen f g UU = UU
lemma Iwhen2:
x ≠ UU ==> Iwhen f g (sinl·x) = f·x
lemma Iwhen3:
y ≠ UU ==> Iwhen f g (sinr·y) = g·y
lemma Iwhen4:
Iwhen f g (sinl·x) = strictify·f·x
lemma Iwhen5:
Iwhen f g (sinr·y) = strictify·g·y
lemma cont_Iwhen1:
cont (%f. Iwhen f g s)
lemma cont_Iwhen2:
cont (%g. Iwhen f g s)
lemma cont_Iwhen3:
cont (Iwhen f g)
lemma beta_sscase:
sscase·f·g·s = Iwhen f g s
lemma sscase1:
sscase·f·g·UU = UU
lemma sscase2:
x ≠ UU ==> sscase·f·g·(sinl·x) = f·x
lemma sscase3:
y ≠ UU ==> sscase·f·g·(sinr·y) = g·y
lemma sscase4:
sscase·sinl·sinr·z = z